Positive first-order logic on words and graphs

Denis Kuperberg

CNRS, LIP, ENS Lyon, Plume Team

Highlights of Logic, Games and Automata 26 July 2023

First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x. \varphi \mid \forall x. \varphi$$

First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x.\varphi \mid \forall x.\varphi$$

<u>Semantics</u> of φ : Structure (X, R_1, \dots, R_n) is accepted or rejected.

First-Order Logic (FO)

Signature: Predicate symbols (P_1, \ldots, P_n) with arities k_1, \ldots, k_n . Syntax of FO:

$$\varphi, \psi := P_i(x_1, \dots, x_{k_i}) \mid \varphi \lor \psi \mid \varphi \land \psi \mid \neg \varphi \mid \exists x.\varphi \mid \forall x.\varphi$$

Semantics of φ : Structure (X, R_1, \ldots, R_n) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate E.

Positive formula: no ¬

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

What about the converse ?

Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: φ positive $\Rightarrow \varphi$ monotone.

What about the converse ?

Motivation: Logics with fixed points. Fixed points can only be applied to monotone φ . Hard to recognize \rightarrow replace by positive φ , syntactic condition.

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

What happens if we consider only finite structures ?

This was open for 28 years...

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

What happens if we consider only finite structures ?

This was open for 28 years...

Theorem: Lyndon's theorem fails on finite structures:

▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard

[Stolboushkin 1995]
 EF games on grid-like structures, involved

Theorem (Lyndon 1959)

If φ is monotone then φ is equivalent to a positive formula.

On graph classes: FO-definable+monotone \Rightarrow FO-definable without \neg .

Only true if we accept **infinite** structures.

What happens if we consider only finite structures ?

This was open for 28 years...

Theorem: Lyndon's theorem fails on finite structures:

▶ [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard

[Stolboushkin 1995]
 EF games on grid-like structures, involved

[This work]
 EF games on words, elementary

Positive FO on words

Finite word : structure $(X, \leq, a, b, ...)$ where

- \blacktriangleright \leq is a total order
- \blacktriangleright *a*, *b*, ... form a partition of *X*.

Positive FO on words

Finite word : structure (X, \leq, a, b, \dots) where

 \rightarrow Words on alphabet $\mathcal{P}(\{a, b, \dots\})$:

$$\emptyset \qquad \{b\} \qquad \{a,b\} \qquad \emptyset \qquad \{b\}$$

$$\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$$

Positive FO on words

Finite word : structure (X, \leq, a, b, \dots) where

 \rightarrow Words on alphabet $\mathcal{P}(\{a, b, ...\})$:

$$\emptyset \qquad \{b\} \qquad \{a,b\} \qquad \emptyset \qquad \{b\}$$

$$\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$$

FO⁺: ¬*a* forbidden

L Monotone: $u\alpha v \in L$ and $\alpha \subseteq \beta \Rightarrow u\beta v \in L$

Our results

Finite Model Theory:

Lyndon's theorem fails on

- Finite words
- Finite graphs
- Finite structures

Our results

Finite Model Theory:

Lyndon's theorem fails on

- ► Finite words: (*ABC*)*
- ► Finite graphs
- Finite structures

Regular Language Theory:

Monotone FO languages	¥	Positive FO languages
Algebraic characterization		Logical characterization
Decidable membership		Undecidable membership

Ongoing work

With Quentin Moreau (internship):

- Link with LTL
- 2-variable fragment

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

- regular cost functions,
- logics on linear orders,

▶ ...

Slogan:

FO variants without negation will often display this behaviour.

Ongoing work

With Quentin Moreau (internship):

- Link with LTL
- 2-variable fragment

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:

- regular cost functions,
- logics on linear orders,

Slogan:

▶ ...

FO variants without negation will often display this behaviour.

Thanks for your attention !