
On the Expressive Power of Cost Logics over
Infinite Words?

Denis Kuperberg1, Michael Vanden Boom2

1 LIAFA/CNRS/Université Paris 7, Denis Diderot, France
denis.kuperberg@liafa.jussieu.fr

2 Department of Computer Science, University of Oxford, England
michael.vandenboom@cs.ox.ac.uk

Abstract. Cost functions are defined as mappings from a domain like
words or trees to N ∪ {∞}, modulo an equivalence relation ≈ which ig-
nores exact values but preserves boundedness properties. Cost logics, in
particular cost monadic second-order logic, and cost automata, are dif-
ferent ways to define such functions. These logics and automata have
been studied by Colcombet et al. as part of a “theory of regular cost
functions”, an extension of the theory of regular languages which retains
robust equivalences, closure properties, and decidability. We develop this
theory over infinite words, and show that the classical results FO = LTL
and MSO = WMSO also hold in this cost setting (where the equiva-
lence is now up to ≈). We also describe connections with forms of weak
alternating automata with counters.

1 Introduction

The theory of regular cost functions is a quantitative extension to the theory of
regular languages introduced by Colcombet [4]. Instead of languages being the
centrepiece, functions from some set of structures (words or trees over some finite
alphabet) to N ∪ {∞} are considered, modulo an equivalence relation ≈ which
allows distortions but preserves boundedness over all subsets of the domain. Such
functions are known as cost functions. This theory subsumes the classical theory
of regular languages since a language can be associated with its characteristic
function which maps every word (or tree) in the language to 0 and everything
else to ∞; it is a strict extension since cost functions can count some behaviour
within the input structure.

This theory grew out of two main lines of work: research by Hashiguchi [9],
Kirsten [12], and others who were studying problems which could be reduced to
whether or not some function was bounded over its domain (the most famous
being the star height problem); and research by Bojańczyk and Colcombet [1, 2]

? The full version of the paper can be found at
http://www.liafa.jussieu.fr/∼dkuperbe/. The research leading to these results
has received funding from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement 259454.

on extensions of monadic second-order logic (MSO) with a quantifier U which
can assert properties related to boundedness.

Building on this work, this theory provides a framework which retains the
robust closure properties, equivalences, and decidability results that regular lan-
guages enjoy. For instance, over finite words regular cost functions can be de-
fined in terms of a cost logic (called cost monadic second-order logic, or CMSO),
non-deterministic automata with counters (called B/S-automata), and algebra
(called stabilisation semigroups). These relationships can be used to prove that
it is decidable whether regular cost functions over finite words are equivalent, up
to ≈ [4, 2]. This decidability is also known over infinite words [3] and finite trees
[6]. It is an important open problem on infinite trees: decidability of regular cost
functions would imply decidability of the non-deterministic parity index [5].

In this paper, we develop this theory further by studying the expressivity of
various cost logics over infinite words, namely the cost versions of linear temporal
logic, first-order logic, monadic second-order logic, and weak monadic second-
order logic, abbreviated CLTL, CFO, CMSO, and CWMSO, respectively. We
also show connections with forms of weak alternating automata with counters.

1.1 Related Work and Motivation

Understanding the relationship between these cost logics and automata is de-
sirable for application in model checking and other verification purposes. For
instance, LTL can express “eventually some good condition holds (and this is
true globally)”. Unfortunately, it is also natural to want to bound the wait time
before this good event occurs, but LTL provides no way to express this. Prompt
LTL (introduced in [15]) can express this bounded wait time, and already gave
rise to interesting decidability and complexity results. CLTL introduced in [13],
is a strictly more expressive logic which can also count other types of events (like
the number of occurences of a letter), while still retaining nice properties.

This research was also motivated by recent work which cast doubt as to
whether the classical equivalences between logics would hold. For instance, the
standard method for proving that MSO = WMSO on infinite words relies on
McNaughton’s Theorem, which states that deterministic Muller automata cap-
ture all regular languages of infinite words (WMSO can describe acceptance in
terms of partial runs of the deterministic Muller automaton). However, no de-
terministic model is known for regular cost functions (even over finite words) [4],
so this route for proving CMSO = CWMSO was closed to us.

In [18, 14], similar logics were explored in the context of infinite trees rather
than infinite words. There it was shown that CMSO is strictly more expressive
than CWMSO, and that Rabin’s famous characterization of WMSO (in terms of
definability of the language and its complement using non-deterministic Büchi
automata) fails in the cost setting. Based on this previous work, the relationship
between these various cost logics over infinite words was not clear.

1.2 Notation

We fix a finite alphabet A, writing A∗ (respectively, Aω) for the set of finite
(respectively, infinite) words over A. For a ∈ A, |u|a denotes the number of
a-labelled positions in u, and |u| denotes the length of the word (the length
function is noted | · |). We write N∞ for N∪ {∞}. By convention, inf ∅ =∞ and
sup ∅ = 0.

We briefly define ≈, see [4] for details. Let E be a set (usually Aω) and let
f, g : E → N∞. For X ⊆ E, f(X) := {f(e) : e ∈ E}. We say f(X) is bounded if
there is n ∈ N such that inf f(X) ≤ n (in particular the set {∞} is unbounded).
We say f ≈ g if for all X ⊆ E, f(X) is bounded if and only if g(X) is bounded.
For example, | · |a ≈ 2| · |a but | · |a 6≈ | · |b. A cost function F is an equivalence
class of ≈, but in practice will be represented by one of its elements f : E → N∞.

1.3 Contributions

In this paper, we show that the classical equivalences of FO = LTL and MSO =
WMSO hold in this cost setting. This supports the idea that the cost function
theory is a coherent quantitative extension of language theory. We state the full
theorems now, and will introduce the precise definitions in later sections.

The first set of results shows that CFO and CLTL are equivalent, up to ≈:

Theorem 1. For a cost function f over infinite words, it is effectively equivalent
for f to be recognized by a:

– CFO sentence;
– very-weak B-automaton;
– very-weak B-automaton with one counter;
– CLTL formula.

The second set of results shows that CMSO (which is strictly more expressive
than CFO) is equivalent to CWMSO (again, up to ≈):

Theorem 2. For a cost function f over infinite words, it is effectively equivalent
for f to be recognized by a:

– CMSO sentence;
– non-deterministic B/S-Büchi automaton;
– quasi-weak B-automaton;
– weak B-automaton;
– CWMSO sentence.

2 Cost Logics

2.1 Cost First-Order Logic

We extend first-order logic in order to define cost functions instead of languages.
It is called cost first-order logic, or CFO. Formulas are defined by the grammar

ϕ := a(x) | x = y | x < y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ | ∀≤Nx.ϕ

where a ∈ A, and N is a unique free variable ranging over N. The new predicate
∀≤Nx.ϕ means that ϕ has to be true for all x, except for at most N “mistakes”.

In all of the cost logics, we want to preserve the intuition that increasing the
value for N makes it easier to satisfy the formula. In order to make this clear, we
will define the logics without negation. An equivalent definition with negation
could be given, with the restriction that quantifiers ∀≤N .ϕ always appear pos-
itively (within the scope of an even number of negations); the grammar above
could then be viewed as the result of pushing these negations to the leaves.

Given a word u ∈ Aω, an integer n ∈ N, and a closed formula ϕ, we say that
(u, n) is a model of ϕ (noted (u, n) |= ϕ) if ϕ is true on the structure u, with n
as value for N . If x is a free variable in ϕ, then we also need to provide a value
for x, and we can write (u, n, i) |= ϕ, where i ∈ N is the valuation for x. Note
that ∀≤Nx.ϕ(x) is true with n for N if and only if there exists X ⊆ N such that
the cardinality of X is at most n and for all i ∈ N \X, (u, n, i) |= ϕ(x). We then
associate a cost function [[ϕ]] : Aω → N∞ to a closed CFO-formula ϕ by

[[ϕ]](u) := inf {n ∈ N : (u, n) |= ϕ} .

We say [[ϕ]] is the cost function recognized by ϕ.
For instance for ϕ = ∀≤Nx.

∨
b 6=a b(x), we have [[ϕ]](u) = |u|a.

2.2 Cost Monadic Second-Order Logic

We define cost monadic second-order logic (CMSO) as an extension of CFO,
where we can quantify over sets of positions. The syntax of CMSO is therefore

ϕ := a(x) | x = y | x < y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∀x.ϕ | ∀≤Nx.ϕ |
∃X.ϕ | ∀X.ϕ | x ∈ X | x /∈ X.

The semantic of CMSO-formulas is defined in the same way as for CFO: if u ∈ Aω
and n ∈ N, we say that (u, n) |= ϕ if ϕ is true on the structure u, with n as
value for N . We then define [[ϕ]](u) := inf {n ∈ N : (u, n) |= ϕ} .

CMSO was introduced in [4, 18] in a slightly different way, as an extension of
MSO with predicates |X| ≤ N (for a second-order variable X) which appeared
positively. The two definitions are equivalent in terms of expressive power.

