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First-Order Logic (FO)
Signature: Predicate symbols (P1, . . . ,Pn) with arities k1, . . . , kn.
Syntax of FO:

ϕ,ψ := Pi(x1, . . . , xki ) | ϕ ∨ ψ | ϕ ∧ ψ | ¬ϕ | ∃x .ϕ | ∀x .ϕ

Semantics of ϕ:
Structure (X ,R1, . . . ,Rn) is accepted or rejected.
Example: For directed graphs, signature = one binary predicate E .

Graph class Cliques No node points to everyone

Formula ϕ = ∀x .∀y .E (x , y) ψ = ¬∃x .∀y .E (x , y)

Example graph

Model of ϕ Model of ψ
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Positive versus Monotone
Positive formula: no ¬

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.

Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ϕ positive ⇒ ϕ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone ϕ.
Hard to recognize → replace by positive ϕ, syntactic condition.
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Lyndon’s theorem
Theorem (Lyndon 1959)

If ϕ is monotone then ϕ is equivalent to a positive formula.

On graph classes: FO-definable+monotone ⇒ FO-definable without ¬.

Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
I [Ajtai, Gurevich 1987]

lattices, probas, number theory, complexity, topology, very hard
I [Stolboushkin 1995]

EF games on grid-like structures, involved
I [This work]

EF games on words, elementary
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Positive FO on words

Finite word : structure (X ,≤, a, b, . . . ) where
I ≤ is a total order
I a, b, . . . form a partition of X .

→ Words on alphabet P({a, b, . . . }):

• • • • •
∅ {b} {a, b} ∅ {b}

FO+: ¬a forbidden

L Monotone: uαv ∈ L and α ⊆ β ⇒ uβv ∈ L
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Our results

Finite Model Theory:

Lyndon’s theorem fails on
I Finite words
I Finite graphs
I Finite structures

Regular Language Theory:

Monotone FO languages 6= Positive FO languages

Algebraic characterization Logical characterization

Decidable membership Undecidable membership
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Ongoing work

With Quentin Moreau (internship):
I Link with LTL
I 2-variable fragment

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
I regular cost functions,
I logics on linear orders,
I . . .

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention !
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