Good-for-Games Automata.

Denis Kuperberg Michał Skrzypczak

TUM Munich and University of Warsaw

GT ALGA
12/04/2016
Marseille
Introduction

Deterministic automata on words are a central tool in automata theory:

- Polynomial algorithms for inclusion, complementation.
- Safe composition with games, trees.
- Solutions of the synthesis problem (verification).
- Easily implemented.

Problems:

- **exponential** state blow-up
- **technical** constructions (Safra)

Can we weaken the notion of determinism while preserving some good properties?
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.

Introduced independently in
- symbolic representation (**Henzinger, Piterman ’06**)
 → **simplification**
- quantitative models (**Colcombet ’09**) → **replace determinism**

Applications
- synthesis
- branching time verification
- tree languages (**Boker, K, Kupferman, S ’13**)
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1

System:
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1
System: O_1
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2
System: O_1
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2
System: O_1 O_2
Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2 I_3

System: O_1 O_2
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3$

System: $O_1 \ O_2 \ O_3$
Evaluating a game

Finite alphabets I for inputs and O for outputs. **Synthesis**: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2 I_3 \cdots

System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church's problem: Can the system win? If yes give strategy.

Classical approach: φ A det then solve game on A det.

2EXP blow-up for φ in LTL

Wrong approach: φ A non-det: no player can guess the future.
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (I,O)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3 \ \cdots$

System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church’s problem: Can the system win? If yes give strategy.
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3 \ \cdots$

System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church’s problem: Can the system win? If yes give strategy.

Classical approach: $\varphi \leadsto A_{det}$ then solve game on A_{det}.

2EXP blow-up for φ in LTL
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2 I_3 \cdots

System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots |\models \varphi$.

Church’s problem: Can the system win? If yes give strategy.

Classical approach: $\varphi \rightsquigarrow A_{det}$ then solve game on A_{det}.

2EXP blow-up for φ in LTL

Wrong approach: $\varphi \rightsquigarrow A_{non-det}$: no player can guess the future.
Trivial instance of the synthesis problem:

- \(I = \{a, b\}, \ O = \{c, d\} \)
- \(\varphi = (IO)^\omega \)
- Synthesis possible (no wrong answer !)
A trivial synthesis example

Trivial instance of the synthesis problem:

- $I = \{a, b\}$, $O = \{c, d\}$
- $\varphi = (IO)^\omega$
- Synthesis possible (no wrong answer!)

\[\mathcal{A}_{det} \text{ (safety):} \]

![Diagram](attachment:image_url)
A trivial synthesis example

Trivial instance of the synthesis problem:

- \(I = \{a, b\}, \ O = \{c, d\} \)
- \(\varphi = (IO)^\omega \)
- Synthesis possible (no wrong answer !)

\(A_{det} \ (safety) \):

\[I \rightarrow - \rightarrow O \]

\[a, b \rightarrow \]

\[c \rightarrow \]
A trivial synthesis example

Trivial instance of the synthesis problem:

- $I = \{a, b\}$, $O = \{c, d\}$
- $\varphi = (IO)^\omega$
- Synthesis possible (no wrong answer !)

A_{det} (safety):

$A_{\text{non-det}}$ (safety):
A trivial synthesis example

Trivial instance of the synthesis problem:

- $I = \{a, b\}$, $O = \{c, d\}$
- $\varphi = (IO)^\omega$
- Synthesis possible (no wrong answer !)

\[A_{det} \text{ (safety):} \]

\[A_{non-det} \text{ (safety):} \]
Definition of GFG via a game

A automaton on finite or infinite words.

Refuter plays letters:

GFG Prover: controls transitions
A automaton on finite or infinite words.