2.3 Cost Weak Monadic Second-Order Logic

Cost weak monadic second-order logic (CWMSO) was introduced in [18] over
infinite trees. The syntax of CWMSO is defined as in CMSO, but the semantics
are changed so second-order quantifications range only over finite sets.

CWMSO retains nice properties of WMSO, such as easy dualization, trans-
lation to non-deterministic automata models, and equivalence with a form of
weak alternating automata with counters. We will only be interested here in
cost functions on infinite words, which are a particular case of infinite trees.

2.4 Link with Languages

We can remark that in particular, any FO (resp. MSO) formula ϕ can be consid-
ered as a CFO (resp. CMSO) formula. In this case if L was the language defined
by ϕ, then as a cost formula ϕ recognizes the cost function [[ϕ]] = χL, defined

by χL(u) =

{
0 if u ∈ L
∞ if u /∈ L .

Lemma 1. If ϕ is a CFO (resp. CMSO) formula such that [[ϕ]] ≈ χL for some
language L, then L is definable in FO (resp. MSO).

Proof. [[ϕ]] ≈ χL means that there is a n ∈ N such that for all u ∈ L, [[ϕ]](u) ≤ n,
and for all u /∈ L, [[ϕ]](u) =∞. In particular, all predicates ∀≤Nx.ψ in ϕ must be
verified with N = n, when the word is in the language. So we can replace these
predicates by the formula ∃x1, x2, . . . , xn.∀x.(ψ ∨

∨
i∈[1,n] x = xi), expressing

that we allow n errors, marked by the xi’s. The resulting formula will be pure
FO (resp. MSO), and will recognize L.

Corollary 1. CMSO is strictly more expressive than CFO.

Proof. Choose L which is MSO-definable but not FO-definable, like (aa)∗bω. By
Lemma 1, χL is not CFO-definable, but by the first remark it is CMSO-definable.

2.5 Cost Linear Temporal Logic

We now define a cost version of a linear temporal logic, CLTL. This was first in-
troduced in [13] over finite words (and with a slightly different syntax). Formulas
are defined by the grammar

ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ | ϕU≤Nϕ

where a ranges over A, and N is a unique free variable ranging over N. We say
that (u, n, i) |= ϕ if u is a model for ϕ, where n ∈ N is the value for N and i ∈ N
is the position of u from which the formula is evaluated. If i is not specified, the
default value is 0. The semantics are defined as usual, with (u, n, i) |= ψ1Uψ2 if
there exists j > i such that (u, n, j) |= ψ2 and for all i < k < j, (u, n, k) |= ψ1.
Similarly, (u, n, i) |= ψ1U

≤Nψ2 if there exists j > i such that (u, n, j) |= ψ2 and
(u, n, k) |= ψ1 for all but n positions k in [i+1, j−1]. Likewise, (u, n, i) |= ψ1Rψ2

if either (u, n, j) |= ψ1 for all j > i or (u, n, i) |= ψ2U(ψ1 ∧ ψ2). We define
[[ϕ]](u) := inf {n ∈ N : (u, n) |= ϕ}.

Notice that we write U for the next-until operator. From this, the next op-
erator X can be defined, and the “large” variants of U, R, U≤N operators,
which take into account the current position, can be defined as well (see [7] for

more information), and will be noted U, R, U≤N . We also use the standard
abbreviations F,G for “Eventually” and “Always”. We can define the quanti-
tative release R≤N by ψR≤Nϕ ≡ ϕU≤N (ψ ∨Gϕ), and the quantitative always
G≤Nϕ ≡ falseR≤Nϕ.

In Sect. 4, we will also use the past variants S,Q,Y,P,H of U,R,X,F,G,
respectively (and their quantitative extensions).

3 Cost Automata on Infinite Words

3.1 B-Valuation

Similar to the logic, the automata considered in this paper define functions from
Aω to N∞. The valuation is based on the classical Büchi acceptance condition
and a finite set of counters Γ .

A counter γ is initially assigned value 0 and can be incremented and checked
ic, left unchanged ε, or reset r to 0. Given an infinite word uγ over the alphabet
B := {ic, ε, r}, we define valB(uγ) ∈ N∞, which is the supremum of all checked
values of γ. For instance valB((icεicr)ω) = 2 and valB(icric2ric3r . . .) =∞.

In the case of a finite set of counters Γ and a word u over the alphabet {ic, ε, r}Γ ,
valB(u) := maxγ∈Γ valB(prγ(u)) (prγ(u) is the γ-projection of u).

The set C := BΓ is the alphabet of counter actions, that describe the actions
on every counter γ ∈ Γ .

3.2 B- and S-Automata

An alternating B-Büchi automaton A = 〈Q,A, F, q0, Γ, δ〉 on infinite words has
a finite set of states Q, alphabet A, initial state q0 ∈ Q, a set of Büchi states F ,
a finite set Γ of B-counters, and a transition function δ : Q × A → B+(C ×Q)
(where B+(C × Q) is the set of positive boolean combinations, written as a
disjunction of conjunctions, of elements (ci, qi) ∈ C×Q).

A run of A on u = a0a1 · · · ∈ Aω is an infinite labelled tree R = (r, c) with
dom(R) ⊆ N∗ (words over N), r : dom(R)→ Q and c : (dom(R)\{ε})→ C with

– r(ε) = q0;
– if x ∈ dom(R) and δ(r(x), a|x|) = ϕ, then there is some disjunct (c1, q1) ∧
. . . ∧ (ck, qk) in ϕ such that for all 1 ≤ j ≤ k, x · j ∈ dom(R), r(x · j) = qj
and c(x · j) = cj , and for all j > k, x · j /∈ dom(R).

We say a run is accepting if for every branch π in R = (r, c), there are
infinitely many positions x such that r(x) ∈ F .

The behaviour of an alternating automaton can be viewed as a game between
two players: Min and Max. Min is in charge of the disjunctive choices and Max
chooses a conjunct in the clause picked by Min. Therefore, a run tree fixes all of
Min’s choices and the branching corresponds to Max’s choices.

A play is a particular branch of the run: it is the sequence of states and
transitions taken according to both players’ choices. A strategy for some player
is a function that gives the next choice of this player, given the history of the
play. Notice that a run describes exactly a strategy for Min.

We assign values to runs as follows. Given a branch π = x0x1 . . . in a run R,
the value of π is valB(π) := valB(c(x1)c(x2) . . .). Then valB(R) is the supremum
over all branch values. We call n-run a run of value at most n.

The B-semantic of a B-automaton A is [[A]]B : Aω → N∞ defined by

[[A]]B(u) := inf {valB(R) : R is an accepting run of A on u} .

The B-semantic minimizes the value over B-accepting runs.
If δ only uses disjunctions, then we say the automaton is non-deterministic. In

this case, a run tree is just a single branch, and only Min has choices to make. The
run is accepting if there are infinitely many Büchi states on its unique branch π,
and its value is the value of π. In this case, it can be useful to look at the labelled
run-DAG (for Directed Acyclic Graph) G of the automaton over some word u:

the set of nodes is Q×N, and the edges are of the form (p, i)
c→ (q, i+ 1),where

(c, q) is a disjunct in δ(p, ai). Runs of A over u are in bijection with paths in G.
There exists a dual version of B-automata, namely S-automata, where the

semantic is reversed: a run remembers the lowest checked value, and this is max-
imized over all runs. Switching between non-deterministic B- and S-automata
corresponds to a complementation procedure on languages. See [4] for details.

Intuitively, non-deterministic B-automata are used to formulate bounded-
ness problems (like star-height), while non-deterministic S-automata are used
to answer these problems because they can more easily witness unboundedness.

We will be particularly interested here in non-deterministic B-Büchi (resp.
S-Büchi) automata, abbreviated B-NBA (resp. S-NBA).

Weak Automata. We will say that a B-automaton A = 〈Q,A, F, q0, Γ, δ〉
is a weak alternating B-automaton (B-WAA) if it is an alternating B-Büchi
automaton such that the state-set Q can be partitioned into Q1, . . . , Qk and
there is a partial order < on these partitions satisfying:

– for all q, q′ ∈ Qi, q ∈ F if and only if q′ ∈ F ;
– if qj ∈ Qj is reachable from qi ∈ Qi via δ, then Qj ≤ Qi.

This means no cycle visits both accepting and rejecting partitions, so an accept-
ing run must stabilize in an accepting partition on each path in the run tree.

Theorem 3 ([18]). On infinite trees, B-WAA and CWMSO recognize the same
class of cost functions, namely weak cost functions.

This theorem holds in particular on infinite words. Notice that unlike in the
classical case, WCMSO does not characterize the cost functions recognized by
both non-deterministic B-Büchi and non-deterministic S-Büchi automata. The
class that enjoy this Rabin-style characterization is the quasi-weak class, which
strictly contains the weak class, see [14] for more details.

