Positive first-order logic on words

Denis Kuperberg

CNRS, LIP, ENS Lyon

Séminaire ANR Delta, 04/01/22

This work was presented at LICS 2021
Long version to appear in LMCS
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Word on alphabet $A = 2^\Sigma$:

$$\begin{array}{ccccccc}
\emptyset & \{b\} & \{a, b\} & \emptyset & \{b\} \\
\bullet & \rightarrow & \bullet & \rightarrow & \bullet & \rightarrow & \bullet
\end{array}$$
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Word on alphabet $A = 2^\Sigma$:

$$\emptyset \rightarrow \{ b \} \rightarrow \{ a, b \} \rightarrow \emptyset \rightarrow \{ b \}$$

Example: On $\Sigma = \{ a, b \}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto A^* \{ a \} A^* \{ b \} A^* \cup A^* \{ a, b \} A^*$$
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$$

Word on alphabet $A = 2^\Sigma$:

<table>
<thead>
<tr>
<th></th>
<th>\emptyset</th>
<th>${b}$</th>
<th>${a, b}$</th>
<th>\emptyset</th>
<th>${b}$</th>
</tr>
</thead>
</table>

Example: On $\Sigma = \{a, b\}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto A^*\{a\}A^*\{b\}A^* \cup A^*\{a, b\}A^*$$

Remark: \emptyset^* undefinable in FO^+ (cannot say $\neg a$).
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi$

Word on alphabet $A = 2^\Sigma$:

- \emptyset
- $\{b\}$
- $\{a, b\}$
- \emptyset
- $\{b\}$

Example: On $\Sigma = \{a, b\}$:

$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto A^*\{a\}A^*\{b\}A^* \cup A^*\{a, b\}A^*$

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a$").

More generally: FO^+ can only define monotone languages:

$u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$
The FO^+ logic, words as structures

FO^+ Logic: a ranges over Σ, no \neg

$$\varphi, \psi := a(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x.\varphi \mid \forall x.\varphi$$

Word on alphabet $A = 2^\Sigma$:

$$\emptyset \quad \{b\} \quad \{a, b\} \quad \emptyset \quad \{b\}$$

Example: On $\Sigma = \{a, b\}$:

$$\exists x, y. (x \leq y) \land a(x) \land b(y) \leadsto A^* \{a\} A^* \{b\} A^* \cup A^* \{a, b\} A^*$$

Remark: \emptyset^* undefinable in FO^+ (cannot say "$\neg a$").

More generally: FO^+ can only define monotone languages:

$$u\alpha v \in L \text{ and } \alpha \subseteq \beta \Rightarrow u\beta v \in L$$

Question [Colcombet]: FO & monotone $\Rightarrow \text{FO}^+$
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{\emptyset, a, b, c, (a)_b, (b)_c, (c)_a, (a)_b (b)_c\}$. Let $a^\uparrow = \{a, (a)_b, (c)_a\}$.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, (a)_b, (b)_c, (c)_a, (a)_b (b)_c\}$. Let $a^\uparrow = \{a, (a)_b, (c)_a\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* (a)_b (b)_c A^*$.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, \left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} b \\ c \end{array}\right), \left(\begin{array}{c} a \\ c \end{array}\right)\}$. Let $a^{\uparrow} = \{a, \left(\begin{array}{c} a \\ b \end{array}\right), \left(\begin{array}{c} c \\ a \end{array}\right)\}$.

Language $L = (a^{\uparrow}b^{\uparrow}c^{\uparrow})^* \cup A^* \left(\begin{array}{c} a \\ b \\ c \end{array}\right) A^*$.

Lemma: L is FO-definable.

Proof: a^{\uparrow}, b^{\uparrow}, and c^{\uparrow} is counter-free. (no cycle labelled $u \geq 2$)
A counter-example language

Our first result

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{\emptyset, a, b, c, \left(\frac{a}{b}\right), \left(\frac{b}{c}\right), \left(\frac{c}{a}\right), \left(\frac{a}{b} c\right), \left(b \frac{c}{a}\right), \left(c \frac{a}{b}\right), \left(a \frac{b}{c}\right)\}$. Let $a^\uparrow = \{a, \left(\frac{a}{b}\right), \left(\frac{c}{a}\right)\}$.

