
On Finite Domains in First-Order Linear
Temporal Logic

Julien Brunel David Chemouil Denis Kuperberg

ONERA/DTIM - IRIT

04/07/2015
LCC, Kyoto

Introduction

Alloy Language

I Specification language based on First-Order Logic

I Inspired by UML, user-friendly

I Arbitrary predicates → Expressivity

Alloy Analyzer

I Bounded verification → Decidability

I Use of SAT solvers → Efficiency, quick feedback

I 2015: unveiled a security breach in Android permission system

Example of Alloy Specification:

open util/ordering [Book] as BookOrder
sig Addr {}
sig Name {}
sig Book {

names: set Name,
addr: names→some Addr}

pred add [b1, b2: Book, n: Name, a: Addr] {
b2.addr = b1.addr +n→a}

pred del [b1, b2: Book, n: Name, a: Addr] {
b2.addr = b1.addr − n→a}

fact traces {
all b: Book−BookOrder/last |

let bnext = b.BookOrder/next |
some n: Name, a: Addr |

add [b, bnext, n, a] or del [b, bnext, n, a]}

One object book for each time instant. Tedious way of modeling
time and reasoning about it.

Alloy Analyzer

Model finder

//Show a model where some name has two different addresses
run {some b: Book, n: Name, disj a1, a2: Addr
| a1 in n.(b.addr) and a2 in n.(b.addr)}

Property checker

assert delUndoesAdd {
all b1, b2, b3: Book, n: Name, a: Addr |

no n.(b1.addr) and add [b1, b2, n, a] and del [b2, b3, n, a]
implies b1.addr = b3.addr

}
check delUndoesAdd

Electrum : Alloy + new dedicated time operators like ′ (value at
the next instant) and always:

sig Addr {}
sig Name {

var addr : set Addr
}

pred add [n: Name, a: Addr] {
addr’ = addr +n→a}

pred del [n: Name, a: Addr] {
addr’ = addr − n→a}

fact traces {
always {

some n: Name, a: Addr | add [n, a] or del [n, a]}
}

Infinite number of time instants, that can be referred to easily with
a specialized syntax.

FO-LTL

Asbtraction: The logic FO-LTL.

LTL: Good properties of expressivity and complexity, widely used in
verification to model infinite time traces.

The logic FO-LTL:

ϕ ::= (x1 = x2) | Pi (x1, . . . , xn) | ¬ϕ | ϕ∨ϕ | ∃x .ϕ | nextϕ | ϕuntilϕ.

We also define eventuallyϕ = trueuntilϕ and
alwaysϕ = ¬eventually(¬ϕ).
We use FO-LTL as underlying logic of the new language Electrum.

I First-Order variables xi : finite domain

I Implicit time: infinite domain N
What is the theoretical cost of adding LTL ?

Complexity

BSAT Problem: Given ϕ and N, is there a model for ϕ of
First-Order domain of size at most N ?
Parameters:

I Logic: FO versus FO-LTL

I Encoding of N: unary versus binary

I Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete
FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete

Complexity

BSAT Problem: Given ϕ and N, is there a model for ϕ of
First-Order domain of size at most N ?
Parameters:

I Logic: FO versus FO-LTL

I Encoding of N: unary versus binary

I Rank of formulas (nested quantifiers): bounded (⊥) versus
unbounded (>).

Theorem

N unary N binary

FO ⊥ NP-complete NEXPTIME-complete
FO > NEXPTIME-complete NEXPTIME-complete
FO-LTL ⊥ PSPACE-complete EXPSPACE-complete
FO-LTL > EXPSPACE-complete EXPSPACE-complete

Ideas of the proofs

Membership:

I Guess a structure and verify it,

I Re-encode the formula for bounded rank,

I Use PSPACE LTL Satisfiability.

Hardness

I Reduce from Turing machines or SAT for NP-hardness,

I Encode states and alphabet in the signature,

I Structure encodes space/time for FO and space for FO-LTL,

I a(x , t) for “cell x at time t is labeled a”,

I Use binary encoding for x and t for unbounded unary,

I formula in the wanted fragment encode run of the machine.

Finite Model Theory

Finite Model Property: If there is a model there is a finite one.
FO Fragments with FMP;

I [∃∗∀∗, all]= (Ramsey 1930)

I [∃∗∀∃∗, all]= (Ackermann 1928)

I [∃∗, all , all]= (Gurevich 1976)

I [∃∗∀, all , (1)]= (Grädel 1996)

I FO2 (Mortimer 1975) : 2 variables.

Theorem

Adding next, eventually preserves FMP if the fragment imposes no
constraint on the number and arity of predicates/functions.

True for all above fragments except Grädel: only one function of
arity one.

Axioms of infinity

In general, adding LTL allows to write axioms of infinity:

With one existential variable:

always(∃x.P(x) ∧ next(always¬P(x)))).

Without nesting quantifiers in temporal operators:

∀x∃y .P(c) ∧ always(P(x)⇒ next(P(y) ∧ always¬P(x))).

Without always:

∀x∃y .P(c) ∧ ((P(x) ∧ P(y))until(¬P(x) ∧ P(y))).

Conclusion

Theoretical study of FO-LTL versus FO

I Complexity

I Finite model property

On-going work with Univ. of Minho/IRIT
I Implementation of different verification procedures for

Electrum:

• Reduce to LTL satisfiability
• Reduce to Alloy

I Use of efficient solvers

I Comparison with TLA and B