We will show that as in the case of languages, CMSO and CWMSO have
the same expressive power on infinite words. It means that the regular class,
the quasi-weak class, and the weak class collapse on infinite words. The cost
functions definable by any of the automata or logics in Theorem 2 are called
regular cost functions over infinite words.

Very-Weak Automata. A very-weak alternating B-automaton (B-VWAA) is
a B-WAA with the additional requirement that each partition is a singleton.
That is, there can be no cycle containing 2 or more states. The name follows [7],
but these automata are also sometimes known as linear alternating automata,
since the condition corresponds to the existence of a linear ordering on states.

4 First-Order Fragment

In this section, we aim to prove Theorem 1.
The classical equivalence of FO and LTL is known as Kamp’s Theorem [11].

Converting from CLTL to CFO is standard, since we can describe the meaning
of the CLTL operators in CFO, so we omit this part. However, a number of new
issues arise in the translation from CFO to CLTL, so we concentrate on this
translation in Sect. 4.1.

We then show the connection with B-VWAA. Again, one direction (from
CLTL to B-VWAA) is straightforward and only requires one counter (this is
adapted from [17]). Moving from B-VWAA (potentially with multiple counters)
to CLTL is more interesting, so we describe some of the ideas behind that con-
struction in Sect. 4.2. It uses ideas from [7] but requires some additional work to
structure the counter operations in a form that is easily expressible using CLTL.

Example 1. We give an example of a cost function recognizable by a CLTL
formula, CFO sentence, and B-VWAA.

Let A = {a, b, c} and f(u) =

{
|u|a if |u|b =∞
∞ if |u|b <∞

.

Then f is recognized by the CLTL-formula ϕ = (G≤N (b ∨ c)) ∧ (GFb) and
by the CFO-sentence ψ = [∀≤Nx.(b(x)∨ c(x))]∧ [∀x.∃y.(x < y ∧ b(x))]. f is also
recognized by a 3-state B-VWAA: it deterministically counts the number of a’s,
while Player Max has to guess a point where there is no more b in the future, in
order to reject the input word. If the guess is wrong and there is one more b, or
if the guess is never made, then the automaton stabilizes in an accepting state.

4.1 CFO to CLTL

Instead of trying to translate CFO directly into CLTL, we first translate a CFO
formula into a CLTL formula extended with past operators Q,S,S≤N (the past
versions of R,U,U≤N) and then show how to eliminate these past operators.
Let CLTLP be CLTL extended with these past operators.

A CLTLP-formula is pure past (resp. pure future) if it uses only temporal
operators Q,S,S≤N (resp. R,U,U≤N) and all atoms are under the scope of
at least one of these operators. A formula is pure present if it does not contain
temporal operators. Hence, a pure past (resp. present, future) formula depends
only on positions before (resp. equal to, after) the current position in the word.
A formula is pure if it is pure past, pure present, or pure future. It turns out any
CLTLP formula can be translated into a boolean combination of pure formulas.

Theorem 4 (Separation Theorem). CLTLP has the separation property, i.e.
every formula is equivalent to a boolean combination of pure formulas.

The proof is technical and requires an analysis of a number of different cases
of past operators nested inside of future operators (and vice versa). It uses ideas
from [8], but new behaviours arise in the cost setting, and have to be treated

carefully. The proof proceeds by induction on the junction depth, the maximal
number of alternations of nested past and future operators, and on the quantifier
rank. Each induction step introduces some distortion of the value (the number
of mistakes can be squared), but because the junction depth and quantifier rank
are bounded in the formula, we end up with an equivalent formula.

We illustrate the idea with an example.

Example 2. Let A := {a, b, c, d}. Consider the CLTLP formula ϕ = (bU≤Nc)Sa.
Then ϕ is equivalent to

[(bS≤N (c ∨ a))Sa] ∧ [(bU≤Nc) ∨ (Ya)]

which is a boolean combination of pure formulas. This formula factorizes the
input word into blocks separated by c’s, since the last a in the past. The first
conjunct checks that each block is missing at most N b’s. The second conjunct
checks that at the previous position, we had either a or bU≤Nc.

We can now prove the desired translation from CFO to CLTL. The proof is
adapted from [10]. It proceeds by induction on the quantifier rank of the formula,
and makes use of the Separation Theorem. We have to take care of the new
quantitative quantifiers, but no problem specific to cost functions arises here.

Proposition 1. Every CFO-formula can be effectively translated into an equiv-
alent CLTL-formula.

4.2 B-VWAA to CLTL

We uses ideas from [17, Theorem 6]. Unlike the classical setting, we must first
convert the B-VWAA into a more structured form. In this section, we write C
for the set of hierarchical counter actions on counters [1, k] such that icj (resp.
rj) performs ic (resp. r) on counter j, resets counters j′ < j, and leaves j′ > j
unchanged. We say a B-VWAA is CLTL-like if the counters are hierarchical,
δ(q, a) is in disjunctive normal form, each disjunct has at most one conjunct
with state q, and all conjuncts with state q′ 6= q have counter action rk.

Lemma 2. Let A be a B-VWAA. Then there is a B-VWAA A′ which is CLTL-
like and satisfies [[A]] ≈ [[A′]].

We can then describe a low value run using a CLTL-formula.

Proposition 2. Let A be a B-VWAA with k counters which is CLTL-like. For
all ϕ ∈ B+(Q), there is a CLTL formula θ(ϕ) such that [[Aϕ]] ≈ [[θ(ϕ)]] where
Aϕ is the automaton A starting from the states described in ϕ.

Proof. The proof is by induction on |Q|. The case |Q| = 0 is trivial.
Let |Q| > 0 and let q be the highest state in the very-weak ordering. Given

some ϕ ∈ B+(C × Q), we can treat each element separately and then combine

using the original boolean connectives. For elements q′ 6= q, we can immediately
apply the inductive hypothesis.

For an element q, we first write formulas θq,c for c ∈ C which express the
requirements when the automaton selects a disjunct which has one copy which
stays in state q and performs operation c (there is only one such operation
since A is CLTL-like). Likewise, we write a formula θq,exit which describes the
requirements when A chooses a disjunct which leaves q. These formulas do not
involve q so can be obtained by applying the inductive hypothesis.

While the play stays in state q, we must ensure that transitions with incre-
ments are only taken a bounded number of times before resets. For a particular
counter γ, this behaviour is approximated by

θq,cycle,γ := (
∨
γ′≥γ

θq,rγ′ ∨ θq,exit) R≤N (
∨

c<icγ

θq,c).

Putting this together for all γ ∈ [1, k], θq,cycle :=
∨
c∈C θq,c ∧

∧
γ∈[1,k] θq,cycle,γ .

Finally, this gets wrapped into a statement which ensures correct behaviour in
terms of accepting states (i.e. if q /∈ F then the play cannot stay forever in q):

θ(q) :=

{
θq,cycle U θq,exit if q /∈ F
θq,exit R θq,cycle if q ∈ F

.

By combining the translation from a B-VWAA with multiple counters to
CLTL, and then the translation to a B-VWAA (which uses only one counter)
we see that adding counters to B-VWAA does not increase expressivity.

Corollary 2. Every B-VWAA with k counters is equivalent to a B-VWAA with
one counter.

5 Expressive Completeness of CWMSO

We aim in this part at proving Theorem 2.

The translation from CWMSO to CMSO is standard (since finiteness is ex-
pressible in MSO). Likewise, the connection between CMSO and B- and S-
automata was proven in [4] for finite words, and its extension to infinite words
(and B-NBA and S-NBA automata) is known [3].

As a result, we concentrate on the remaining translations. As mentioned in
the introduction, because there is no deterministic model for cost automata, we
could not prove that CWMSO = CMSO using the standard method. In this
section, we describe an alternative route, which goes via weak automata. Using
ideas from [16], we show how to move from B-NBA to B-WAA. This gives
an idea about the issues involved in analyzing alternating cost automata over
infinite words. We can then use Theorem 3 to move from B-WAA to CWMSO.

5.1 B-NBA to B-WAA

Theorem 5. For all B-NBA A with n states and k counters, we can construct
an equivalent B-WAA W with O(n24k) states and k counters.

Proof. We first transform the B-NBA A into an equivalent B-NBA B in the
following normal form: every transition leaving a Büchi state resets all counters
of B. The principle is the following: because we work on infinite words, B can
choose an n-run of A and guess for each counter if there will be infinitely many
resets, or finitely many increments. In the first case, B always delays its Büchi
states until the next reset. In the second case, B waits until the last increment,
and then add resets on Büchi states. This results in a slightly different function,
but still equivalent up to ≈. Notice that this transformation cannot be achieved
on infinite trees, which is why this result does not hold for trees (see [14]).

Then we use ideas from [16]: we analyze the run DAG of B and assign ranks
to its nodes. Intuitively, these ranks describe how far each node is from a Büchi
run. More precisely, for any n ∈ N and u ∈ Aω, it is possible to assign a finite
rank to every node if and only if there is no n-run of B on u.

