Positive first-order logic on words and graphs

Denis Kuperberg

CNRS, LIP, ENS Lyon, Plume Team

Chocola, 10 March 2022

First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi$$

First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi$$

Semantics of φ : Structure (X, R_1, \dots, R_n) is accepted or rejected.

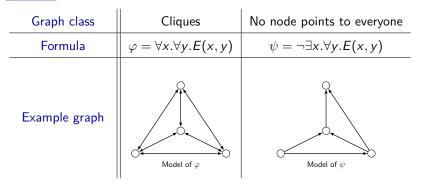
First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x.\varphi \mid \forall x.\varphi$$

Structure (X, R_1, \ldots, R_n) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate E.



Goal: Understand the role of negation in FO, any signature.

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

<u>Monotone class of structures</u>: closed under adding tuples to relations. For graph classes: monotone = closed under adding edges. Example: graphs containing a triangle.

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

What about the converse ?

Goal: Understand the role of negation in FO, any signature.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

What about the converse ?

Motivation: Logics with fixed points. Fixed points can only be applied to monotone φ . Hard to recognize \rightarrow replace by positive φ , syntactic condition.

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

What happens if we consider only **finite** structures ? This was open for 28 years...

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

What happens if we consider only finite structures ?

This was open for 28 years...

Theorem: Lyndon's theorem fails on finite structures:

▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard

[Stolboushkin 1995]
 EF games on grid-like structures, involved

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

What happens if we consider only finite structures ?

This was open for 28 years...

Theorem: Lyndon's theorem fails on finite structures:

▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved
- [This work]
 EF games on words, elementary

Our results

Finite Model Theory:

Lyndon's theorem fails on

- Finite words
- Finite graphs
- Finite structures (elementary proof), several versions:
 - one monotone predicate
 - some monotone predicates
 - all monotone predicates = closure under surjective morphisms.

Our results

Finite Model Theory:

Lyndon's theorem fails on

► Finite words

► Finite graphs

▶ Finite structures (elementary proof), several versions:

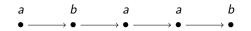
- one monotone predicate
- some monotone predicates
- ▶ all monotone predicates = closure under surjective morphisms.

Regular Language Theory:

Monotone FO languages	¥	Positive FO languages
Algebraic characterization		Logical characterization
Decidable membership		Undecidable membership

FO on words, the usual way

Words on alphabet $A = \{a, b[, ...]\}$: signature $(\leq, a, b[, ...])$

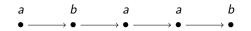


• $x \le y$ means position x is before position y.

• a(x) means position x is labelled by the letter a

FO on words, the usual way

Words on alphabet $A = \{a, b[, \dots]\}$: signature $(\leq, a, b[, \dots])$



• $x \le y$ means position x is before position y.

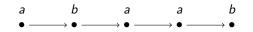
• a(x) means position x is labelled by the letter a

Examples of formulas:

- ▶ $\exists x.a(x)$: words containing *a*. Language A^*aA^* .
- ► $\exists x, y.(x \leq y \land a(x) \land b(y))$. Language $A^*aA^*bA^*$.

FO on words, the usual way

Words on alphabet $A = \{a, b[, ...]\}$: signature $(\leq, a, b[, ...])$



• $x \le y$ means position x is before position y.

• a(x) means position x is labelled by the letter a

Examples of formulas:

- ▶ $\exists x.a(x)$: words containing *a*. Language A^*aA^* .
- ► $\exists x, y.(x \leq y \land a(x) \land b(y))$. Language $A^*aA^*bA^*$.

Theorem

First-order languages form a strict subclass of regular languages.

Example: (aa)* is not FO-definable. (Proof later)

FO-definable languages are well-understood.

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

Intuition: FO languages are "Aperiodic": cannot count modulo *L* aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

 $uv^n w \in L \Leftrightarrow uv^{n+1} w \in L.$

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

Intuition: FO languages are "Aperiodic": cannot count modulo *L* aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^n w \in L \Leftrightarrow uv^{n+1} w \in L.$$

 \Leftrightarrow <u>Counter-free automaton</u>: No cycle of the form:

FO-definable languages are well-understood.