Language $L = (a^\uparrow b^\uparrow c^\uparrow)^* \cup A^* \left(\frac{a}{b} c\right) A^*$.

Lemma: L is FO-definable.

Proof: a^\uparrow, b^\uparrow, and c^\uparrow is counter-free. (no cycle labelled $u \geq 2$)
Syntactic monoid of \(L \)

\[
\begin{array}{ccc}
(\ a \ b) & (a \ b) (b) & (b) (c) (a) \\
(b) (c) (a) (b) & (b) (c) & (b) (c) \\
(c) (a) (b) & (c) (a) (b) & (c) (a) \\
\end{array}
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It remains to prove that \(L \) is not \(\text{FO}^+ \)-definable.
Syntactic monoid of L

$$
\begin{array}{ccc}
(a) & (a)(b) & (a)(b)(c) \\
(b)(c) & (b)(c)(a) & (b)(c)(a)
\end{array}
\begin{array}{ccc}
(b)(c)(a)(b) & (b)(c) & (b)(c)(a)
\end{array}
\begin{array}{ccc}
(c)(a)(b) & (c)(a)(b)(c) & (c)(a)
\end{array}
\begin{array}{ccc}
(a) & (a)(b) & (a)(b)(c)
\end{array}
$$

$$
\begin{array}{ccc}
a & ab & abc \\
bca & b & bc \\
ca & cab & c \\
\emptyset & T & \top
\end{array}
$$

It remains to prove that L is not FO^+-definable.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L$, $v \not\in L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

$u = a^{2k} \in (aa)^*$:

$a a a a a a a a a a$

$v = a^{2k-1} \not\in (aa)^*$:

$a a a a a a a a$
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)
L not FO-definable \iff For all n, there are $u \in L, v \not\in L$ s.t. $u \equiv_n v$.

Example
Proving $(aa)^\ast$ is not FO-definable:

- $u = a_{2k} \in (aa)^\ast$: $a a a a a a a a a a$
- $v = a_{2k-1} \not\in (aa)^\ast$: $a a a a a a a a a$
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if **Duplicator** can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L$, $v \not\in L$ s.t. $u \equiv_n v$.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if **Duplicator** can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L$, $v \notin L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

$$u = a^{2k} \in (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a \ a \ a \ a$$

$$v = a^{2k-1} \notin (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a$$
Proving \(\text{FO}^+ \)-undefinability

Definition (\(\text{EF}^+ \) games)

New rule:
Letters in \(u \) just have to be **included** in corresponding ones in \(v \).

We write \(u \preceq_n v \) if Duplicator can survive \(n \) rounds.

Theorem (Correctness of \(\text{EF}^+ \) games)

\[L \not\text{FO}^+\text{-definable} \iff \forall n, \text{there are } u \in L, v \not\in L \text{ s.t. } u \preceq_n v. \]

Application: Proving \(L \) is not \(\text{FO}^+\)-definable

\[u \in L: a \ b \ c \ a \ b \ c \ a \ b \ c \]

\[v \not\in L: (a \ b)(b \ c)(c \ a)(a \ b)(b \ c)(c \ a)(a \ b)(b \ c) \]
Proving $\text{FO}^+\text{-undefinability}$

Definition (EF$^+$ games)

New rule:
Letters in u just have to be included in corresponding ones in v.

We write $u \preceq^*_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF$^+$ games)

L not FO^+-definable $\iff \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \preceq^*_n v$.

[Stolboushkin 1995+this work]
Proving \(\text{FO}^+ \)-undefinability

Definition (\(\text{EF}^+ \) games)

New rule:
Letters in \(u \) just have to be **included** in corresponding ones in \(v \).

We write \(u \preceq_n v \) if Duplicator can survive \(n \) rounds.

Theorem (Correctness of \(\text{EF}^+ \) games)

\(L \) not \(\text{FO}^+ \)-definable \(\iff \forall n, \text{there are } u \in L, v \notin L \text{ s.t. } u \preceq_n v. \)
[Stolboushkin 1995+this work]

Application: Proving \(L \) is not \(\text{FO}^+ \)-definable

\[
\begin{align*}
 u \in L : & \quad a \ b \ c \ a \ b \ c \ a \ b \ c \\
 v \notin L : & \quad (a)_b \ (b)_c \ (c)_a \ (a)_b \ (b)_c \ (c)_a \ (a)_b \ (b)_c
\end{align*}
\]
Background: Lyndon’s theorem

First-order logic on arbitrary structures, signature \((P_1, \ldots, P_k)\).