Therefore, we can design a B-WAA that allows Player Min to play transitions
of B, and the opponent to guess ranks in order to prove that there is no low value
run. This way, if there is an n-run of B on u, playing this run is a strategy of
value n for Player Min in W . Conversely, if there is no n-run of B on u, then we
can prove that Player Min cannot have a strategy of value n in B: if he plays in
a way that counters stay below n, then the run will not be Büchi, and Player
Max can guess ranks to prove this. The automaton W is defined so that such a
play stabilizes in a rejecting partition of W . This shows that [[W]] = [[B]] ≈ [[A]].

A normal form is needed to make it possible to look for runs of B that are
simultaneously Büchi and low valued. If the automaton is not in normal form, the
independence of these two conditions prevents us from defining ranks properly.

6 Conclusion

We lifted various equivalence results on infinite words from languages to cost
functions. The proofs needed to take care of new behaviours specific to this
quantitative setting. These results show that the classical definitions of logics
and automata have been extended in a coherent way to the cost setting, and
provide further evidence that the theory of regular cost functions is robust.

We showed that the weak cost functions on infinite words enjoy the same
nice properties as in the case of languages. This is in contrast to the case of trees
(see [14]), where some classical properties of weak languages only held for the
larger class of quasi-weak cost functions.

We also studied the first-order fragment which gave rise to an unexpected
result: very-weak B-automata need only one counter to reach their full expres-
sivity. We did not develop here the algebra side of the first-order fragment as it
was done in [13], but if this result can be lifted to infinite words (which we think
is the case), it would imply algebraic characterization by aperiodic stabilization
semigroups, and hence decidablity of membership for the first-order fragment.

Acknowledgments. We would like to thank the referees for their comments,
and Thomas Colcombet for making this joint work possible.

References

1. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.)
CSL. Lecture Notes in Computer Science, vol. 3210, pp. 41–55. Springer (2004)

2. Bojańczyk, M., Colcombet, T.: Bounds in w-regularity. In: LICS. pp. 285–296.
IEEE Computer Society (2006)

3. Colcombet, T.: Personal communication
4. Colcombet, T.: The theory of stabilisation monoids and regular cost functions.

In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.E., Thomas,
W. (eds.) ICALP (2). Lecture Notes in Computer Science, vol. 5556, pp. 139–150.
Springer (2009)

5. Colcombet, T., Löding, C.: The non-deterministic Mostowski hierarchy and
distance-parity automata. In: Aceto, L., Damgaard, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP (2). Lecture
Notes in Computer Science, vol. 5126, pp. 398–409. Springer (2008)

6. Colcombet, T., Löding, C.: Regular cost functions over finite trees. In: LICS. pp.
70–79. IEEE Computer Society (2010)

7. Diekert, V., Gastin, P.: First-order definable languages. In: Flum, J., Grädel, E.,
Wilke, T. (eds.) Logic and Automata. Texts in Logic and Games, vol. 2, pp. 261–
306. Amsterdam University Press (2008)

8. Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal logic: mathematical foun-
dations and computational aspects. Oxford logic guides, Clarendon Press (1994)

9. Hashiguchi, K.: Limitedness theorem on finite automata with distance functions.
J. Comput. Syst. Sci. 24(2), 233–244 (1982)

10. Hodkinson, I.M., Reynolds, M.: Separation - past, present, and future. In: We Will
Show Them! (2). pp. 117–142 (2005)

11. Kamp, H.W.: Tense Logic and the Theory of Linear Order. PhD thesis, Computer
Science Department, University of California at Los Angeles, USA (1968)

12. Kirsten, D.: Distance desert automata and the star height problem. RAIRO -
Theoretical Informatics and Applications 3(39), 455–509 (2005)

13. Kuperberg, D.: Linear temporal logic for regular cost functions. In: Schwentick, T.,
Dürr, C. (eds.) STACS. LIPIcs, vol. 9, pp. 627–636. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2011)

14. Kuperberg, D., Vanden Boom, M.: Quasi-weak cost automata: A new variant of
weakness. In: Chakraborty, S., Kumar, A. (eds.) FSTTCS. LIPIcs, vol. 13, pp.
66–77. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

15. Kupferman, O., Piterman, N., Vardi, M.Y.: From liveness to promptness. Formal
Methods in System Design 34(2), 83–103 (2009)

16. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3), 408–429 (2001)

17. Löding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) IFIP TCS.
Lecture Notes in Computer Science, vol. 1872, pp. 521–535. Springer (2000)

18. Vanden Boom, M.: Weak cost monadic logic over infinite trees. In: Murlak, F.,
Sankowski, P. (eds.) MFCS. Lecture Notes in Computer Science, vol. 6907, pp.
580–591. Springer (2011)

Appendix

A More on Cost Functions

Non-decreasing functions N→ N will be denoted by letters α, β, . . . , and will be
extended to N∞ by α(∞) =∞. We call these correction functions.

Let E be any set, and FE be the set of functions : E → N∞. For f, g ∈ FE
and α a correction function, we write f 4α g if f ≤ α◦g (or if we are comparing
single values n,m ∈ N, n 4α m if n ≤ α(m)). We write f ≈α g if f 4α g and
g 4α f . Finally, f ≈ g (respectively, f 4 g) if f ≈α g (respectively, f 4α g)
for some α. The idea is that the boundedness relation ≈ does not pay attention
to exact values, but does preserve the existence of bounds. Remark that f 64 g
if and only if there exists a set D ⊆ E such that g is bounded on D but f is
unbounded on D.

A cost function over E is an equivalence class of FE/≈. In practice, a cost
function (denoted f, g, . . .) will be represented by one of its elements in FE . In
this paper, E will usually be Aω. The functions defined by cost automata or cost
logics will always be considered as cost functions, i.e. only considered up to ≈.

Lemma 3. This definition of ≈ is equivalent to the one in the body

Proof. We will note ≈α for this definition with correction function α, and ≈ the
equivalence relation as defined in Section 1.2 of the body. Let f and g be two cost
functions on a set E. Assume there exists α such that f ≈α g. If f is bounded
by M on some set X ⊆ E, then g is bounded by α(M) on X. By symmetry,
for all X ⊆ E if g(X) is bounded then f(X) is bounded. We can conclude that
f ≈ g.

Conversely, assume f ≈ g, i.e. f and g are bounded on the same sets. We
want to first build α such that f 4α g. For all n ∈ N, we set

α(n) := sup {f(x) : x ∈ E, g(x) ≤ n} ,

and α(∞) = ∞ as usual. We have to show that for all n ∈ N, α(n) < ∞. Let
n ∈ N and X := {x ∈ E : g(x) ≤ n}. Since g(X) is bounded by n and f ≈ g,
f(X) is bounded. But α(n) is defined as sup f(X), so α(n) <∞.

Let x ∈ E and n = g(x), by definition of α we have f(x) ≤ α(n) = α(g(x)).
This is true for all x so f 4α g. By symmetry, we can get a correction function
β such that g 4β f , and finally f ≈max(α,β).

Notice that the correction functions built here are increasing, in practice this
will always be the case.

B On the First-Order Fragment

Lemma 4. The two definitions of CMSO are equivalent in terms of expressive
power.

Proof. Let CMSO’ be MSO with an extra predicate |X| ≤ N , required to ap-
pear positively. We can inductively translate any CMSO-formula into a CMSO’-
formula by replacing all occurences of “∀≤Nx.ϕ(x)” by “∃X.(|X| ≤ N ∧∀x.(x ∈
X ∨ ϕ(x)))”. Conversely, we can go from CMSO’ to CMSO by replacing all
occurences of “|X| ≤ N” by “∀≤Nx.x /∈ X”. Both translations preserve exact
values of the semantics (i.e. semantics are equal and not just equivalent up to
≈).

Proof of Theorem 1

B.1 CLTL to CFO

Let ϕ be a CLTL-formula and ψ(x) be a CFO-formula with one free variable.
Let α : N∞ → N∞ be a correction function (so α(∞) =∞). We say that ϕ and
ψ(x) are α-equivalent at x if for all word u and integers n, i,

– If (u, n, i) |= ψ(x) then (u, α(n), i) |= ϕ,
– If (u, n, i) |= ϕ then (u, α(n), i) |= ψ(x),

Where n is the valuation for N , and i instantiates either x (for ψ(x)) or the
position where the CLTL-formula is evaluated (for ϕ).

For every CLTL-formula ϕ and variable x, we want to build an equivalent
CFO-formula λx(ϕ) with only x as free variable. We define the function λx by
induction on the CLTL-formula:

– λx(a) = a(x),
– λx(ϕ ∧ ψ) = λx(ϕ) ∧ λx(ψ), λx(ϕ ∨ ψ) = λx(ϕ) ∨ λx(ψ),
– λx(ϕRψ) = ∀z > x.(λz(ψ) ∨ (∃y.x < y < z ∧ λy(ϕ)),
– λx(ϕUψ) = ∃z > x.(λz(ψ) ∧ ∀y.x < y < z ⇒ λy(ϕ)),
– λx(ϕU≤Nψ) = ∃z > x.(λz(ψ) ∧ ∀≤Ny.x < y < z ⇒ λy(ϕ)).