Theorem (Schützenberger, McNaughton, Papert)

A language $L \subseteq A^*$ is FO-definable iff it is definable by: Star-free expression \Leftrightarrow LTL \Leftrightarrow counter-free automaton \Leftrightarrow ...

Intuition: FO languages are "Aperiodic": cannot count modulo *L* aperiodic: There is $n \in \mathbb{N}$ such that $\forall u, v, w \in A^*$:

$$uv^n w \in L \Leftrightarrow uv^{n+1} w \in L.$$

 \Leftrightarrow <u>Counter-free automaton</u>: No cycle of the form:

Corollary: FO-definability is decidable for regular languages.

For now, a word is a structure (X, \leq, a, b, \dots) where

- \blacktriangleright \leq is a total order
- a, b, \ldots form a partition of X.

For now, a word is a structure (X, \leq, a, b, \dots) where

- \blacktriangleright \leq is a total order
- a, b, \ldots form a partition of X.

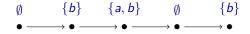
Let us drop the second constraint: a, b, \ldots independent.

For now, a word is a structure $(X, \leq, a, b, ...)$ where

 \blacktriangleright \leq is a total order

• a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, ... independent. \rightarrow Words on alphabet $\mathcal{P}(\{a, b, ...\})$:



We will note $\Sigma = \{a, b, \dots\}$, and $A = \mathcal{P}(\Sigma)$ the alphabet.

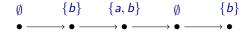
 Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.

For now, a word is a structure (X, \leq, a, b, \dots) where

 \blacktriangleright \leq is a total order

• a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent. \rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:



We will note $\Sigma = \{a, b, \dots\}$, and $A = \mathcal{P}(\Sigma)$ the alphabet.

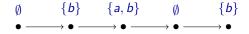
- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same (Preds= Σ or A).

For now, a word is a structure $(X, \leq, a, b, ...)$ where

 \blacktriangleright \leq is a total order

• a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, ... independent. \rightarrow Words on alphabet $\mathcal{P}(\{a, b, ...\})$:



We will note $\Sigma = \{a, b, \dots\}$, and $A = \mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same (Preds= Σ or A).

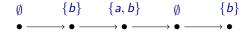
• We no longer have
$$\neg a(x) \equiv \bigvee_{\beta \neq a} \beta(x)$$
.

For now, a word is a structure (X, \leq, a, b, \dots) where

 \blacktriangleright \leq is a total order

• a, b, \ldots form a partition of X.

Let us drop the second constraint: a, b, \ldots independent. \rightarrow Words on alphabet $\mathcal{P}(\{a, b, \ldots\})$:



We will note $\Sigma = \{a, b, \dots\}$, and $A = \mathcal{P}(\Sigma)$ the alphabet.

- Useful e.g. in verification (LTL,...): independent signals can be true or false simultaneously.
- FO languages on alphabet A are the same (Preds= Σ or A).

The FO^+ logic: positive formulas

FO⁺ Logic: *a* ranges over Σ , no \neg

 $\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$

The FO^+ logic: positive formulas

FO⁺ Logic: *a* ranges over Σ , no \neg

$$\varphi, \psi := a(x) \mid x \le y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Example: On $\Sigma = \{a, b\}$:

 $\exists x, y. (x \leq y) \land a(x) \land b(y) \quad \rightsquigarrow \quad (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

The FO⁺ **logic: positive formulas**

 FO^+ Logic: *a* ranges over Σ , no \neg

$$\varphi, \psi := a(x) \mid x \le y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Example: On $\Sigma = \{a, b\}$:

 $\exists x, y. (x \leq y) \land a(x) \land b(y) \quad \rightsquigarrow \quad (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

Remark: \emptyset^* undefinable in FO⁺ (cannot say " $\neg a$ ").