Theorem (Lyndon 1959)

Let \(\varphi \in \text{FO}\), stable under making predicates true on more tuples. Then \(\varphi\) is equivalent to a negation-free formula.

Example: If a language of graphs is FO-definable and closed under adding edges, then it is FO-definable without \(\neg\).
Background: Lyndon’s theorem

First-order logic on arbitrary structures, signature (P_1, \ldots, P_k).

Theorem (Lyndon 1959)

Let $\varphi \in \text{FO}$, stable under making predicates true on more tuples. Then φ is equivalent to a negation-free formula.

Example: If a language of graphs is FO-definable and closed under adding edges, then it is FO-definable without \neg.

Theorem

Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probabilities, number theory, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved
Background: Lyndon’s theorem

First-order logic on arbitrary structures, signature (P_1, \ldots, P_k).

Theorem (Lyndon 1959)

Let $\varphi \in \text{FO}$, stable under making predicates true on more tuples. Then φ is equivalent to a negation-free formula.

Example: If a language of graphs is FO-definable and closed under adding edges, then it is FO-definable without \neg.

Theorem

Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probabilities, number theory, topology, very hard

- [Stolboushkin 1995]
 EF games on grid-like structures, involved

- [This work]
 EF games on words, elementary thanks to L
Can we decide FO^+-definability?

Theorem

Given L *regular on an ordered alphabet, we can decide*

- whether L is monotone (e.g. automata inclusion)
- whether L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^+-definable?
Can we decide FO^+-definability?

Theorem

Given L regular on an ordered alphabet, we can decide

- whether L is monotone (e.g. automata inclusion)
- whether L is FO-definable \[\text{[Schützenberger, McNaughton, Papert]}\]

Can we decide whether L is FO^+-definable?

Our second result

FO^+-definability is undecidable for regular languages.
Can we decide FO^+-definability?

Theorem

Given L regular on an ordered alphabet, we can decide

- whether L is monotone (e.g. automata inclusion)
- whether L is FO-definable [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^+-definable?

Our second result

FO^+-definability is undecidable for regular languages.

Reduction from *Turing Machine Mortality*:
A deterministic TM M is *mortal* if there a uniform bound n on the runs of M from any configuration.

Undecidable [Hooper 1966].
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal} \iff L \text{ is } \text{FO}^{+}-\text{definable}.$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:
Inspired from $(a \uparrow b \uparrow c \uparrow)^*$, but:

- $a, b, c \leadsto$ Words from C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle: $C_1 \leftarrow C_2 \leftarrow C_3$

- $(a \ b), (b \ c), (c \ a) \leadsto (u_1 \ u_2)$, exists iff $u_1 \xrightarrow{M} u_2$.
Undecidability proof sketch

Given a TM \(M \), we build a regular language \(L \) such that

\[
M \text{ mortal } \iff \text{ } L \text{ is } \text{FO}^+\text{-definable.}
\]

Building \(L \):

Inspired from \((a \uparrow b \uparrow c \uparrow)^*\), but:

- \(a, b, c \rightsquigarrow \) Words from \(C_1, C_2, C_3 \) encoding configs of \(M \).
- All transitions of \(M \) follow the cycle:

\[
\begin{array}{c}
\uparrow \\
C_1 \\
\downarrow \\
C_2 \\
\downarrow \\
C_3 \\
\uparrow \\
C_1
\end{array}
\]

- \((a_b), (b_c), (c_a) \rightsquigarrow (u_1 \underline{u_2})\), exists iff \(u_1 \xrightarrow{M} u_2 \).

We choose

\[
L := (C_1 \uparrow \cdot C_2 \uparrow \cdot C_3 \uparrow)^*
\]
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal} \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:
Inspired from $(a↑b↑c↑)^*$, but:

- $a, b, c \mapsto$ Words from C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle:

\[
\begin{array}{c}
C_1 \\
\downarrow \quad \uparrow \\
C_2 \\
\downarrow \quad \leftarrow \quad \rightarrow \\
C_3
\end{array}
\]

- $(a_b, b_c, c_a) \mapsto (u_1^{u_2}),$ exists iff $u_1 \xrightarrow{M} u_2$.