It is straightforward to verify that for all ϕ, ϕ and λx(ϕ) are equivalent at
x, with α = id . Finally if ϕ is a CLTL-formula, we build the equivalent CFO-
formula “∃x.λx(ϕ) ∧ x = 0”, where “x = 0” is an abreviation for “∀y.x ≤ y”.
This expresses that ϕ is true at position 0.

B.2 Proof of the Separation Theorem

We need to eliminate the nesting of future operators under the scope of past
operators. The converse is symmetric.

We use notations S,S≤N ,U,U≤N ,R for the “large” versions of the corre-
sponding operators (i.e. shifted by one position: the current position is also taken
into account). For instance AUB ≡ B ∨ (A ∧X(AUB)).

Lemma 5 ([8]).

– cU(a ∨ b)⇔ (cUa) ∨ (cUb);

– cS(a ∨ b)⇔ (cSa) ∨ (cSb);
– (a ∧ b)Uc⇔ (aUc) ∧ (bUc);
– (a ∧ b)Sc⇔ (aSc) ∧ (bSc);

Moreover, this lemma remains true with the quantitative variants U≤N and S≤N ,
with a correction function identity for the first two (involving disjunctions), and
α(n) = 2n for the last two (involving conjunctions). There is also the analog
lemma for the Release variants R and Q.

The classical cases, already treated in [8] are

1. qS(a ∧ (AUB))
2. qS(a ∧ (BRA))
3. (q ∨ (AUB))Sa
4. (q ∨ (BRA))Sa
5. (q ∨ (AUB))S(a ∧ (AUB))
6. (q ∨ (BRA))S(a ∧ (BRA))

Notice that despite the use of negations to treat these cases in [8], positivity of
every subformula is kept. So these translations are still valid in our context.

In [8], two more cases are treated: (q ∨ (AUB))S(a ∧ (BRA)) and (q ∨
(BRA))S(a∧(AUB)). In fact we will not need to treat these cases here, because
we will consider that AUB is not a subformula of BRA, whereas in [8], BRA
is replaced by ¬(AUB) (that we cannot do here).

Keeping track of the positivity allows us to treat AUB and BRA as two
different subformulas, and hence reduce the number of ways an U formula can
appears under a Since.

We now need to take care of the quantitative variants, i.e.

i ii iii
1 qS(a ∧ (AU≤NB)) qS≤N (a ∧ (AUB)) qS≤N (a ∧ (AU≤NB))
2 qS≤N (a ∧ (BRA))
3 (q ∨ (AU≤NB))Sa (q ∨ (AUB))S≤Na (q ∨ (AU≤NB))S≤Na
4 (q ∨ (BRA))S≤Na
5 (q ∨ (AU≤NB))S(a ∧ (AU≤NB)) (q ∨ (AUB))S≤N (a ∧ (AUB) (q ∨ (AU≤NB))S≤N (a ∧ (AUB))
6 (q ∨ (BRA))S≤N (a ∧ (BRA))

Cases 1.i to 2.i are quite straightforward: the behaviour is the same as the
corresponding classical cases, except that some intervals are cut in two pieces,
so the number of mistakes can double.

1.i: qS(a ∧ (AU≤NB))
Let t be the present position and y be the position reached by the until.

Formula 1.i is equivalent to

(qSa) ∧ (AS≤Na) ∧ (AU≤NB) : t < y∨
(qSa) ∧ (AS≤Na) ∧B : t = y∨
qS(B ∧ q ∧ (AS≤Na) ∧ (qSa)) : y < t

Notice that we can contract the present case B and the future case AU≤NB
into a single case AU≤NB ≡ B ∨ (AU≤NB). We will do this in the next cases
to simplify the reading, but notice that it is always easy to break the formula
into a boolean combination of pure past, pure present, and pure future formula.

Correction α(n) = 2n + 1. The +1 is due to the first case, where we do not
ask A to be true in position t.

1.ii: qS≤N(a ∧ (AUB))
Equivalent to

(qS≤Na) ∧ (ASa) ∧ (AUB)∨
qS≤N (B ∧ (ASa) ∧ (qS≤Na))

Correction α(n) = 2n+ 1.

1.iii: qS≤N(a ∧ (AU≤NB))
Equivalent to

(qS≤Na) ∧ (AS≤Na) ∧ (AU≤NB)∨
qS≤N (B ∧ (AS≤Na) ∧ (qS≤Na))

Correction α(n) = 2n+ 1.

2.i: qS≤N(a ∧ (BRA))
Equivalent to

(qS≤Na) ∧ (ASa) ∧ (BRA)∨
qS≤N (B ∧ (ASa) ∧ (qS≤Na))

Correction α(n) = 2n+ 1.

3.i: (q ∨ (AU≤NB))Sa

This formula expresses that there is some position y in the past where
a is true, and since y, the word is a concatenation of blocks of the form:
qqqqqqqAAAAAxAAxAAB until the current position. The number of mistakes
x is bounded by N in each A segment.

Let ϕ = [AS≤N (qS(B ∨ a)]Sa. Then ϕ is a pure past formula which verifies
this pattern.

In addition to ϕ, two cases can occur in the present position: either AU≤NB
is satisfied at t − 1, or the last block contains only q’s. So the formula 3.i is
equivalent to ϕ ∧ [(AU≤NB)) ∨ (qS(B ∨ a))].

The last block may be cut in two, so the correction is α(n) = 2n.

3.ii: (q ∨ (AUB))S≤Na
We now count the mistakes globally, and distinguish two kinds of blocks: “good
block” are of the form BqqqqqqqqqAAAAAAAAAAB, and “wrong blocks” can
make mistakes on the q segments (the end of the q segment is defined by the

first place where AUB is true). We sum the number of missing q on the whole
word.

We can approximate the number of total mistakes by bounding the number
of mistakes in a wrong block, together with the total number of wrong blocks.

A “good block” must start with B or a, contain a segment of q, then a
segment of A, until the next B (or the present).

The number of mistakes in a wrong block is the number of q missing before
the first position where AUB is true.

Let ϕ1 = [AS(qS≤N (B∨a))]Sa be the formula counting the maximum num-
ber of mistakes in a wrong block.

We also need to bound the total number of wrong blocks. To do so, we would
like to use a formula such as [B ⇒ AS(qS(B ∨ a))]S≤Na, but it is not allowed
since B occurs in the left side of an implication, so it is in fact negated, which
is not allowed if B contains quantitative operators.

Instead, we will verify that the block is good locally. The total number of
local mistakes will be between the number of wrong blocks and twice the number
of total mistakes in the original formula.

Let ϕ2 = ([(q ∨B) ∧Y(q ∨B)] ∨ [(A ∨B) ∧ (Y(A ∨ q ∨B))]) S≤Na. This
describes the local condition that good blocks must verify, and ϕ2 counts the
number of positions where this condition fails. Each mistake in q segments is
reponsible for at most two failures of this local condition, and each wrong block
fails it at least once, so the desired inequality is verified. Notice that to shorten
the formula, we did not mention a in the local conditions. This can just add one
error, immediatly after the a we start from.

Formula 3.ii is equivalent to ϕ′ = ϕ1 ∧ ϕ2 ∧ [(AUB) ∨ (qS≤N (B ∨ a))].
Notice that we allow here the current block to be a wrong one, by only asking
(qS≤N (B ∨ a)) at the current position, in the case where AUB where is not
satisfied. This induces an extra n in the correction function.

Correction α(n) = 2n2 + n+ 1.

Example 3. We illustrate this case with an example. To keep the notations, we
will use alphabet A = {a, q, A,B, e}, where e is a new letter we will use for
mistakes. Let u = BeaAaqqAAABeeeqqAqAABAAeAA|A|ABAq. The vertical
lines in u delimit the position t where we want to evaluate the formula. For
instance [[A]](u) = 0 because there is indeed an A at position t.

We now evaluate the formula 3.ii: what is [[q ∨ (AUB))S≤Na]](u) ? The last
a before t occurs at position 4 in the word (the first letter is at position 0). The
total number of mistakes is then counted, we mark them here in boldface:

BeaAaqqAAABeeeqqAqAABAAeAA|A|ABAq,

hence [[q ∨ (AUB))S≤Na]](u) = 7.
We now evaluate the translated formula. First [[ϕ1]](u) = 4: it is the maximal

number of mistakes in the same block. We now mark the places where the lo-
cal condition of ϕ2 fails: BeaAaqqAAABeeeqqAqAABAAeAA|A|ABAq. This
gives us [[ϕ2]](u) = 8. Finally the last formula is verified with N = 0, since AUB
is true at position t.

The conjunction resolves in a maximum, so we end up with [[ϕ′]](u) = 8.