The FO⁺ logic: positive formulas

 FO^+ Logic: *a* ranges over Σ , no \neg

$$\varphi, \psi := a(x) \mid x \le y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Example: On $\Sigma = \{a, b\}$:

 $\exists x, y. (x \leq y) \land a(x) \land b(y) \quad \rightsquigarrow \quad (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

Remark: \emptyset^* undefinable in FO⁺ (cannot say " $\neg a$ ").

More generally: FO^+ can only define monotone languages:

 $u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$

The FO^+ logic: positive formulas

 $\overline{\mathrm{FO}^+}$ Logic: *a* ranges over Σ , no \neg

$$\varphi, \psi := \mathsf{a}(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Example: On $\Sigma = \{a, b\}$:

 $\exists x, y. (x \leq y) \land a(x) \land b(y) \quad \rightsquigarrow \quad (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

Remark: \emptyset^* undefinable in FO⁺ (cannot say " $\neg a$ ").

More generally: FO^+ can only define monotone languages:

 $u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$

Motivation: abstraction of many logics not closed under \neg .

The FO⁺ logic: positive formulas

FO⁺ Logic: *a* ranges over Σ , no \neg

$$\varphi, \psi := a(x) \mid x \le y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Example: On $\Sigma = \{a, b\}$:

 $\exists x, y. (x \leq y) \land a(x) \land b(y) \quad \rightsquigarrow \quad (A^*\{a\}A^*\{b\}A^*) \cup (A^*\{a, b\}A^*)$

Remark: \emptyset^* undefinable in FO⁺ (cannot say " $\neg a$ ").

More generally: FO^+ can only define monotone languages:

 $u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$

Motivation: abstraction of many logics not closed under \neg .

Question [Colcombet]: FO & monotone $\stackrel{?}{\Rightarrow}$ FO⁺

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

Alphabet $A = \{\emptyset, a, b, c, {a \choose b}, {b \choose c}, {c \choose a}, {c \choose b}\}$. Let $a^{\uparrow} = \{a, {a \choose b}, {c \choose a}\}$.

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

Alphabet $A = \{\emptyset, a, b, c, {a \choose b}, {b \choose c}, {c \choose a}, {a \choose b}$. Let $a^{\uparrow} = \{a, {a \choose b}, {c \choose a}\}$. Language $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \bigcup A^* {a \choose b}A^*$.

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

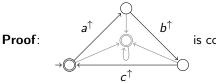
Alphabet
$$A = \{\emptyset, a, b, c, {a \choose b}, {b \choose c}, {c \choose a}, {a \choose b \choose c}\}$$
. Let $a^{\uparrow} = \{a, {a \choose b}, {c \choose a}\}$.
Language $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \bigcup A^* {a \choose b \choose c}A^*$. Monotone

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

Alphabet
$$A = \{\emptyset, a, b, c, {a \choose b}, {b \choose c}, {c \choose a}, {a \choose b \choose c}\}$$
. Let $a^{\uparrow} = \{a, {a \choose b}, {c \choose a}\}$.
Language $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \bigcup A^* {a \choose b \choose c}A^*$. Monotone

Lemma: *L* is FO-definable.



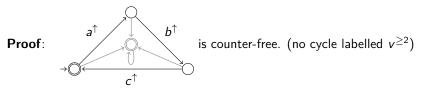
is counter-free. (no cycle labelled $v^{\geq 2}$)

Our first result

There is L monotone, FO-definable but not FO⁺-definable.

Alphabet
$$A = \{\emptyset, a, b, c, {a \choose b}, {b \choose c}, {c \choose a}, {a \choose b \choose c}\}$$
. Let $a^{\uparrow} = \{a, {a \choose b}, {c \choose a}\}$.
Language $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \bigcup A^* {a \choose b \choose c}A^*$. Monotone

Lemma: *L* is FO-definable.



To prove L is not FO⁺-definable: Ehrenfeucht-Fraïssé games.

Definition (EF games)

Played on two words u, v. At each round *i*:

- **Spoiler** places token i in u or v.
- Duplicator must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Definition (EF games)

Played on two words u, v. At each round *i*:

- Spoiler places token *i* in *u* or *v*.
- Duplicator must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive *n* rounds on u, v.

