Erratum

In the papers [Kup11, Kup14], there is an error in the proof translating aperiodic stabilisation monoids to cost LTL.

Indeed, when decomposing words according to a letter b, we have to pay a constant attention to the fact that the monoid is ordered. When writing b in a cost LTL formula, we actually capture all elements above b. We do take care of the fact that $\neg b$ captures the wanted elements, but the formula b will capture elements that do not coincide with b, and in particular elements that are also captured by $\neg b$. Because of this phenomenon, we cannot directly describe the wanted decomposition using LTL formulas, as it is done in the classical case.

It was pointed out by Thomas Colcombet [Col] that even without considering the quantitative extension of cost functions, an ordered version of the equivalence between LTL (or first-order logic) and aperiodic ordered monoids constitutes an interesting open problem. Here is a clear formalization of this problem, that can be rephrased as a conjecture without mentioning monoids, using an ordered version of LTL.

Let Σ be an alphabet equipped with a partial order \leq. A language $L \subseteq \Sigma^*$ is \textit{upwards-closed} if for any words $u, v \in \Sigma^*$ and letters $a \leq b$, we have $uav \in L \Rightarrow ubv \in L$.

Let LTL_{\leq} be as in [Kup14] without quantitative operators. I.e. formulas of LTL_{\leq} (on finite words on an alphabet Σ) are defined by the following grammar:

$$\varphi ::= a \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid X\varphi \mid \varphi U\varphi \mid \Omega$$

Recall that Ω stands for the end of word. The only semantic difference with classical LTL is that an atomic formula $a \in \Sigma$ is true if the word starts with a letter $b \geq a$.

Example: Consider the alphabet $\{a, b, c\}$ with $a \leq c$ and $b \leq c$. Then the formula $\varphi = (a \land b) U \Omega$ of LTL_{\leq} describes the language c^*. On the other hand, when interpreted classically as a LTL formula, the language of φ is $\{\varepsilon\}$.

Notice that the logic LTL_{\leq} can only describe upwards-closed languages.

Conjecture 1 [Col] If L is an aperiodic upwards-closed language, then L is recognized by a formula of LTL_{\leq}.

References

[Col] Thomas Colcombet. Personal communication.