3.iii: (q ∨ (AU≤NB))S≤Na
A good block is now allowed to have N mistakes in segments of A’s. We want
to count the sum of all mistakes in q segments, but the mistakes in A segments
are only bounded on each segment and not globally.

So we now define ϕ1 = [AS≤N (qS≤N (B∨a))]Sa, bounding locally the number
of mistakes of each wrong block.

The difficulty here is to express a local condition on good blocks, because
they are still allowed mistakes in the A segment. The trick is that we can always
consider that the segments of q end with a q (or a B if it is empty), because up
to a factor 2 on the mistakes in A segments, it is better to count mistakes as
“local” ones than as “global” ones.

The local condition will then express “we are in the A segment (including
mistakes), or we are at q and the preceding position is q”

Let ϕ2 = [(AS≤N (q ∨B)) ∨ ((q ∨B) ∧Y(q ∨B))]S≤Na.
As before, the mistakes of the main S≤N operator of ϕ2 will be between the

number of wrong blocks and twice the total number of mistakes.
Formula 3.iii is equivalent to ϕ1 ∧ ϕ2 ∧ [(AU≤NB)) ∨ (qS≤N (B ∨ a))]: as

before the last block can be considered to be wrong.
Correction α(n) = (2n)2 + n + 1. We still have a +1 from the first a which

causes a local mistake immediatly after.

4.i: (q ∨ (BRA))S≤Na

Same as 3.ii except that the last B is allowed to never occur (and in this
case A is always true in the future). ϕ1 and ϕ2 are identical, and formula 4.i is
equivalent to ϕ1 ∧ ϕ2 ∧ [(BRA)) ∨ (qS≤N (B ∨ a))]

5.i: (q ∨ (AU≤NB))S(a ∧ (AU≤NB))
The first B can be before or after (in the large sense) the current position. If it
is before, then the situation looks like 3.i: let a′ = B ∧ (AS≤Na), then we must
verify ψ = (q ∨ (AU≤NB))Sa′, which is exactly 3.i with a′ instead of a. But a′

here is a past formula, so the solution of 3.i is also a solution for ψ.
If it is after (or equal), then the situation is very simple, we just need to

verify ψ′ = (AS≤Na) ∧ (AU≤NB), which is already separated. Finally, 5.i is
equivalent to ψ ∨ ψ′.

5.ii: (q ∨ (AUB))S≤N(a ∧ (AUB))
If we call a′ = B ∧ (ASa), we must verify either ψ = (q ∨ (AUB))S≤Na′, which
corresponds to case 3.ii, or ψ′ = (ASa) ∧ (AUB). Finally 5.ii is equivalent to
ψ ∨ ψ′.

In the same way, case 5.iii is reduced to case 3.iii with a′ = B ∧ (AS≤Na),

and ψ′ = (AS≤Na) ∧ (AU≤NB).

In each case, the correction function we get can be taken to be α′(n) =
α(n) + n, where α(n) comes from the case 3.x we reuse, and the +n is due to
the errors commited by a′.

Case 6.i: (q ∨ (BRA))S≤N(a ∧ (BRA))
As it was done in case 4.i, it suffices to take case 5.ii and change the Until to
Release in the future formulas. We need to apply case 4.i with a′ = B∧(AS≤Na),

and do the conjunction with ψ′ = (AS≤Na) ∧ (AU≤NB).
We will explicit the formula we get in this case: as in Case 3.ii, let

ϕ1 = [AS(qS≤N (B ∨ a′))]Sa′,
ϕ2 = ([(q ∨B) ∧Y(q ∨B)] ∨ [(A ∨B) ∧ (Y(A ∨ q ∨B))]) S≤Na′.

Formula 6.i is equivalent to ϕ1 ∧ ϕ2 ∧ [(BRA)) ∨ (qS≤N (B ∨ a′))].

Cases with Q instead of S Finally, replacing S with Q in all the precedent
cases is not problematic, and we can separate the formulas in the same way: the
only difference is that we do not require the presence of a.

Notice that the quantitative variant ofBQA can be described asAS≤N (BQA),
so we do not need a new operator in the syntax.

Termination of the denesting procedure

We adapt the proof of [8], which almost works as it is. The main idea is
to consider that U≤N and R behave similarly as U (and same for the past
connectives), so the principle of the classical proof can be applied to each of
these operators separately.

We reproduce it here for completeness.

Lemma 6. Let U′ be an operator in
{
R,U,U≤N

}
, and S′ be an operator in{

Q,S,S≤N
}

. If A and B are CLTLP-formulas without temporal operators, and
C and F are such that any appearance of future operator is as AU′B, and is not
nested under any past operator.

Then CS′F is equivalent to a separated formula.

Proof. If AU′B does not appear then we are done. Otherwise, repeated use of
Lemma 5 allows us to rewrite CSF as a boolean combination of past formulas
C1S

′C2, and formulas of the form either:

– C1S
′(C2 ∧ (AU′B))

– (C1 ∨ (AU′B))S′C2

– (C1 ∨ (AU′B))S′(C2 ∨ (AU′B))

where C1 and C2 are past formulas. Then the preceding transformations (from
1.i to 6.i) allow us to get from this an equivalent boolean combination of formulas
of the three following forms:

– aQb, aSb, aS≤Nb, where a and b are past formulas,
– C1, C2, A and B,
– AU′B.

Thus we have a separated equivalent.

We then begin the inductive process of removing future operators U′ from
under the scope of past operators S′.

Lemma 7. If A and B are without temporal operators, and the only appearance
of future operators in an CLTLP-formula D is as AU′B, for U′ ∈

{
R,U,U≤N

}
.

Then D is equivalent to a separated formula, where the only appearance of
future operators is as AU′B, for U′ ∈

{
R,U,U≤N

}
.

Proof. By induction on the maximum number k of nested S′ above any AU′B.
If k = 0 then D is already separated. If k > 0, we apply Lemma 6 to each

of the most deeply nested CS′F in which AU′B appears. We get an equivalent
formula where the maximum depth of AU′B under an S′ is reduced. Moreover
future operators still only appear as AU′B.

Lemma 8. For each i ∈ [1, n], let Ai and Bi be CLTL-formulas without tem-
poral operators, and Ui ∈

{
R,U,U≤N

}
. Suppose that the only appearances of

future operators in D are in the form AiUiBi. Then D is equivalent to a sepa-
rated formula.

Proof. By induction on n.
If n = 1, Lemma 7 allows us to conclude. If n > 1 we want to separate only for

AnUnBn. To do so, we replace in D every AiUiBi by a new atom qi, to obtain
a formula D′. Using lemma 7, we can obtain a separated E′ equivalent to D′,
using atoms (qi)1≤i≤n−1 and with AnUnBn being the only form of occurrences
of future operators.

E′ is a boolean combination of pure present formulas, pure future formulas
AnUnBn, and pure past formulas Dj with atoms (qi)1≤i≤n−1 in addition to
the normal ones. We can now substitute in the Dj ’s each qi by AiUiBi. By
induction, each Dj is equivalent to a separated formula, and get the wanted
separated formula.

The next step is to allow nesting of U′ beneath S′, but not S′ within a U′.

Lemma 9. Let D be an CLTLP-formula with no S′ between a U′. Then D is
equivalent to a separated formula.

Proof. By induction on the maximum depth n of nesting of U′ beneath an S′.
Lemma 8 treats the case n = 1.
Assume n > 1, and let AiUiBi for i ∈ [1, k] be subformulae of D that gather

every appearances of appearances of future operator (with Ui ∈
{
R,U,U≤N

}
).

Each Ai and Bi is a boolean combination of atoms and formulas XijUijYij . We
replace each of this formula by a new atom xij , to obtain A′i and B′i.

We now replace in D each occurence of AiUiBi which is not contained within
another AU′B by A′iUiB

′
i, to obtain D′. By Lemma 8, D′ is equivalent to a

separated formula E′ with new atoms xij . Substituting back xij by AiUiBi in
E′ gives us a formally with maximum nesting depth of U′ equal to n− 1, so we
can separate it by induction.

We are now ready to show the separation theorem, i.e. any CLTLP-formula
D with past and future operators is equivalent to a separated formula.

For this we will reuse notation of [8]: If B is a subformula of A, we call the
junction depth of B in A the maximal number of alternations of nested past and
future operators to reach B in A.

For instance the junction depth of a in formula 1.i is 1 but the junction depth
of B is 2.

The junction depth of a formula is the maximal junction depth of its subfor-
mulas.

We now proceed by induction on the junction depth of D. If it zero or one
then D is already separated. We assume that it is at least two.

D is a boolean combination of atoms and formulas of the form D1S
′D2,

D1U
′D2. We just want to separate the latter two forms. By symmetry, it suffices

to show the result for formulas of the form D = D1S
′D2.

Let AiUiBi for i ∈ [1, k] be the subformulas covering appearances of maximal
future operators in D (i.e. every future operator of D occurs in one of these
formulas).