Definition (EF games)

Played on two words u, v. At each round *i*:

- Spoiler places token *i* in *u* or *v*.
- Duplicator must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive *n* rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \Leftrightarrow For all n, there are $u \in L$, $v \notin L$ s.t. $u \equiv_n v$.

Definition (EF games)

Played on two words u, v. At each round *i*:

- Spoiler places token *i* in *u* or *v*.
- Duplicator must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive *n* rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \Leftrightarrow For all n, there are $u \in L$, $v \notin L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

Proving FO^+ -undefinability

Definition (EF⁺ games)

New rule:

Letters in u just have to be included in corresponding ones in v.

We write $u \leq_n v$ if Duplicator can survive *n* rounds.

Proving FO⁺-undefinability

```
Definition (EF<sup>+</sup> games)
```

New rule:

Letters in u just have to be included in corresponding ones in v.

We write $u \leq_n v$ if Duplicator can survive *n* rounds.

Theorem (Correctness of EF^+ **games)** *L* not FO^+ -definable $\Leftrightarrow \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \preceq_n v$. [Stolboushkin 1995+this work]

Proving FO⁺-undefinability

Definition (EF⁺ games)

New rule:

Letters in u just have to be included in corresponding ones in v.

We write $u \leq_n v$ if Duplicator can survive *n* rounds.

Theorem (Correctness of EF^+ **games)** *L* not FO^+ -definable $\Leftrightarrow \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \preceq_n v$. [Stolboushkin 1995+this work]

Application: Proving L is not FO^+ -definable

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order.

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

A is monotone but not \leq .

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

A is monotone but not \leq .

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way.

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

A is monotone but not \leq .

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way. Solution: Introduce a predicate \leq .

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

A is monotone but not \leq .

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way. Solution: Introduce a predicate $\not\leq$.

• Require
$$\forall x, y. (x \leq y) \lor (x \not\leq y)$$

▶ If
$$\exists x, y.(x \leq y) \land (x \not\leq y) \rightarrow \text{accept}$$

• Axiomatize that \leq is total assuming $\not\leq$ is its complement.

Goal: Lift *L* to finite structures.

For now: signature (\leq, a, b, c) assuming \leq is a total order.

Several monotone predicates

Axiomatize in FO that \leq is a total order. *a*, *b*, *c* are monotone but not \leq .

One monotone predicate

Alphabet encoded by one binary predicate A.

$$a(x) \equiv A(0,x)$$
 $b(x) \equiv A(1,x)$ $c(x) \equiv A(2,x)$

A is monotone but not \leq .

All monotone predicates = closure under surjective morphisms

Problem: We cannot say that \leq is total in a monotone way. Solution: Introduce a predicate $\not\leq$.

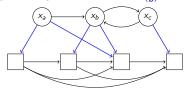
• Require
$$\forall x, y. (x \leq y) \lor (x \not\leq y)$$

▶ If
$$\exists x, y.(x \leq y) \land (x \not\leq y) \rightarrow \text{accept}$$

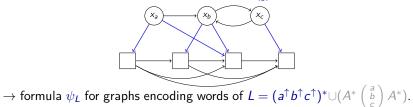
• Axiomatize that \leq is total assuming $\not\leq$ is its complement.

$a, b, c, \leq, \not\leq$ are monotone.

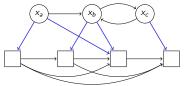
Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



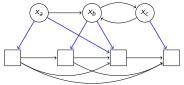
Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

• ψ^- is a conjunction of edge requirements:

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:

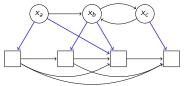


 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

• ψ^- is a conjunction of edge requirements:

 \blacktriangleright x_a, x_b, x_c are at least linked as in the example,

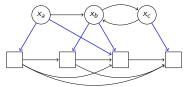
Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

- ψ^- is a conjunction of edge requirements:
 - \blacktriangleright x_a, x_b, x_c are at least linked as in the example,
 - other vertices are always linked by an edge,...