Refuter plays letters: \(a \)

GFG Prover: controls transitions

\[
\begin{array}{c}
q_0 \\
q_1 \\
q_2
\end{array}
\]

- \(a, b, c \)
- \(a \) from \(q_0 \) to \(q_1 \)
- \(a \) from \(q_1 \) to \(q_2 \)
- \(b \) from \(q_1 \) to \(q_2 \)
- \(c \) from \(q_2 \) to \(q_1 \)
- \(b, c \) from \(q_0 \) to \(q_1 \)
- \(a, b, c \) from \(q_2 \) to \(q_0 \)
A automaton on finite or infinite words.

Refuter plays letters: $a \ a$

GFG Prover: controls transitions
A automaton on finite or infinite words.
Refuter plays letters: a a b

GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: \(a \ a \ b \ c \)

GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: \(a \ a \ b \ c \ c \)
GFG Prover: controls transitions
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w\)

GFG Prover: controls transitions

GFG Prover wins if: \(w \in L \Rightarrow \text{Run accepting.}\)
Definition of GFG via a game

A automaton on finite or infinite words. Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)

GFG Prover: controls transitions

GFG Prover wins if: \(w \in L \Rightarrow \) Run accepting.

A GFG means that there is a strategy \(\sigma : A^* \rightarrow Q \), for accepting words of \(L(A) \).
Definition of GFG via a game

A automaton on finite or infinite words. Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)

GFG Prover: controls transitions

GFG Prover wins if: \(w \in L \Rightarrow \text{Run accepting.} \)

A GFG means that there is a strategy \(\sigma : A^* \rightarrow Q \), for accepting words of \(L(A) \).

How close is this to determinism?
Composing a game with an automaton:

Input:
- Game G with complex winning condition L. A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A. Simple accepting condition C.

Output:
Game $A_L \circ G$, with winning condition C. Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \leadsto positional winning strategies
Composing a game with an automaton:

Input:
- Game G with complex winning condition L.
 - A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A.
 - Simple accepting condition C.

Output:
Game $A_L \circ G$, with winning condition C.
Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \leadsto positional winning strategies

Theorem (Sound Composition)

A_L is GFG if and only if
for all G with condition L, $A_L \circ G$ has same winner as G.
Some properties of GFG automata

GFG Automata:

- “\(A \subseteq B? \)” : in \(P \) if \(B \) GFG (\(\text{PSPACE} \)-complete for ND)
- But **Complementation** \(\sim \) Determinisation.
- Size of GFG strategy \(\sigma \cong \) Size of deterministic automaton.
Some properties of GFG automata

GFG Automata:

- “$A \subseteq B$?”: in P if B GFG ($PSPACE$-complete for ND)
- But Complementation \sim Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S ’13)

Let A be an automaton for $L \subseteq A^\omega$. Then the tree version of A recognizes $\{t : \text{all branches of } t \text{ are in } L\}$ if and only if A is GFG.
Some properties of GFG automata

GFG Automata:

- “$A \subseteq B$”?: in P if B GFG ($PSPACE$-complete for ND)
- But Complementation \sim Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '13)

Let A be an automaton for $L \subseteq A^\omega$. Then the tree version of A recognizes \{ t: all branches of t are in L \} if and only if A is GFG.

Theorem (Löding)

Let A be GFG on finite words. Then A contains an equivalent deterministic automaton.
Some properties of GFG automata

GFG Automata:
- “\(\mathcal{A} \subseteq \mathcal{B}? \)”: in \(\mathbf{P} \) if \(\mathcal{B} \) GFG (\(\mathbf{PSPACE} \)-complete for ND)
- But Complementation \(\sim \) Determinisation.
- Size of GFG strategy \(\sigma \) \(\cong \) Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S'13)

Let \(\mathcal{A} \) be an automaton for \(L \subseteq \mathcal{A}^\omega \). Then the tree version of \(\mathcal{A} \) recognizes \(\{ t : \text{all branches of } t \text{ are in } L \} \) if and only if \(\mathcal{A} \) is GFG.

Theorem (Löding)

Let \(\mathcal{A} \) be GFG on finite words. Then \(\mathcal{A} \) contains an equivalent deterministic automaton.

