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First-Order Logic (FO)

Signature: Predicate symbols (P4, ..., P,) with arities kq, ..., ky.

Syntax of FO:

0, = Pi(xq,. ..

X)) [V oA | —p | Ixp | Vxp
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First-Order Logic (FO)

Signature: Predicate symbols (P4, ...

Syntax of FO:

0, = Pi(xq,. ..

Semantics of ¢:

Structure (X, Ry, ...

, Pn) with arities kq, ..., ky.

X)) | eV oAy | —p | 3xp | Vxp

, Rn) is accepted or rejected.

Example: For directed graphs, signature = one binary predicate E.

Graph class

Cliques

No node points to everyone

Formula

» =Vx.Vy.E(x,y)

P =—-3IxVy.E(x,y)

Example graph
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Positive versus Monotone

Positive formula: no —
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Positive versus Monotone

Positive formula: no —

Monotone class of structures: closed under adding tuples to relations.

For graph classes: monotone = closed under adding edges.
Example: graphs containing a triangle.

Monotone formula: defines a monotone class of structures.

Fact: ¢ positive = ¢ monotone.

What about the converse ?

Motivation: Logics with fixed points.
Fixed points can only be applied to monotone .
Hard to recognize — replace by positive ¢, syntactic condition.
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Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.
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What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:

» [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard

» [Stolboushkin 1995]
EF games on grid-like structures,
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Lyndon’s theorem

Theorem (Lyndon 1959)

If o is monotone then ¢ is equivalent to a positive formula.

On graph classes: FO-definable+monotone = FO-definable without —.

A Only true if we accept infinite structures.

What happens if we consider only finite structures ?
This was open for 28 years. . .
Theorem: Lyndon’s theorem fails on finite structures:
» [Ajtai, Gurevich 1987]
lattices, probas, number theory, complexity, topology, very hard
» [Stolboushkin 1995]
EF games on grid-like structures,

» [This work]
EF games on words, elementary
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Positive FO on words

Finite word : structure (X, <, a, b,

» < is a total order

...) where

» a, b,... form a partition of X.
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Positive FO on words

Finite word : structure (X,<,a, b,...) where

» < is a total order

> ab——formapartittenef X-

— Words on alphabet P({a, b,...}):

0 {6} {a,b}

0 =

{b}
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Positive FO on words

Finite word : structure (X,<,a, b,...) where

» < is a total order

> ab——formapartittenef X-

— Words on alphabet P({a, b,...}):

0 {6} A{ab} 9 {b}

FO™: —a forbidden

L Monotone: uave Land a C = ufvel
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Our results

Finite Model Theory:

Lyndon’s theorem fails on
» Finite words
» Finite graphs

» Finite structures
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Our results

Finite Model Theory:

Lyndon’s theorem fails on
» Finite words: (ABC)*
>

>

Regular Language Theory:

Monotone FO languages

+

Positive FO languages

Algebraic characterization

Logical characterization

Decidable membership

Undecidable membership
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Ongoing work

With Quentin Moreau (internship):
» Link with LTL
» 2-variable fragment

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:
» regular cost functions,

» logics on linear orders,

> ...

Slogan:

FO variants without negation will often display this behaviour.
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With Quentin Moreau (internship):
» Link with LTL
» 2-variable fragment

With Thomas Colcombet:

Exploring the consequences of this in other frameworks:
» regular cost functions,

» logics on linear orders,

> ...

Slogan:
FO variants without negation will often display this behaviour.

Thanks for your attention !

7/7



	First-order logic
	Lyndon's theorem