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



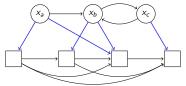
 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

• ψ^- is a conjunction of edge requirements:

▶ x_a, x_b, x_c are at least linked as in the example,

- other vertices are always linked by an edge,...
- ψ^+ is a disjunction of excess edges:

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



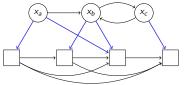
 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

• ψ^- is a conjunction of edge requirements:

 \blacktriangleright x_a, x_b, x_c are at least linked as in the example,

- other vertices are always linked by an edge,...
- $\blacktriangleright \ \psi^+$ is a disjunction of excess edges:

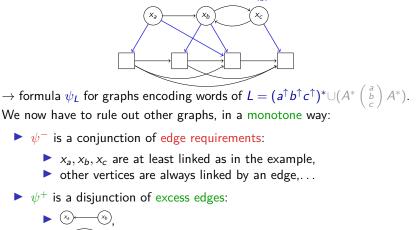
Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



 \rightarrow formula ψ_L for graphs encoding words of $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup (A^*\begin{pmatrix} a\\b\\c \end{pmatrix}A^*)$. We now have to rule out other graphs, in a monotone way:

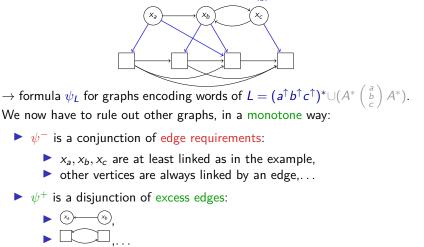
- ψ^- is a conjunction of edge requirements:
 - \blacktriangleright x_a, x_b, x_c are at least linked as in the example,
 - other vertices are always linked by an edge,...
- ψ^+ is a disjunction of excess edges:

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



Final Formula: $\exists x_a, x_b, x_c.(\psi^- \land (\psi_L \lor \psi^+))$

Encode words into (directed) graphs, here $ab\binom{a}{b}c$:



Final Formula: $\exists x_a, x_b, x_c.(\psi^- \land (\psi_L \lor \psi^+))$

Left as exercise: Same with undirected graphs.

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO⁺-definable ?

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO⁺-definable ?

Theorem

 FO^+ -definability is undecidable for regular languages.

Back to regular languages

Theorem

Given L regular on an ordered alphabet, it is decidable whether

- L is monotone (e.g. automata inclusion)
- L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO⁺-definable ?

Theorem

FO⁺-definability is undecidable for regular languages.

Reduction from *Turing Machine Mortality*:

A deterministic TM M is *mortal* if there a uniform bound n on the runs of M from **any** configuration.

Undecidable [Hooper 1966].

Given a TM M, we build a regular language L such that

M mortal $\Leftrightarrow L$ is FO⁺-definable.

Given a TM M, we build a regular language L such that

M mortal \Leftrightarrow *L* is FO⁺-definable.

Building *L*: Inspired from $(a^{\uparrow}b^{\uparrow}c^{\uparrow})^*$, but:

▶ $a, b, c \rightsquigarrow$ Words from languages C_1, C_2, C_3 encoding configs of M.

All transitions of *M* follow the cycle:
$$\begin{array}{c} C_2 \\ \swarrow \\ C_1 \\ \leftarrow \end{array} \\ C_3 \end{array}$$

▶
$$\binom{a}{b}, \binom{b}{c}, \binom{c}{a} \rightsquigarrow \binom{u_1}{u_2}$$
, exists iff $u_1 \stackrel{M}{\rightarrow} u_2$.

Given a TM M, we build a regular language L such that

M mortal \Leftrightarrow *L* is FO⁺-definable.

Building *L*: Inspired from $(a^{\uparrow}b^{\uparrow}c^{\uparrow})^*$, but:

▶ $a, b, c \rightsquigarrow$ Words from languages C_1, C_2, C_3 encoding configs of M.