What about infinite words? *Colcombet’s conjecture:* GFG \(\cong \) Det.
An automaton that is not GFG

This automaton for \(L = (a + b)^* a^\omega \) is not GFG:

Refuter strategy: play \(a \) until Eve goes in \(q \), then play \(ba^\omega \).
An automaton that is not GFG

This automaton for \(L = (a + b)^* a^\omega \) is not GFG:

Refuter strategy: play \(a \) until Eve goes in \(q \), then play \(ba^\omega \).

Fact

GFG automata with condition \(C \) have same expressivity as deterministic automata with condition \(C \).

Therefore, GFG could improve succinctness but not expressivity.
A GFG Büchi example

Büchi condition: Run is accepting if infinitely many Büchi transitions are seen.

Language: \([(xa + xb)^* (xaxa + xbxb)]^\omega\)
Theorem (K, Skrzypczak ’15)

Let \mathcal{A} a GFG Büchi automaton. There exists a deterministic automaton \mathcal{B} with $L(\mathcal{B}) = L(\mathcal{A})$ and $|\mathcal{B}| \leq |\mathcal{A}|^2$.

Proof scheme:

▶ Brutal powerset determinisation,
▶ Use is as a guide to normalize \mathcal{A}.

Conclusion: the automaton can use itself as memory structure \Rightarrow quadratic blow-up only.

Is it true for all ω-regular conditions?
The coBüchi jump

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi ’84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG?
The coBüchi jump

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi ’84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG? NO

Theorem (K, Skrzypczak ’15)

For all $n \geq 2$, there exists a language L_n on 3 letters such that

- There is a n-state CoBüchi GFG automaton for L_n,
- any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) GFG automata can provide both succinctness and sound behaviour with respect to games.
(i, j)-Parity condition: Each state has a color in \(\{i, i+1, \ldots, j\} \).

Accepting runs: Maximal color occurring infinitely often is even.

Blow-up GFG \(\rightarrow \) Det:

- **Reachability**
 - Safety
 - Büchi (1,2)
 - Polynomial
 - Co-Büchi (0,1)
 - Exponential
 - (1,3)
 - (0,3)
 - \(\ldots \)
 - (0,2)
 - (1,4)
 - \(\ldots \)
(i, j)-Parity condition: Each state has a color in \{i, i + 1, \ldots, j\}.

Accepting runs: Maximal color occurring infinitely often is even.

Blow-up GFG → Det:

- reachability
 - Büchi (1,2)
 - co-Büchi (0,1)

- safety
 - Büchi (1,2)

- polynomial

- exponential
 - (0,1)
 - (1,3)
 - (0,3)

Question: How practical are these GFG?
Recognizing GFG automata

Question: Given an automaton A, is it **GFG**?

Theorem (K, Skrzypczak ’15)

The complexity of deciding **GFG-ness** is in

- **Upper bound**: EXPTIME (even for $(1, 3)$-parity)
- **NP** for Büchi automata
- **P** for coBüchi automata (*surprising* given blow-up result)
- at least as hard as solving parity games ($\mathbf{P} \cap \mathbf{NP} \cap \mathbf{coNP}$) for parity automata.

Open Problems

- Is it in **P** for any **fixed** acceptance condition?
- Is it equivalent to parity games for arbitrary condition?
Summary and conclusion

Results

▷ **GFG** automata capture good properties of deterministic automata.
▷ **Inclusion** is in \(\mathbf{P} \), but **Complementation** \(\sim \) **Determinisation**.
▷ Conditions Büchi and lower: **GFG** \(\approx \) Deterministic.
▷ Conditions coBüchi and higher: exponential succinctness.
▷ Recognizing **GFG** coBüchi is in \(\mathbf{P} \).

Open Problems

▷ Can we build small **GFG** automata in a systematic way?
▷ Complexity of deciding **GFG**-ness for parity automata?
 (gap \(\mathbf{P} \) vs **EXPTIME**)