Emile Hazard, Olivier Idir, Denis Kuperberg

GT DAAL, Rennes, April 26th 2024

History-Deterministic Automata

History-Deterministic Automata

Motivations

- Solve Church Synthesis more efficiently
- Intermediate model between Det. and Nondet.
- Exponential Succinctness wrt Det. [K., Skrzycpzak '15]

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters:

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$ Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$ Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L(\mathcal{A}) \Rightarrow$ Run accepting.

 $\mathcal{A} \text{ HD} \Leftrightarrow \text{Eve wins the Letter game on } \mathcal{A}$ $\Leftrightarrow \text{ there is a strategy } \sigma_{\text{HD}} : \mathcal{A}^* \to Q \text{ accepting all words of } \mathcal{L}(\mathcal{A}).$

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} HD?

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} HD?

► On finite words: PTIME [Löding]

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} HD?

► On finite words: PTIME [Löding]

On infinite words: Open problem !

Complexity of the HDness problem: **Input:** A nondeterministic automaton \mathcal{A} **Output:** Is \mathcal{A} HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem !
 - ▶ Upper bound: EXPTIME [Henzinger, Piterman '06]

Complexity of the HDness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem !
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

Complexity of the HDness problem: **Input:** A nondeterministic automaton \mathcal{A} **Output:** Is \mathcal{A} HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem !
 - ▶ Upper bound: EXPTIME [Henzinger, Piterman '06]
 - PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

What about building HD automata ?

Complexity of the HDness problem: **Input:** A nondeterministic automaton \mathcal{A} **Output:** Is \mathcal{A} HD?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem !
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

What about building HD automata ?

To tackle these questions, we generalize the notion of HD ...

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

HD

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

k-explorability game:

Adam plays letters, Eve moves k tokens

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

Theorem [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

Theorem [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Theorem [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

Theorem [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

If better than $\operatorname{ExpTIME}:$ improve on general HDness !

Theorem [K., Majumdar '18]: Deciding |Q|/2-explorability is EXPTIME-complete.

Motivating Theorem [Hazard, K. 2023]

The HDness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

If better than $\operatorname{ExpTIME}:$ improve on general HDness !

How many tokens might be needed in explorable automata ?

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is EXPTIME-complete
- Doubly exponentially many tokens might be needed.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- Game harder to solve: the input word has to be in L(A)
- Must deal with acceptance conditions on infinite words.

Results

Theorems [Hazard, K. 2023]

 $\label{eq:Explorability} \mbox{ is $\mathrm{ExpTime}$-complete for NFA, Büchi.} \\ \mbox{ Doubly exponentially many tokens might be needed.} \label{eq:Explorability}$

Results

Theorems [Hazard, K. 2023]

 $\label{eq:Explorability is ExpTIME-complete for NFA, Büchi. \\ Doubly exponentially many tokens might be needed. \\$

NFA needing exponentially many tokens.

Results

Theorems [Hazard, K. 2023]

 $\label{eq:Explorability is ExpTIME-complete for NFA, Büchi. \\ Doubly exponentially many tokens might be needed. \\$

NFA needing exponentially many tokens.

Theorems [Idir, K.]

Explorability is EXPTIME for coBüchi, [0,2]-Parity.

$\omega\text{-explorability}$

What happens if we allow a countable infinity of tokens ?

ω -explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω -explorable

ω -explorability

What happens if we allow a countable infinity of tokens ?

Intuition:

Non-*w*-explorable: Adam can always kill any run

Results on ω -explorability

Facts:

- ▶ any NFA is ω -explorable,
- ▶ any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Results on ω -explorability

Facts:

- > any NFA is ω -explorable,
- ▶ any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

Results on ω -explorability

Facts:

- > any NFA is ω -explorable,
- ▶ any automaton A with L(A) countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Theorem [Hazard, K. 2023]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

Decidability open for Büchi.

Deterministic

Non-deterministic

ω-explorable

Theorem (Idir, K.)

[1,3]-explorability decidable \Leftrightarrow Parity explorability decidable Büchi ω -explorability decidable \Leftrightarrow Parity ω -explorability decidable

Future work

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.

Future work

...

- Open decidability: [1,3]-expl., Büchi ω-expl.
- Complexity of k-expl. with k in binary?
- Studying HD and expl. models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME HDness for parity automata.

Thanks for your attention!