Quasi-Weak Cost Automata A New Variant of Weakness

*Denis Kuperberg*¹ Michael Vanden Boom²

¹LIAFA/CNRS/Université Paris 7, Denis Diderot, France

²Department of Computer Science, University of Oxford, England

FSTTCS 2011 Mumbai Regular cost functions : counting extension of regular languages

- Regular cost functions : counting extension of regular languages
- Motivation : solving bound-related problems on regular languages (e.g. star-height)

- Regular cost functions : counting extension of regular languages
- Motivation : solving bound-related problems on regular languages (e.g. star-height)
- Definable over finite or infinite structures, like words or trees

- Regular cost functions : counting extension of regular languages
- Motivation : solving bound-related problems on regular languages (e.g. star-height)
- Definable over finite or infinite structures, like words or trees
- Definable via automata, logics, algebraic structures,...

Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}

+ finite set of counters

(initialized to 0, values range over \mathbb{N})

+ counter operations on transitions

(increment I, reset R, check C, no change ε)

 $\begin{array}{l} \text{Semantics} \\ \llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{N} \cup \{\infty\} \end{array}$

Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}

+ finite set of counters

(initialized to 0, values range over \mathbb{N})

+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics

 $val_B(\rho) := \max$ checked counter value during run ρ $\llbracket A \rrbracket_B(u) := \min \{ val_B(\rho) : \rho \text{ is an accepting run of } A \text{ on } u \}$

Example

 $\llbracket \mathcal{A} \rrbracket_{B}(u) = \min \text{ length of block of } a \text{'s surrounded by } b \text{'s in } u$ $a, b:\varepsilon \qquad a: \texttt{IC} \qquad a, b:\varepsilon$ $b:\varepsilon \qquad b:\varepsilon \qquad b:\varepsilon \qquad f:\varepsilon \qquad f:\varepsilon$

Cost automata over words

Nondeterministic finite-state automaton ${\cal A}$

+ finite set of counters

(initialized to 0, values range over \mathbb{N})

+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics

 $val_{S}(\rho) := min checked counter value during run <math>\rho$ $\llbracket A \rrbracket_{S}(u) := max\{val_{S}(\rho) : \rho \text{ is an accepting run of } A \text{ on } u\}$

Example

 $\llbracket A \rrbracket_{S}(u) = \min$ length of block of a's surrounded by b's in u

Boundedness relation

" $\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket$ ": undecidable [Krob '94]

Boundedness relation

 $``\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket": undecidable [Krob '94]$

$$\label{eq:constraint} \begin{split} ``[\![\mathcal{A}]\!] &\approx [\![\mathcal{B}]\!]'' \colon \text{decidable on words} \\ & [\text{Colcombet '09, following Bojánczyk+Colcombet '06}] \\ & \text{for all subsets } U, [\![\mathcal{A}]\!](U) \text{ bounded iff } [\![\mathcal{B}]\!](U) \text{ bounded} \end{split}$$

Boundedness relation

 $``\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket": undecidable [Krob '94]$

$$\label{eq:constraint} \begin{split} ``[\![\mathcal{A}]\!] &\approx [\![\mathcal{B}]\!]'' \colon \text{decidable on words} \\ & [\text{Colcombet '09, following Bojánczyk+Colcombet '06}] \\ & \text{for all subsets } U, [\![\mathcal{A}]\!](U) \text{ bounded iff } [\![\mathcal{B}]\!](U) \text{ bounded} \end{split}$$

Applications

Many problems for a regular language L can be reduced to deciding \approx for some class of automata with counting features:

 Finite power property (finite words) [Simon '78, Hashiguchi '79]

is there some *n* such that $(L + \epsilon)^n = L^*$?

 Star-height problem (finite words/trees) [Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]

given n, is there a regular expression for L with at most n nestings of Kleene star?

Parity-index problem (infinite trees) [reduction in Colcombet+Löding '08, decidability open] given i < j, is there a parity automaton for L which uses only priorities {i, i + 1, ..., j}?

Applications

Many problems for a regular language *L* can be reduced to deciding \approx for some class of automata with counting features:

is there some *n* such that $(L + \epsilon)^n = L^*$?

with at most *n* nestings of Kleene star?

 Star-height problem (finite words/trees) [Hashiguchi '88, Kirsten '05, Colcombet+Löding '08] given n, is there a regular expression for L

```
nested
distance-
desert
```

Parity-index problem (infinite trees) [reduction in Colcombet+Löding '08, decidability open] given i < j, is there a parity automaton for L which uses only priorities {i, i + 1,..., j}? • In the following, input structures = Σ -labelled infinite trees.

- In the following, input structures = Σ -labelled infinite trees.
- Dual B- and S- semantics as before, defining functions : Trees→ N ∪ {∞}.

- In the following, input structures = Σ -labelled infinite trees.
- Dual B- and S- semantics as before, defining functions : Trees→ N ∪ {∞}.
- Acceptance condition : any condition on infinite words : Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).

- In the following, input structures = Σ -labelled infinite trees.
- Dual B- and S- semantics as before, defining functions : Trees→ N ∪ {∞}.
- Acceptance condition : any condition on infinite words : Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).
- Decidability of $\llbracket \mathcal{A} \rrbracket \approx \llbracket \mathcal{B} \rrbracket$ open in general.

 A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then [[A]]_B = χ_L and [[A]]_S = χ_L, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

 A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then [[A]]_B = χ_L and [[A]]_S = χ_T, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

Switching between B and S semantics corresponds to a complementation.

 A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then [[A]]_B = χ_L and [[A]]_S = χ_T, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

- Switching between B and S semantics corresponds to a complementation.
- If L and L' are languages, \(\chi_L\) ≈ \(\chi_L'\) iff L = L'\), so cost function theory, even up to ≈, strictly extends language theory.

 A standard automaton A computing a language L can be viewed as a B- or S-automaton without any counters. Then [[A]]_B = χ_L and [[A]]_S = χ_T, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

- Switching between B and S semantics corresponds to a complementation.
- If L and L' are languages, \(\chi_L\) ≈ \(\chi_L'\) iff L = L'\), so cost function theory, even up to ≈, strictly extends language theory.
- Aim : Extend classic theorems from languages to cost functions

A language L of infinite trees is recognizable by an alternating weak automaton iff there are nondeterministic Büchi automata \mathcal{U} and \mathcal{U}' such that

 $L = L(\mathcal{U}) = \overline{L(\mathcal{U}')}.$

Weak automata and games

Alternating parity automaton \mathcal{A} with priorities $\{1, 2\}$ + no cycle in the transition function which visits both priorities $\Rightarrow \exists M. \forall t.$ any play of (\mathcal{A}, t) has at most M alternations between priorities

Semantics

A strategy σ for Eve is winning if every play in σ stabilizes in priority 2 A accepts t if Eve has a winning strategy from the initial position

Weak B-automata and games [Vanden Boom '11]

Alternating parity automaton \mathcal{A} with priorities $\{1,2\}$ + no cycle in the transition function which visits both priorities $\Rightarrow \exists M. \forall t.$ any play of (\mathcal{A}, t) has at most M alternations between priorities + finite set of counters and counter actions I, R, C, ε on transitions

Game (\mathcal{A}, t)

Semantics

 $val(\sigma) := \max \text{ value of any play in strategy } \sigma$ [[A]](t) := min{ $val(\sigma) : \sigma$ is a winning strategy for Eve in (A, t)}

Results on weak cost functions [Vanden Boom '11]

► Translation from weak to nondeterminist *B*-Büchi, *S*-Büchi

Results on weak cost functions [Vanden Boom '11]

- ► Translation from weak to nondeterminist *B*-Büchi, *S*-Büchi
- Good closure properties of the weak class, equivalence with logic.

Results on weak cost functions [Vanden Boom '11]

- ► Translation from weak to nondeterminist *B*-Büchi, *S*-Büchi
- Good closure properties of the weak class, equivalence with logic.
- Does Rabin theorem extend to the weak cost function class ?

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \mathcal{U} and \mathcal{U}' such that

$$L = \underline{L(\mathcal{U})} = \overline{L(\mathcal{U}')}.$$

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \mathcal{U} and \mathcal{U}' such that

$$L = L(\mathcal{U}) = \overline{L(\mathcal{U}')}.$$

Conjecture

A cost function f on infinite trees is recognizable by a **weak** *B*-**automaton** iff there exists a nondeterministic *B*-Büchi automaton \mathcal{U} and a nondeterministic *S*-Büchi automaton \mathcal{U}' such that

 $f\approx \llbracket \mathcal{U} \rrbracket_B \approx \llbracket \mathcal{U}' \rrbracket_S.$

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \mathcal{U} and \mathcal{U}' such that

$$L = L(\mathcal{U}) = \overline{L(\mathcal{U}')}.$$

Theorem

A cost function f on infinite trees is recognizable by a **quasi-weak** *B*-**automaton** iff there exists a nondeterministic *B*-Büchi automaton \mathcal{U} and a nondeterministic *S*-Büchi automaton \mathcal{U}' such that

 $f \approx \llbracket \mathcal{U} \rrbracket_B \approx \llbracket \mathcal{U}' \rrbracket_S.$

Weak <i>B</i> -automaton	Quasi-weak <i>B</i> -automaton
alternating <i>B</i> -Büchi	
$\exists M. \forall t.$ any play in (\mathcal{A}, t) has at most M alternations between priorities	
there is no cycle with both priorities	
1 2	

Weak <i>B</i> -automaton	Quasi-weak <i>B</i> -automaton
alternating <i>B</i> -Büchi	alternating <i>B</i> -Büchi
$\exists M. \forall t.$ any play in (\mathcal{A}, t) has at most M alternations between priorities	
there is no cycle with both priorities	
1 2	

Weak B-automaton	Quasi-weak <i>B</i> -automaton
alternating <i>B</i> -Büchi	alternating <i>B</i> -Büchi
$\exists M. \forall t.$ any play in (\mathcal{A}, t) has at most M alternations between priorities	$ \forall N. \exists M. \forall t. \forall \sigma \text{ for Eve in } (\mathcal{A}, t). $ $ val(\sigma) \leq N \rightarrow \text{any play in } \sigma $ has at most <i>M</i> alternations between priorities
there is no cycle with both priorities	

Weak <i>B</i> -automaton	Quasi-weak B-automaton
alternating <i>B</i> -Büchi	alternating <i>B</i> -Büchi
$\exists M. \forall t.$ any play in (\mathcal{A}, t) has at most M alternations between priorities	$\forall N.\exists M.\forall t.\forall \sigma$ for Eve in (\mathcal{A}, t) . $val(\sigma) \leq N \rightarrow$ any play in σ has at most M alternations between priorities
there is no cycle with both priorities	if there is a cycle with both priorities, then there is some IC without R
	IC

There is a quasi-weak cost function which is not weak.

- Quasi-weak *B*-automata have a **Rabin-style characterization**.
 - ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - $\blacktriangleright \ \ Nondeterministic \rightarrow quasi-weak: \ \ adapt \ \ Kupferman+Vardi \ \ '99$

• Quasi-weak *B*-automata have a **Rabin-style characterization**.

- ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
- Nondeterministic \rightarrow quasi-weak: adapt Kupferman+Vardi '99
- If A and B are quasi-weak B-automata, then it is decidable whether or not [A] ≈ [B].

- Quasi-weak *B*-automata have a **Rabin-style characterization**.
 - ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
 - $\blacktriangleright \ \ Nondeterministic \rightarrow quasi-weak: \ \ adapt \ \ Kupferman+Vardi \ \ '99$
- If A and B are quasi-weak B-automata, then it is decidable whether or not [A] ≈ [B].
- Quasi-weak *B*-automata are strictly more expressive than weak *B*-automata over infinite trees.

• Quasi-weak *B*-automata have a **Rabin-style characterization**.

- ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
- $\blacktriangleright \ \ Nondeterministic \rightarrow quasi-weak: \ \ adapt \ \ Kupferman+Vardi \ \ '99$
- If A and B are quasi-weak B-automata, then it is decidable whether or not [A] ≈ [B].
- Quasi-weak *B*-automata are strictly more expressive than weak *B*-automata over infinite trees.

Quasi-weak *B*-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

• Quasi-weak *B*-automata have a **Rabin-style characterization**.

- ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
- $\blacktriangleright \ \ Nondeterministic \rightarrow quasi-weak: \ \ adapt \ \ Kupferman+Vardi \ \ '99$
- If A and B are quasi-weak B-automata, then it is decidable whether or not [A] ≈ [B].
- Quasi-weak *B*-automata are strictly more expressive than weak *B*-automata over infinite trees.

Quasi-weak *B*-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary : If A is a Büchi automaton, it is decidable whether L(A) is a weak language [using Colcombet+Löding 08]

• Quasi-weak *B*-automata have a **Rabin-style characterization**.

- ► Quasi-weak → nondeterministic: relies on the fact that finite-memory strategies suffice in quasi-weak B-games
- $\blacktriangleright \ \ Nondeterministic \rightarrow quasi-weak: \ \ adapt \ \ Kupferman+Vardi \ \ '99$
- If A and B are quasi-weak B-automata, then it is decidable whether or not [A] ≈ [B].
- Quasi-weak *B*-automata are strictly more expressive than weak *B*-automata over infinite trees.

Quasi-weak *B*-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Corollary : If A is a Büchi automaton, it is decidable whether L(A) is a weak language [using Colcombet+Löding 08]

Is \approx decidable for **cost-parity automata**?