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Introduction

» Regular cost functions : counting extension of regular
languages

» Motivation : solving bound-related problems on regular
languages (e.g. star-height)
» Definable over finite or infinite structures, like words or trees

» Definable via automata, logics, algebraic structures,...
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Nondeterministic finite-state automaton A

+ finite set of counters
(initialized to 0, values range over N)
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Nondeterministic finite-state automaton A

+ finite set of counters
(initialized to 0, values range over N)

4+ counter operations on transitions
(increment I, reset R, check C, no change ¢)

Semantics
vals(p) := min checked counter value during run p
[A]s(u) := max{vals(p) : p is an accepting run of A on u}

Example
[A]s(u) = min length of block of a's surrounded by b's in u
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for all subsets U, [A](U) bounded iff [B](U) bounded

structures
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Applications

Many problems for a regular language L can be reduced to
deciding ~ for some class of automata with counting features:

» Finite power property (finite words)
[Simon '78, Hashiguchi '79]

is there some n such that (L4 ¢€)" = L*?

» Star-height problem (finite words/trees)
[Hashiguchi '88, Kirsten '05, Colcombet+Lading '08]

given n, is there a regular expression for L
with at most n nestings of Kleene star?

» Parity-index problem (infinite trees)
[reduction in Colcombet+Ldding '08, decidability open]

given i < j, is there a parity automaton for L
which uses only priorities {i,i +1,...,j}7



Applications

Many problems for a regular language L can be reduced to
deciding ~ for some class of automata with counting features:

» Finite power property (finite words)
[Simon '78, Hashiguchi '79] distance

is there some n such that (L4 ¢€)" = L*?

» Star-height problem (finite words/trees)

[Hashiguchi '88, Kirsten '05, Colcombet+Lading '08] nfested
distance-
given n, is there a regular expression for L desert
with at most n nestings of Kleene star?
» Parity-index problem (infinite trees)
[reduction in Colcombet+Ldding '08, decidability open]
cost-parity

given i < j, is there a parity automaton for L
which uses only priorities {i,i +1,...,j}7
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Cost functions on infinite trees

> In the following, input structures = X-labelled infinite trees.

» Dual B- and S- semantics as before, defining functions :
Trees— N U {o0}.

» Acceptance condition : any condition on infinite words :
Blichi, co-Biichi, Rabin, Parity,... (on all branches in the
non-deterministic setting).

» Decidability of [A] ~ [B] open in general.
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Languages as cost functions

A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [A]s = x and [A]s = x7, with

0 iftel
XL(t)_{ o iftel

v

» Switching between B and S semantics corresponds to a
complementation.

» If L and L’ are languages, x, = x iff L = L', so cost function
theory, even up to =, strictly extends language theory.

» Aim : Extend classic theorems from languages to cost
functions



Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by
an alternating weak automaton iff there are nondeterministic Biichi
automata // and U’ such that

L=L(u)= L)

Reg
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Weak automata and games

Alternating parity automaton A with priorities {1,2}
+ no cycle in the transition function which visits both priorities
= dM.Vt. any play of (A, t) has at most M alternations between priorities

Game (A, t)

() Eve
[ ] Adam

Semantics

A strategy o for Eve is winning if every play in o stabilizes in priority 2
A accepts t if Eve has a winning strategy from the initial position



Weak B-automata and games [Vanden Boom ’11]

Alternating parity automaton A with priorities {1,2}

+ no cycle in the transition function which visits both priorities

= dM.Vt. any play of (A, t) has at most M alternations between priorities
+ finite set of counters and counter actions I,R,C, e on transitions

Game (A, t)

() Eve (min)

[ ] Adam (max)

Semantics
val(o) := max value of any play in strategy o

[A](t) := min{val(c) : o is a winning strategy for Eve in (A, t)}



Results on weak cost functions [Vanden Boom ’11]

» Translation from weak to nondeterminist B-Biichi, S-Biichi

B-Biichi




Results on weak cost functions [Vanden Boom ’11]

» Translation from weak to nondeterminist B-Biichi, S-Biichi

» Good closure properties of the weak class, equivalence with
logic.

B-Biichi




Results on weak cost functions [Vanden Boom ’11]

» Translation from weak to nondeterminist B-Biichi, S-Biichi

» Good closure properties of the weak class, equivalence with
logic.

» Does Rabin theorem extend to the weak cost function class ?

B-Biichi




Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton
iff there are nondeterministic Biichi automata // and U/’ such that

L= L) = LQ.



Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)
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Conjecture

A cost function f on infinite trees is recognizable by
a weak B-automaton iff
there exists a nondeterministic automaton // and
a nondeterministic S-Biichi automaton U/’ such that

f% ~ |[Z/{/]]5.



Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton
iff there are nondeterministic Biichi automata // and U/’ such that

L= L) = L)

Theorem

A cost function f on infinite trees is recognizable by
a quasi-weak B-automaton
iff there exists a nondeterministic automaton // and
a nondeterministic S-Biichi automaton &’ such that

fr ~ [U']s.
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Variants of weakness

Weak B-automaton

Quasi-weak B-automaton

alternating B-Buchi

IM.Vt. any play in (A, t)
has at most M alternations
between priorities

there is no cycle with
both priorities

alternating B-Buchi

VN.3IM.Vt.¥o for Eve in (A, t).
val(o) < N — any play in o
has at most M alternations
between priorities

if there is a cycle with both

priorities, then there is some
IC without R

IC



Separation Result

Theorem

There is a quasi-weak cost function which is not weak.

B-Biichi
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Summary and conclusion

Theorem

» Quasi-weak B-automata have a Rabin-style characterization.

» Quasi-weak — nondeterministic: relies on the fact that
finite-memory strategies suffice in quasi-weak B-games
» Nondeterministic — quasi-weak: adapt Kupferman+Vardi '99

» If A and B are quasi-weak B-automata, then it is decidable
whether or not [A] =~ [B].

» Quasi-weak B-automata are strictly more expressive than
weak B-automata over infinite trees.

Quasi-weak B-automata extend the class of cost automata over
infinite trees for which =~ is known to be decidable.

Corollary : If A is a Biichi automaton, it is decidable whether L(.A)
is a weak language [using Colcombet+Loding 08]

Is &~ decidable for cost-parity automata?



