Quasi-Weak Cost Automata
A New Variant of Weakness

Denis Kuperberg1 Michael Vanden Boom2

1LIAFA/CNRS/Université Paris 7, Denis Diderot, France
2Department of Computer Science, University of Oxford, England

FSTTCS 2011
Mumbai
Introduction

- Regular cost functions: counting extension of regular languages
Introduction

- Regular cost functions: counting extension of regular languages
- Motivation: solving bound-related problems on regular languages (e.g. star-height)
Introduction

- Regular cost functions: counting extension of regular languages
- Motivation: solving bound-related problems on regular languages (e.g. star-height)
- Definable over finite or infinite structures, like words or trees
Introduction

- Regular cost functions: counting extension of regular languages
- Motivation: solving bound-related problems on regular languages (e.g. star-height)
- Definable over finite or infinite structures, like words or trees
- Definable via automata, logics, algebraic structures,...
Cost automata over words

Nondeterministic finite-state automaton \(\mathcal{A} \)
+ finite set of counters
 (initialized to 0, values range over \(\mathbb{N} \))
+ counter operations on transitions
 (increment \(I \), reset \(R \), check \(C \), no change \(\varepsilon \))

Semantics

\[
[\mathcal{A}] : \Sigma^* \rightarrow \mathbb{N} \cup \{\infty\}
\]
Cost automata over words

Nondeterministic finite-state automaton \(\mathcal{A} \)
+ finite set of counters
 (initialized to 0, values range over \(\mathbb{N} \))
+ counter operations on transitions
 (increment \(I \), reset \(R \), check \(C \), no change \(\epsilon \))

Semantics

\[\text{val}_B(\rho) := \max \text{ checked counter value during run } \rho \]

\[[\mathcal{A}]_B(u) := \min \{\text{val}_B(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u\} \]

Example

\[[\mathcal{A}]_B(u) = \min \text{ length of block of } a \text{'s surrounded by } b \text{'s in } u \]
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics

\[\text{val}_{S}(\rho) := \min \text{ checked counter value during run } \rho \]
\[[\mathcal{A}]_{S}(u) := \max \{ \text{val}_{S}(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u \} \]

Example

\[[\mathcal{A}]_{S}(u) = \min \text{ length of block of } a \text{'s surrounded by } b \text{'s in } u \]
Boundedness relation

“$[A] = [B]$”: undecidable [Krob '94]

$[A](U)$ bounded iff $[B](U)$ bounded
Boundedness relation

“\([\mathcal{A}] = [\mathcal{B}]\)” : undecidable [Krob '94]

“\([\mathcal{A}] \approx [\mathcal{B}]\)” : decidable on words
[Colcombet '09, following Bojánczyk+Colcombet '06]
for all subsets \(U\), \([\mathcal{A}] (U)\) bounded iff \([\mathcal{B}] (U)\) bounded
Boundedness relation

“$[\mathcal{A}] = [\mathcal{B}]$”: undecidable [Krob ’94]

“$[\mathcal{A}] \approx [\mathcal{B}]$”: decidable on words

[Colcombet ’09, following Bojanczyk+Colcombet ’06]

for all subsets U, $[\mathcal{A}](U)$ bounded iff $[\mathcal{B}](U)$ bounded
Many problems for a regular language L can be reduced to deciding \approx for some class of automata with counting features:

- **Finite power property** (finite words)
 [Simon ’78, Hashiguchi ’79]
 is there some n such that $(L + \epsilon)^n = L^*$?

- **Star-height problem** (finite words/trees)
 [Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]
 given n, is there a regular expression for L with at most n nestings of Kleene star?

- **Parity-index problem** (infinite trees)
 [reduction in Colcombet+Löding ’08, decidability open]
 given $i < j$, is there a parity automaton for L which uses only priorities $\{i, i + 1, \ldots, j\}$?
Many problems for a regular language L can be reduced to deciding \approx for some class of automata with counting features:

- **Finite power property** (finite words)

 [Simon ’78, Hashiguchi ’79]

 is there some n such that $(L + \varepsilon)^n = L^*$?

- **Star-height problem** (finite words/trees)

 [Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

 given n, is there a regular expression for L with at most n nestings of Kleene star?

- **Parity-index problem** (infinite trees)

 [reduction in Colcombet+Löding ’08, decidability open]

 given $i < j$, is there a parity automaton for L which uses only priorities $\{i, i + 1, \ldots, j\}$?
In the following, input structures = \(\Sigma \)-labelled infinite trees.
Cost functions on infinite trees

- In the following, input structures = Σ-labelled infinite trees.
- Dual B- and S- semantics as before, defining functions: $\text{Trees} \rightarrow \mathbb{N} \cup \{\infty\}$.
In the following, input structures = \(\Sigma \)-labelled infinite trees.