We choose

$$L := (C_1^{↑} \cdot C_2^{↑} \cdot C_3^{↑})^*$$

⚠️ $u \in L \not\Rightarrow u$ encodes a run of M.
The reduction

If \(M \) not mortal:
Let \(u_1, u_2, \ldots, u_n \) a long run of \(M \), and play Duplicator in:

\[
\begin{align*}
&u \in L: \quad u_1 \ u_2 \ u_3 \ \ldots \ u_{n-1} \ u_n \\
&v \not\in L: \quad \binom{u_1}{u_2} \binom{u_2}{u_3} \binom{u_3}{u_4} \ \ldots \ \binom{u_{n-1}}{u_n}
\end{align*}
\]

\(\rightarrow L \) is not \(\text{FO}^+ \)-definable.
The reduction

If \(M \) not mortal:
Let \(u_1, u_2, \ldots, u_n \) a long run of \(M \), and play Duplicator in :

\[
\begin{align*}
 u \in L : & \quad u_1 \ u_2 \ u_3 \ \ldots \ u_{n-1} \ u_n \\
 v \notin L : & \quad \binom{u_1}{u_2} \ \binom{u_2}{u_3} \ \binom{u_3}{u_4} \ \ldots \ \binom{u_{n-1}}{u_n}
\end{align*}
\]

\(\rightarrow L \) is not \(\text{FO}^+ \)-definable.

If \(M \) mortal with bound \(n \):
Abstract \(u_i \) by the length of the run of \(M \) starting in it (at most \(n \)).
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$\begin{align*}
u \in L &: u_1 \ u_2 \ u_3 \ \ldots \ \ u_{n-1} \ u_n \\
v \notin L &: (u_1 \ u_2) \ (u_2 \ u_3) \ (u_3 \ u_4) \ \ldots \ (u_{n-1} \ u_n)
\end{align*}$$

$\rightarrow L$ is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).

Play Spoiler in the abstracted game (here $n = 5$):

$$\begin{align*}
u : & \quad 2 \quad 3 \quad 2 \quad 4 \quad 3 \quad 5 \quad 4 \quad 3 \quad 4 \quad 4 \\
v : & \quad (2 \ 1) \quad (3 \ 2) \quad (2 \ 1) \quad (4 \ 3) \quad (3 \ 2) \quad (5 \ 4) \quad (4 \ 3) \quad (5 \ 4) \quad (5 \ 4)
\end{align*}$$
The reduction

If \(M \) not mortal:
Let \(u_1, u_2, \ldots, u_n \) a long run of \(M \), and play Duplicator in :

\[
\begin{align*}
 u &\in L : \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n \\
 v &\notin L : \quad (u_1^{u_2}) \quad (u_2^{u_3}) \quad (u_3^{u_4}) \quad \ldots \quad (u_{n-1}^{u_n})
\end{align*}
\]

\(\rightarrow L \) is not FO\(^+\)-definable.

If \(M \) mortal with bound \(n \):
Abstract \(u_i \) by the length of the run of \(M \) starting in it (at most \(n \)).
Play Spoiler in the abstracted game (here \(n = 5 \)):

\[
\begin{align*}
 u : &\quad 2 \quad 3 \quad 2 \quad 4 \quad 3 \quad 5 \quad 4 \quad 3 \quad 4 \quad 4 \\
 v : &\quad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 3 \\ 2 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 4 \end{pmatrix} \quad \begin{pmatrix} 4 \\ 3 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 4 \end{pmatrix} \quad \begin{pmatrix} 5 \\ 4 \end{pmatrix}
\end{align*}
\]

Spoiler always wins in \(2n \) rounds \(\rightarrow L \) is FO\(^+\)-definable.
Ongoing work

For the long version:
The counter-example can be encoded into graphs
→ Lyndon’s theorem fails on finite graphs.

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
▶ regular cost functions,
▶ logics on linear orders,
▶ ...

Slogan:
FO variants without negation will often display this behaviour.
Ongoing work

For the long version:
The counter-example can be encoded into graphs
\[\rightarrow\] Lyndon’s theorem fails on finite graphs.

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:

- regular cost functions,
- logics on linear orders,
- ...

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention!