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Introduction

I Regular cost functions : counting extension of regular
languages

I Motivation : solving bound-related problems on regular
languages (e.g. star-height)

I Definable over finite or infinite structures, like words or trees

I Definable via automata, logics, algebraic structures,...
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Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics

[[A]] : Σ∗ → N ∪ {∞}
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Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics

valB(ρ) := max checked counter value during run ρ

[[A]]B(u) := min{valB(ρ) : ρ is an accepting run of A on u}

Example

[[A]]B(u) = min length of block of a’s surrounded by b’s in u

///.-,()*+
a,b:ε

�� b:ε ///.-,()*+
a:IC

�� b:ε ///.-,()*+
a,b:ε

��
//



Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics

valS(ρ) := min checked counter value during run ρ

[[A]]S(u) := max{valS(ρ) : ρ is an accepting run of A on u}

Example

[[A]]S(u) = min length of block of a’s surrounded by b’s in u

///.-,()*+
a:ε

�� b:ε //

��

/.-,()*+
a:I

��

b:CR
EE

//



Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded
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Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

[[A]] 6≈ [[B]]



Applications

Many problems for a regular language L can be reduced to
deciding ≈ for some class of automata with counting features:

I Finite power property (finite words)
[Simon ’78, Hashiguchi ’79]

is there some n such that (L + ε)n = L∗?

I Star-height problem (finite words/trees)
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

given n, is there a regular expression for L
with at most n nestings of Kleene star?

I Parity-index problem (infinite trees)
[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a parity automaton for L
which uses only priorities {i , i + 1, . . . , j}?
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Cost functions on infinite trees

I In the following, input structures = Σ-labelled infinite trees.

I Dual B- and S- semantics as before, defining functions :
Trees→ N ∪ {∞}.

I Acceptance condition : any condition on infinite words :
Büchi, co-Büchi, Rabin, Parity,... (on all branches in the
non-deterministic setting).

I Decidability of [[A]] ≈ [[B]] open in general.
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Languages as cost functions

I A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [[A]]B = χL and [[A]]S = χL, with

χL(t) =

{
0 if t ∈ L
∞ if t /∈ L

I Switching between B and S semantics corresponds to a
complementation.

I If L and L′ are languages, χL ≈ χL′ iff L = L′, so cost function
theory, even up to ≈, strictly extends language theory.

I Aim : Extend classic theorems from languages to cost
functions
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Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by
an alternating weak automaton iff there are nondeterministic Büchi
automata U and U ′ such that

L = L(U) = L(U ′).

Weak automata
Weak MSO

Büchi Büchi

Reg
MSO



Weak automata and games

Alternating parity automaton A with priorities {1, 2}
+ no cycle in the transition function which visits both priorities

⇒ ∃M.∀t. any play of (A, t) has at most M alternations between priorities

Game (A, t)

/.-,()*+
2

//

1
��

1
///.-,()*+

2
//

1
��

2
//· · ·

2

55jjjjjjjjjjjjjjjjjjj

1
��

2
//

2
��

· · ·

...
...

/.-,()*+ Eve

Adam

Semantics

A strategy σ for Eve is winning if every play in σ stabilizes in priority 2

A accepts t if Eve has a winning strategy from the initial position



Weak B-automata and games [Vanden Boom ’11]

Alternating parity automaton A with priorities {1, 2}
+ no cycle in the transition function which visits both priorities

⇒ ∃M.∀t. any play of (A, t) has at most M alternations between priorities

+ finite set of counters and counter actions I, R, C, ε on transitions

Game (A, t)

/.-,()*+ IC

2
//

ε 1
��

IC

1
///.-,()*+ IC

2
//

ε 1
��

ε

2
//· · ·

ε

2

55jjjjjjjjjjjjjjjjjjj

ε 1
��

ε

2
//

R 2
��

· · ·

...
...

/.-,()*+ Eve (min)

Adam (max)

Semantics

val(σ) := max value of any play in strategy σ

[[A]](t) := min{val(σ) : σ is a winning strategy for Eve in (A, t)}



Results on weak cost functions [Vanden Boom ’11]

I Translation from weak to nondeterminist B-Büchi, S-Büchi

I Good closure properties of the weak class, equivalence with
logic.

I Does Rabin theorem extend to the weak cost function class ?

Weak B-automata
B-Büchi S-Büchi
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Results on weak cost functions [Vanden Boom ’11]

I Translation from weak to nondeterminist B-Büchi, S-Büchi

I Good closure properties of the weak class, equivalence with
logic.

I Does Rabin theorem extend to the weak cost function class ?

Weak B-automata
WCMSO

B-Büchi S-Büchi

?



Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton
iff there are nondeterministic Büchi automata U and U ′ such that

L = L(U) = L(U ′).
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Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton
iff there are nondeterministic Büchi automata U and U ′ such that

L = L(U) = L(U ′).

Conjecture

A cost function f on infinite trees is recognizable by
a weak B-automaton iff
there exists a nondeterministic B-Büchi automaton U and

a nondeterministic S-Büchi automaton U ′ such that

f ≈ [[U ]]B ≈ [[U ′]]S .



Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton
iff there are nondeterministic Büchi automata U and U ′ such that

L = L(U) = L(U ′).

Theorem

A cost function f on infinite trees is recognizable by
a quasi-weak B-automaton
iff there exists a nondeterministic B-Büchi automaton U and

a nondeterministic S-Büchi automaton U ′ such that

f ≈ [[U ]]B ≈ [[U ′]]S .



Variants of weakness

Weak B-automaton Quasi-weak B-automaton

alternating B-Büchi

∃M.∀t. any play in (A, t)
has at most M alternations
between priorities

there is no cycle with
both priorities
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alternating B-Büchi alternating B-Büchi
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Variants of weakness

Weak B-automaton Quasi-weak B-automaton

alternating B-Büchi alternating B-Büchi

∃M.∀t. any play in (A, t)
has at most M alternations
between priorities

∀N.∃M.∀t.∀σ for Eve in (A, t).
val(σ) ≤ N → any play in σ
has at most M alternations
between priorities

there is no cycle with
both priorities

if there is a cycle with both
priorities, then there is some
IC without R



Separation Result

Theorem

There is a quasi-weak cost function which is not weak.

Weak B-automata
WCMSO

B-Büchi S-Büchi

Quasi-weak



Summary and conclusion

Theorem

I Quasi-weak B-automata have a Rabin-style characterization.
I Quasi-weak → nondeterministic: relies on the fact that

finite-memory strategies suffice in quasi-weak B-games
I Nondeterministic → quasi-weak: adapt Kupferman+Vardi ’99

I If A and B are quasi-weak B-automata, then it is decidable
whether or not [[A]] ≈ [[B]].

I Quasi-weak B-automata are strictly more expressive than
weak B-automata over infinite trees.

Quasi-weak B-automata extend the class of cost automata over
infinite trees for which ≈ is known to be decidable.

Corollary : If A is a Büchi automaton, it is decidable whether L(A)
is a weak language [using Colcombet+Löding 08]

Is ≈ decidable for cost-parity automata?
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