We now replace in D every subformula EijSijFij occuring in some AiUiBi
by a new atom xij . This gets us a formula satisfying hypothesis of Lemma 9, so
we can separate it and get an equivalent formula E′. By replacing each xij with
EijSijFij in E′, we get a new formula with strictly smaller junction depth, and
we can conclude by induction hypothesis.

Notice that each denesting step can square the correction function, so the

final correction function will be of the form α(n) = O(n2
nd(D)

), where nd(D) is
the nesting depth of D.

ut

B.3 Proof of Proposition 1

Now that we have the Separation Theorem, we want to use it to prove that every
CFO-formula can be effectively translated into an equivalent CLTL-formula.

Proof. As before, we will in fact translate a CFO-formula ϕ(x) with one free
variable x and an arbitrary set of unary predicates P1, . . . , Pn (which can be
letter predicates for instance), into a CLTL-formula that evaluates the word
from position x, using the same unary predicates. To translate a closed formula
ϕ, it then suffices to translate the formula ϕ ∧ x = 0.

The proof is by induction on qr(ϕ(x)). If qr(ϕ(x)) = 0, then ϕ(x) is a boolean
combination of atoms of the form x ≤ x and a(x), so it is clearly equivalent to
a CLTL-formula.

We assume the result for rank at most k. It suffices to show the result for
formulas of the form ∃y.ϕ(x, y), ∀y.ϕ(x, y), ∀≤Ny.ϕ(x, y) to be able to conclude
by induction, since a formula of rank k + 1 is a boolean combination of such
formulas, and formulas of lower rank.

The principle is to remove the variable x, from ϕ(x, y), and use the induction
hypothesis on the resulting formula.

For this, we first start by defining for each S ⊆ [1, n] a formula ϕS(x, y),
which replaces in ϕ(x, y) each Pi(x) by > if i ∈ S and by ⊥ if i /∈ S.

Then ϕ(x, y) is equivalent to∧
S⊆[1,n]

((
∧
i∈S

Pi(x) ∧
∧
i/∈S

¬Pi(x))⇒ ϕS(x, y)).

Since the Pi(x) and their negations are available in CLTL-formulas, and
quantifications on y commute with conjunctions and implication in this formula,
it suffices to show the result for formulas ϕS(x, y), which does not contain pred-
icates Pi(x). Let ϕ′(x, y) be such a formula.

We then replace predicates z < x by Pos<(z), z = x by Pos=(z) and z > x
by Pos>(z) in ϕ′(x, y).

This gets us a formula using new predicates: ϕ′′(y,Pos<,Pos=,Pos>), where
x is no longer used.

We will restrict ourselves to structures that interpret these predicates as we
defined them, i.e. Pos<(z) is true iff z < x, and so on.

By induction hypothesis, we obtain a CLTL-formula ψ equivalent to ϕ′′ at y
(on these structures), and using predicates Pos<,Pos=,Pos>.

We can now remark that

– ∃y.ϕ′(x, y) is equivalent to ψ′ = Pψ ∨ ψ ∨ Fψ;
– ∀y.ϕ′(x, y) is equivalent to ψ′ = Hψ ∧ ψ ∧Gψ;
– ∀≤Ny.ϕ′(x, y) is equivalent to ψ′ = H≤Nψ ∧G≤Nψ, with a correction func-

tion α(m) = 2m+ 1.

In all cases ψ′ is evaluated at position x, and still uses additional predicates
Pos<,Pos=,Pos> that compare the current position with position x.

But according to the Separation Theorem, ψ′ can be translated into a boolean
combination of pure formulas. We can replace (Pos<,Pos=,Pos>) by (>,⊥,⊥)
(resp. (⊥,>,⊥), (⊥,⊥,>)) in pure past formulas (resp. pure present, pure fu-
ture), so indeed we get an CLTL-formula ψ′′, using only predicates P1, . . . , Pn,
and equivalent to the original CFO-formula at x. This closes the induction and
the proof of the theorem.

Since we are ultimately interested in a formula which is evaluated at the first
position (where pure past formulas can be trivially evaluated to true or false for
all words), we end up with an equivalent CLTL-formula without past operators.

B.4 CLTL to B-VWAA

Given an CLTL sentence θ, we can design a very-weak B-automata Aθ which
tries to prove that [[θ]](u) is bounded (it is a simple adaptation of [7, Proposition
13.1]). It is defined as follows:

– Q := {ϕ : ϕ is a subformula of θ}, q0 := θ, Γ := {γ}
– δ : Q× A→ B+(C×Q) is defined by

δ(a, b) :=

{
true if b = a

false otherwise

δ(ϕ ∨ ψ, b) := δ(ϕ, b) ∨ δ(ψ, b)
δ(ϕ ∧ ψ, b) := δ(ϕ, b) ∧ δ(ψ, b)

δ(ϕRψ, b) := (ε, ψ) ∧ ((ε, ϕ) ∨ (ε, ϕRψ))

δ(ϕUψ, b) := (ε, ψ) ∨ ((ε, ϕ) ∧ (ε, ϕUψ))

δ(ϕU≤Nψ, b) := (r, ψ) ∨ (ic, ϕU≤Nψ) ∨ ((r, ϕ) ∧ (ε, ϕU≤Nψ))

– F := {ϕ : ϕ is a subformula of θ of the form ψ1Rψ2}

Note that only one counter is required, since the automaton is only ever
checking a single U≤N formula at a time. When a copy of the automaton moves
to another U≤N subformula, it can reset the counter and reuse it in that context.

We now show the correctness of this construction.
The proof is by induction on the structure of θ. The base case, when θ = a

is trivial.
Now consider when θ is of the form ϕU≤Nψ. We prove that [[θ]] = [[Aθ]]. Fix

some u ∈ Aω and let ui := u(i)u(i+1) . . . be the suffix of u starting at position i.
Assume [[θ]](u) ≤ N . Then there is some i > 0 and some set I ⊆ [1, i−1] such

that [[ψ]](ui) ≤ N , |I| ≤ N , and for all 1 ≤ j < i with j /∈ I, [[ϕ]](uj) ≤ N . Now
consider the strategy for Aθ on u which selects the first disjunct when reading
position i − 1, the second disjunct when reading position j − 1 for j ∈ I, and
the third disjunct otherwise. Because |I| ≤ N , any play in the strategy selects
the second disjunct which increments the counter at most N times. Moreover,
by the inductive hypothesis, any partial play starting from ψ or ϕ will have
value at most N (and the counter is reset when moving to these states). Hence,
[[Aθ]](u) ≤ N .

Now assume that [[Aθ]](u) ≤ N so there is a strategy σ for Eve with val(σ) ≤
N . There must be a play π in σ which visits (r, ψ) (otherwise, there is a play
which stabilizes in a next-until formula, contradicting the fact that val(σ) ≤ N).
Consider the least i such that there is a π ∈ σ which selects (r, ψ) for position i.

Omitting the moves up position i from all plays in σ results in a strategy σi
for Aψ which witnesses [[Aψ]](ui) ≤ N . By the inductive hypothesis [[ψ]](ui) ≤ N .

The remaining positions j < i on π must correspond to (ic, ϕU≤Nψ) or
(ε, ϕU≤Nψ) (if (r, ϕ) were selected at such a position j then it is not possible
to reach (r, ψ) since ψ is not a subformula of ϕ). Let I ⊆ [1, i − 1] be the set
of positions for which (ic, ϕU≤Nψ) is chosen by π. Since val(π) ≤ N and there
is no reset action for the counter in positions j < i, |I| ≤ N . For all positions
j /∈ I, there must a play πj ∈ σ that selects (r, ϕ) (since δ forces the conjunction
of (r, ϕ) and (ε, ϕU≤Nψ)). Let σj be the set of plays in σ which select (r, ϕ)
for position j, with this prefix up to position j removed. Then σj is a strategy
witnessing that [[Aϕ]](uj) ≤ N , so by the inductive hypothesis, [[ϕ]](uj) ≤ N .

Since we have shown that there is some i > 0 and some set I ⊆ [1, i−1] such
that [[ψ]](ui) ≤ N , |I| ≤ N , and for all 1 ≤ j < i with j /∈ I, [[ϕ]](uj) ≤ N , we
have [[θ]](u) ≤ N as desired.

The other cases are similar.

Alternatively, this construction could be done with k counters and using only
actions ic and ε.

B.5 B-VWAA to CLTL

Let A := 〈Q,A, q0, δ, F 〉 be a B-VWAA, u a word in Aω, and R a tree represent-
ing a run of A over u. We remind that R fixes the choices of Player Min, and
the branching correspond to the choices of Player Max. However, at each depth,
several vertices can be labelled by the same state in Q : this happens when Max
can choose between several transitions to the same state. If we merge all such
vertices (that have same depth in R and labelled by the same state q), we obtain
a direct acyclic graph of width at most |Q|, describing completely the run R.
This graph will be called a run DAG of A over u.