Dual \(B \)- and \(S \)- semantics as before, defining functions :
\[\text{Trees} \rightarrow \mathbb{N} \cup \{ \infty \}. \]

Acceptance condition : any condition on infinite words : Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).
Cost functions on infinite trees

- In the following, input structures = Σ-labelled infinite trees.
- Dual B- and S- semantics as before, defining functions: $\text{Trees} \to \mathbb{N} \cup \{\infty\}$.
- Acceptance condition: any condition on infinite words: Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).
- Decidability of $[A] \approx [B]$ open in general.
Languages as cost functions

A standard automaton \mathcal{A} computing a language L can be viewed as a B- or S-automaton without any counters. Then $\llbracket \mathcal{A} \rrbracket_B = \chi_L$ and $\llbracket \mathcal{A} \rrbracket_S = \chi_L^\complement$, with

$$
\chi_L(t) = \begin{cases}
0 & \text{if } t \in L \\
\infty & \text{if } t \notin L
\end{cases}
$$
A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then $\llbracket A \rrbracket_B = \chi_L$ and $\llbracket A \rrbracket_S = \chi_L^\perp$, with

$$
\chi_L(t) = \begin{cases}
0 & \text{if } t \in L \\
\infty & \text{if } t \notin L
\end{cases}
$$

Switching between B and S semantics corresponds to a complementation.
Languages as cost functions

- A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then $\llbracket A \rrbracket_B = \chi_L$ and $\llbracket A \rrbracket_S = \chi_L^c$, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

- Switching between B and S semantics corresponds to a complementation.

- If L and L' are languages, $\chi_L \approx \chi_L'$ iff $L = L'$, so cost function theory, even up to \approx, strictly extends language theory.
A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then $[A]_B = \chi_L$ and $[A]_S = \chi_L$, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

Switching between B and S semantics corresponds to a complementation.

If L and L' are languages, $\chi_L \approx \chi_{L'}$ iff $L = L'$, so cost function theory, even up to \approx, strictly extends language theory.

Aim: Extend classic theorems from languages to cost functions
Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by an alternating weak automaton iff there are nondeterministic Büchi automata U and U' such that

$$L = L(U) = \overline{L(U')}.$$
Weak automata and games

Alternating parity automaton \mathcal{A} with priorities $\{1, 2\}$

+ no cycle in the transition function which visits both priorities

$\Rightarrow \exists M. \forall t. \text{ any play of } (\mathcal{A}, t) \text{ has at most } M \text{ alternations between priorities}$

Game (\mathcal{A}, t)

![Game Diagram]

Semantics

A strategy σ for Eve is winning if every play in σ stabilizes in priority 2

\mathcal{A} accepts t if Eve has a winning strategy from the initial position
Alternating parity automaton A with priorities $\{1, 2\}$
+ no cycle in the transition function which visits both priorities
$\Rightarrow \exists M. \forall t. \text{any play of } (A, t) \text{ has at most } M \text{ alternations between priorities}$
+ finite set of counters and counter actions I, R, C, ϵ on transitions

Game (A, t)

```
Game (A, t)
```

```
Semantics

$\text{val}(\sigma) := \max \text{ value of any play in strategy } \sigma$

$\llbracket A \rrbracket(t) := \min \{\text{val}(\sigma) : \sigma \text{ is a winning strategy for Eve in } (A, t)\}$
```
Results on weak cost functions [Vanden Boom ’11]

- Translation from weak to nondeterminist B-Büchi, S-Büchi

![Venn diagram showing the overlap between B-Büchi, S-Büchi, and Weak B-automata sets.](attachment:venn_diagram.png)
Translation from weak to nondeterministic B-Büchi, S-Büchi

Good closure properties of the weak class, equivalence with logic.
Translation from weak to nondeterminist B-Büchi, S-Büchi

Good closure properties of the weak class, equivalence with logic.

Does Rabin theorem extend to the weak cost function class?
Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \mathcal{U} and \mathcal{U}' such that

$$L = L(\mathcal{U}) = \overline{L(\mathcal{U}')}.$$
Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language \(L \) of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \(U \) and \(U' \) such that

\[
L = L(U) = \overline{L(U')}.
\]

Conjecture

A cost function \(f \) on infinite trees is recognizable by a weak \(B \)-automaton iff there exists a nondeterministic \(B \)-Büchi automaton \(U \) and a nondeterministic \(S \)-Büchi automaton \(U' \) such that

\[
f \approx [U]_B \approx [U']_S.
\]
Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata U and U' such that

$$L = L(U) = \overline{L(U')} .$$

Theorem

A cost function f on infinite trees is recognizable by a **quasi-weak B-automaton**

iff there exists a nondeterministic B-Büchi automaton U and a nondeterministic S-Büchi automaton U' such that

$$f \approx [U]_B \approx [U']_S .$$
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td></td>
</tr>
<tr>
<td>$\exists M. \forall t. \text{ any play in } (A, t)$ has at most M alternations between priorities</td>
<td></td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td></td>
</tr>
</tbody>
</table>

