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Introduction

Alloy Language

I Specification language based on First-Order Logic

I Inspired by UML, user-friendly

I Arbitrary predicates → Expressivity

Alloy Analyzer

I Bounded verification → Decidability

I Use of SAT solvers → Efficiency, quick feedback



Example of Alloy Specification:

open util/ordering [Book] as BookOrder
sig Addr {}
sig Name {}
sig Book {

names: set Name,
addr: names→some Addr}

pred add [b1, b2: Book, n: Name, a: Addr] {
b2.addr = b1.addr +n→a}

pred del [b1, b2: Book, n: Name, a: Addr] {
b2.addr = b1.addr − n→a}

fact traces {
all b: Book−last |

let bnext = b.BookOrder/next |
some n: Name, a: Addr |

add [b, bnext, n, a] or del [b, bnext, n, a]}

One object book for each time instant. Tedious way of modeling
time and reasoning about it.



Alloy Analyzer

Model finder

//Show a model where some name has two different addresses
run {some b: Book, n: Name, disj a1, a2: Addr
| a1 in n.(b.addr) and a2 in n.(b.addr)}

Property checker

assert delUndoesAdd {
all b1, b2, b3: Book, n: Name, a: Addr |

no n.(b1.addr) and add [b1, b2, n, a] and del [b2, b3, n, a]
implies b1.addr = b3.addr

}
check delUndoesAdd



Electrum : Alloy + new dedicated time operators like ′ (value at
the next instant) and always:

sig Addr {}
sig Name {

var addr : set Addr
}

pred add [n: Name, a: Addr] {
addr’ = addr +n→a}

pred del [n: Name, a: Addr] {
addr’ = addr − n→a}

fact traces {
always {

some n: Name, a: Addr | add [n, a] or del [n, a]}
}

Infinite number of time instants, that can be referred to easily with
a specialized syntax.



FO-LTL

Asbtraction: The logic FO-LTL.

LTL: Good properties of expressivity and complexity, widely used in
verification to model infinite time traces.

The logic FO-LTL:

ϕ ::= (x1 = x2) | Pi (x1, . . . , xn) | ¬ϕ | ϕ∨ϕ | ∃x .ϕ | nextϕ | ϕuntilϕ.

We also define eventuallyϕ = trueuntilϕ and
alwaysϕ = ¬eventually(¬ϕ).
We use FO-LTL as underlying logic of the new language Electrum.

I First-Order variables xi : finite domain

I Implicit time: infinite domain N
What is the theoretical cost of adding LTL ?



Complexity

NSAT Problem: Given ϕ and N, is there a model for ϕ of
First-Order domain of size at most N ?
Parameters:

I Logic: FO versus FO-LTL

I Encoding of N: unary versus binary

I Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete
FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete
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Algorithms for membership

FO cases : we use a naive non-deterministic algorithm that

I guesses a structure, i.e. writes the value of predicates for each
possible input,

I verifies the formula on it.

FO-LTL cases :

I Use naked structure S = {1, . . .N}
I Expand ϕ into a LTL formula ψ, by turning FO quantifiers

into disjunctions/conjunctions over S .

I Alphabet of ψ is
A = {P(s1, . . . , sk) | P predicate of ϕ, si ∈ S}

I Check that S |= ψ : this is PSPACE in |S |+ |ψ|.



Proof scheme for hardness

Idea : encode runs of Turing Machines via formulas.

For FO, unbounded rank, binary encoding :

Reduction :

I Start from non-deterministic M running in time 2n on inputs
of size n. States Q and alphabet A.

I Consider the first-order structure {1, . . . , 2n} with predicate
successor, representing both time and space of the machine.

I Predicate a(x , t) with a ∈ A: the cell x is labeled a at time t

I Predicate q(x , t): M is in state q in position x at time t



For any word u of size n, we can now write a formula ϕu of size
polynomial in n, stating that:

I The initial configuration of the tape is u:
a1(1, 1) ∧ a2(2, 1) ∧ · · · ∧ an(n, 1)

I For all time t, the tape is updated from t to t + 1 according
to the transition table of M

I there is a time tf where M is in its accepting state.

Correctness: ϕu has a model of size 2n ⇐⇒ u is accepted by M

Size 2n is given in binary → polynomial reduction.

Extension to FO-LTL: LTL uses implicit time → we can start
from an EXPSPACE machine.
Constraint on transitions is now of the form
always(∀x, q(x) =⇒ nextϕq(x))
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Tricky case: unbounded rank but unary N.
→ We can no longer use the domain as a model for the tape.

Solution: Use a structure of size 2, and binary encoding to point to
a cell or time instant : a(~x , ~t) for FO and a(~x) for FO-LTL.

Example: For size 8, a(0, 1, 1, 1, 0, 1) means that the 3th cell is
labeled by a at instant 5.
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Finite Model Theory

Finite Model Property: If there is a model there is a finite one.
FO Fragments with FMP;

I [∃∗∀∗, all ]= (Ramsey 1930)

I [∃∗∀∃∗, all ]= (Ackermann 1928)

I [∃∗, all , all ]= (Gurevich 1976)

I [∃∗∀, all , (1)]= (Grädel 1996)

I FO2 (Mortimer 1975) : 2 variables.

Theorem

Adding next, eventually preserves FMP if the fragment imposes no
constraint on the number and arity of predicates/functions.

True for all above fragments except Grädel: only one function of
arity one.



Axioms of infinity

In general, adding LTL allows to write axioms of infinity:

With one existential variable:

always(∃x.P(x) ∧ next(always¬P(x)))).

Without nesting quantifiers in temporal operators:

∀x∃y .P(c) ∧ always(P(x)⇒ next(P(y) ∧ always¬P(x))).

Without always:

∀x∃y .P(c) ∧ ((P(x) ∧ P(y))until(¬P(x) ∧ P(y))).



Conclusion

Theoretical study of FO-LTL versus FO

I Complexity

I Finite model property

On-going work with Univ. of Minho/IRIT
I Implementation of different verification procedures for

Electrum:

• Reduce to LTL satisfiability
• Reduce to Alloy

I Use of efficient solvers

I Comparison with TLA and B