All transitions of *M* follow the cycle:
$$\begin{array}{c} C_2 \\ \swarrow \\ C_1 \leftarrow C_3 \end{array}$$

•
$$\binom{a}{b}, \binom{b}{c}, \binom{c}{a} \rightsquigarrow \binom{u_1}{u_2}$$
, exists iff $u_1 \stackrel{M}{\rightarrow} u_2$

We choose

$$L := (C_1^{\uparrow} \cdot C_2^{\uparrow} \cdot C_3^{\uparrow})^*$$

Given a TM M, we build a regular language L such that

M mortal \Leftrightarrow *L* is FO⁺-definable.

Building *L*: Inspired from $(a^{\uparrow}b^{\uparrow}c^{\uparrow})^*$, but:

▶ $a, b, c \rightsquigarrow$ Words from languages C_1, C_2, C_3 encoding configs of M.

All transitions of *M* follow the cycle:
$$C_2$$

 $C_1 \leftarrow C_3$

$$\blacktriangleright \quad {\binom{a}{b}}, {\binom{b}{c}}, {\binom{c}{a}} \rightsquigarrow {\binom{u_1}{u_2}}, \text{ exists iff } u_1 \stackrel{M}{\to} u_2$$

We choose

$$L := (C_1^{\uparrow} \cdot C_2^{\uparrow} \cdot C_3^{\uparrow})^*$$

 $\mathbf{\Lambda} \quad u \in L \neq u \text{ encodes a run of } M.$

If *M* not mortal:

Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

$$u \in L: \quad u_1 \quad u_2 \quad u_3 \quad \dots \quad u_{n-1} \quad u_n \\ v \notin L: \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \begin{pmatrix} u_2 \\ u_3 \end{pmatrix} \quad \begin{pmatrix} u_3 \\ u_4 \end{pmatrix} \quad \dots \quad \begin{pmatrix} u_{n-1} \\ u_n \end{pmatrix}$$

 \rightarrow L is not $\mathrm{FO}^+\text{-definable}.$

If *M* not mortal:

Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

$$u \in L: \quad u_1 \quad u_2 \quad u_3 \quad \dots \quad u_{n-1} \quad u_n \\ v \notin L: \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \begin{pmatrix} u_2 \\ u_3 \end{pmatrix} \quad \begin{pmatrix} u_3 \\ u_4 \end{pmatrix} \quad \dots \quad \begin{pmatrix} u_{n-1} \\ u_n \end{pmatrix}$$

 \rightarrow *L* is not FO⁺-definable.

If *M* mortal with bound *n*:

Abstract u_i by the length of the run of M starting in it (at most n).

If *M* not mortal:

Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

$$u \in L: \quad u_1 \quad u_2 \quad u_3 \quad \dots \quad u_{n-1} \quad u_n \\ v \notin L: \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \begin{pmatrix} u_2 \\ u_3 \end{pmatrix} \quad \begin{pmatrix} u_3 \\ u_4 \end{pmatrix} \quad \dots \quad \begin{pmatrix} u_{n-1} \\ u_n \end{pmatrix}$$

 \rightarrow *L* is not FO⁺-definable.

If *M* mortal with bound *n*:

Abstract u_i by the length of the run of M starting in it (at most n). Play Spoiler in the abstracted game (here n = 5):

If *M* not mortal:

Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

$$u \in L: \quad u_1 \quad u_2 \quad u_3 \quad \dots \quad u_{n-1} \quad u_n \\ v \notin L: \quad \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \quad \begin{pmatrix} u_2 \\ u_3 \end{pmatrix} \quad \begin{pmatrix} u_3 \\ u_4 \end{pmatrix} \quad \dots \quad \begin{pmatrix} u_{n-1} \\ u_n \end{pmatrix}$$

 \rightarrow *L* is not FO⁺-definable.

If *M* mortal with bound *n*:

Abstract u_i by the length of the run of M starting in it (at most n). Play Spoiler in the abstracted game (here n = 5):

Spoiler always wins in 2n rounds $\rightarrow L$ is FO⁺-definable.

Ongoing work

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

regular cost functions,

logics on linear orders,

Slogan:

▶ ...

FO variants without negation will often display this behaviour.

Ongoing work

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

regular cost functions,

logics on linear orders,

Slogan:

▶ ...

FO variants without negation will often display this behaviour.

Thanks for your attention !