There is no cyclical transition between priorities 1 and 2.
Variants of weakness

<table>
<thead>
<tr>
<th>Weak (B)-automaton</th>
<th>Quasi-weak (B)-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating (B)-B"uchi</td>
<td>alternating (B)-B"uchi</td>
</tr>
<tr>
<td>(\exists M. \forall t.) any play in ((A, t)) has at most (M) alternations between priorities</td>
<td></td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td>alternating B-Büchi</td>
</tr>
<tr>
<td>$\exists M. \forall t.$ any play in (A, t) has at most M alternations between priorities</td>
<td>$\forall N. \exists M. \forall t. \forall \sigma$ for Eve in (A, t). $val(\sigma) \leq N \rightarrow$ any play in σ has at most M alternations between priorities</td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram showing a cycle with priorities 1 and 2](image-url)
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td>alternating B-Büchi</td>
</tr>
<tr>
<td>$\exists M. \forall t. \text{any play in } (\mathcal{A}, t) \text{ has at most } M \text{ alternations between priorities}$</td>
<td>$\forall N. \exists M. \forall t. \forall \sigma \text{ for Eve in } (\mathcal{A}, t). \text{val}(\sigma) \leq N \rightarrow \text{any play in } \sigma \text{ has at most } M \text{ alternations between priorities}$</td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td>if there is a cycle with both priorities, then there is some IC without R</td>
</tr>
</tbody>
</table>
Theorem

There is a quasi-weak cost function which is not weak.
Summary and conclusion

Theorem

- Quasi-weak B-automata have a **Rabin-style characterization**.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99

If A and B are quasi-weak B-automata, then it is decidable whether or not $[A] \approx [B]$.

Quasi-weak B-automata are strictly more expressive than weak B-automata over infinite trees. Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary: If A is a Büchi automaton, it is decidable whether $L(A)$ is a weak language [using Colcombet+Löding 08]

Is \approx decidable for cost-parity automata?
Theorem

- Quasi-weak B-automata have a **Rabin-style characterization**.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99
- If \mathcal{A} and \mathcal{B} are quasi-weak B-automata, then it is **decidable** whether or not $[\mathcal{A}] \approx [\mathcal{B}]$.

Quasi-weak B-automata are strictly more expressive than weak B-automata over infinite trees. Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary: If \mathcal{A} is a Büchi automaton, it is decidable whether or not $L(\mathcal{A})$ is a weak language [using Colcombet+Löding 08].

Is \approx decidable for cost-parity automata?
Summary and conclusion

Theorem

- Quasi-weak B-automata have a **Rabin-style characterization**.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99
- If \mathcal{A} and \mathcal{B} are quasi-weak B-automata, then it is **decidable** whether or not $[[\mathcal{A}]] \approx [[\mathcal{B}]]$.
- Quasi-weak B-automata are **strictly more expressive** than weak B-automata over infinite trees.
Summary and conclusion

Theorem

- Quasi-weak B-automata have a **Rabin-style characterization**.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99
- If \mathcal{A} and \mathcal{B} are quasi-weak B-automata, then it is **decidable** whether or not $[\mathcal{A}] \approx [\mathcal{B}]$.
- Quasi-weak B-automata are **strictly more expressive** than weak B-automata over infinite trees.

Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.
Summary and conclusion

Theorem

- Quasi-weak B-automata have a **Rabin-style characterization**.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99
- If \mathcal{A} and \mathcal{B} are quasi-weak B-automata, then it is **decidable** whether or not $[[\mathcal{A}]] \approx [[\mathcal{B}]]$.
- Quasi-weak B-automata are **strictly more expressive** than weak B-automata over infinite trees.

Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary : If \mathcal{A} is a Büchi automaton, it is decidable whether $L(\mathcal{A})$ is a weak language [using Colcombet+Löding 08]
Summary and conclusion

Theorem

- Quasi-weak B-automata have a Rabin-style characterization.
 - Quasi-weak \rightarrow nondeterministic: relies on the fact that
 finite-memory strategies suffice in quasi-weak B-games
 - Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi ’99
- If \mathcal{A} and \mathcal{B} are quasi-weak B-automata, then it is **decidable** whether or not $\llbracket \mathcal{A} \rrbracket \approx \llbracket \mathcal{B} \rrbracket$.
- Quasi-weak B-automata are **strictly more expressive** than weak B-automata over infinite trees.

Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary: If \mathcal{A} is a Büchi automaton, it is decidable whether $L(\mathcal{A})$ is a weak language [using Colcombet+Löding 08]

Is \approx decidable for **cost-parity automata**?