Proof of Lemma 2. By [4], we can assume that A := 〈Q,A, q0, δ, F 〉 uses k
hierarchical counters. We write C for the set of hierarchical counter actions for
k counters, ordered by Rk > ICk > · · · > R1 > IC1 > R0 = ε.

Each δ(q, a) can be written as a disjunction of conjunctions of elements of
C×Q. A single disjunct can be written in the form (c1, q)∧(c2, q)∧. . .∧(cj , q)∧ψ
where ψ is a conjunction of elements (c, q′) for c ∈ C and q′ 6= q.

Let δ′(q, a) be the result of performing the following transformations on each
disjunct in δ(q, a):

1. replace each conjunct (c, q′) for q′ 6= q in ψ with (Rk, q
′).

2. contract (c1, q) ∧ (c2, q) ∧ . . . ∧ (cj , q) to a single conjunct (c, q) such that

(a) if there any ci which is an increment, then c := ICj for j the highest
counter which is incremented;

(b) if there are no increments, then c := Rj for j the lowest counter which is
reset.

Let A′ := 〈Q,A, q0, δ′, F 〉.
It is clear that [[A′]] ≤ [[A]] since the new automaton has only added resets

and removed conjuncts (making it easier for there to be a run of low value).
Now assume that [[A′]] is bounded by N on some set U of input words. We

prove that [[A]](U) ≤ α(N) where α(n) = |Q| · (N + 1)k.
We proceed by induction on |Q|, proving that given a run DAG of A′ on u

of value N , we can construct a run DAG of A on u of value at most α(N).
If |Q| = 1, then the run DAG witnessing [[A′]](u) ≤ N has a (possibly infinite)

spine π′ which stays in q, along with side branches that may terminate in true.
Consider a single node y = (c, q) with parent x and child z on π′. It has a
corresponding expansion (c1, q), (c2, q), . . . , (cj , q) from A. We can replace this
single node in the run DAG with the expansion, creating an edge from x to each
element of {(c1, q), . . . , (cj , q)}, and from each of these elements to the child z.

We do this sort of replacement simultaneously for all nodes on π′. This results
in a run DAG for A on u.

We claim that this run DAG has value at most (N + 1)k. Notice that by
the contraction rules, π′ still describes a path through this new run DAG. Now
consider another possible path π in the run DAG for A on u and assume for the
sake of contradiction that π has value at least (N + 1)k + 1. Then there is some
segment of π witnessing at least (N + 1)k + 1 increments for some counter j,
no resets for counter j, and no counter higher than j is touched. Let v denote
the sequence of counter actions on this segment in π, and let v′ denote the
corresponding sequence of counter actions on this same segment in π′.

If v(i) = ICl then v′(i) must be ICl′ for some l′ ≥ l by contraction rule (a).
This means that there are at least (N + 1)k + 1 increments for counters j′ ≥ j
on v′.

If some counter j′ for j′ ≥ j is explicitly reset at v′(i), then there cannot be
an increment at v(i) by (a), so there must be a reset. But by the choice of v, this
reset must be of some counter lower than j. But then contraction rule (b) would
imply that v′(i) is a reset for some counter less than j, which is a contradiction.

Hence, there are at least (N + 1)k + 1 increments for counters j′ ≥ j and
there is no explicit reset of counters j′ ≥ j on v′. This means that the only
way a counter j′ for j′ ≥ j is reset on this segment is when a counter j′′ >
j′ is incremented. But the maximum number of increments possible across all
counters on v′ without using explicit resets and while still keeping the overall
value at most N is (N + 1)k.3 Hence some counter must be incremented more
than N times on v′, contradicting the fact that [[A′]](u) ≤ N (since π′ is a path
in the run DAG for A′ on u).

If |Q| > 1, then consider the run DAG witnessing [[A′]](u) ≤ N . Let G′ be the
partial run DAG of A′ on u consisting entirely of nodes labelled with (c, q). As
in the previous case, we can expand the nodes in G′ to yield a partial run DAG
G for A on u of value at most (N + 1)k. By the inductive hypothesis, we can
construct a run DAG for each successor of the terminal nodes of G′ which starts
in some state q′ 6= q and witnesses cost at most (|Q|−1) · (N+1)k (this is taking
advantage of the fact that A′ is very-weak). Combining the partial run DAG G
with the run DAGs from the inductive hypothesis results in a run DAG for A
on u where every path has value at most (N + 1)k + (|Q| − 1) · (N + 1)k ≤ α(N)
as desired.

Proof of Proposition 2. The proof is by induction on |Q|. We prove that
[[Aϕ]] ≤ [[θ(ϕ)]] and [[θ(ϕ)]] 4α [[Aϕ]] for α(n) = (n+ 1)k.

3 Technically, the maximum number Mk of increments across k counters without using
explicit resets and while still keeping the overall value below N is defined inductively
to be M1 = N for one counter and Mk = N ·Mk−1 + N . This can be achieved by
nesting the increments, i.e. for two counters, there would be N groups consisting of
N increments of counter 1 followed by an increment of counter 2, accounting for a
total of N2 + N increments. Note that the value Mk is bounded by (N + 1)k for all
k ≥ 1.

If |Q| = 0, then the only possibilities for ϕ are positive boolean combinations
of true or false and we let θ(true) = true, θ(false) = false, θ(ψ1 ∧ ψ2) = θ(ψ1) ∧
θ(ψ2), and θ(ψ1 ∨ ψ2) = θ(ψ1) ∨ θ(ψ2).

Otherwise, let |Q| > 0 and let q be the highest state in the very-weak ordering.
Given some ϕ, we can treat each element separately and then combine using the
original boolean connectives. For elements q′ 6= q, we can immediately apply the
inductive hypothesis.

For an element q, we consider δ(q, a) for a ∈ A, which can be written in
disjunctive normal form as

∨
c∈C ϕq,a,c ∨ ϕq,a,exit such that

– ϕq,a,c for c ∈ C is a (possibly empty) disjunction of conjunctions such that
in each disjunct there is a conjunct of the form (c, q) (there is only one such
conjunct by Lemma 2);

– ϕq,a,exit is a (possibly empty) disjunction of conjunctions of elements (Rk, q
′)

for q′ 6= q.

This partitions the disjuncts into sets depending on whether the disjunct includes
a conjunct which remains in q, or includes only conjuncts which go to a lower
state in the ordering. Within the disjuncts which have a conjunct which remains
in q, we partition these based on the operation associated with q (there is only
one such operation because of Lemma 2).

We let ϕ̃q,a,exit be false if ϕq,a,exit is empty; otherwise, it is ϕq,a,exit with ele-
ments (Rk, q

′) replaced by q′. We let ϕ̃q,a,c be false if ϕq,a,c is empty; otherwise,
it is ϕq,a,c with all conjuncts (c, q) replaced by true and all conjuncts (Rk, q

′) re-
placed by q′. Because these ϕ̃ versions do not contain q, the inductive hypothesis
can be applied to them. We can use this to define

– θq,c :=
∨
a∈A a ∧Xθ(ϕ̃q,a,c)

– θq,exit :=
∨
a∈A a ∧Xθ(ϕ̃q,a,exit)

which says that when reading a ∈ A, a disjunct in δ(q, a) is chosen which falls
into one of the sets described above.

While the play stays in state q, we must ensure that transitions with incre-
ments are only taken a bounded number of times before resets. For a particular
counter γ, this behaviour is approximated by

θq,cycle,γ := (
∨
γ′≥γ

θq,Rγ′ ∨ θq,exit) R≤N (
∨

c<ICγ

θq,c).

This is only an approximation of the value since it requires an explicit reset of
some counter γ′ ≥ γ; it does not recognize when the counter is reset due to an
increment of a higher counter. This is to prevent this formula from achieving
an artificially low value for some γ and γ′ with γ′ > γ by using θq,ICγ′ formula
to avoid making a mistake on some θq,cycle,γ , and simultaneously using θq,ICγ
to avoid making a mistake on θq,cycle,γ′ . Up to a correction function of α(n) =
(N + 1)k, this is equivalent.

Putting this together for all counters, we have

θq,cycle :=
∨
c∈C

θq,c ∧
∧

γ∈[1,k]

θq,cycle,γ .

Finally, this gets wrapped into a statement which ensures correct behaviour
in terms of accepting states (i.e. if q /∈ F then the play cannot stay forever in q):

θ(q) :=

{
θq,cycle U θq,exit if q /∈ F
θq,exit R θq,cycle if q ∈ F

Now assume that [[θ(q)]](u) ≤ N . We must prove that Aq has an accepting
run DAG starting from q with value at most N . Assume that q /∈ F . Then there
is some i such that [[θq,exit]](u

i) ≤ N and for all j < i, [[θq,cycle]](u
j) ≤ N . Using

the inductive hypothesis, this means that [[Aϕ̃q,u(i),exit]](ui+1) ≤ N . It remains
to show the existence of a partial run DAG on u(0) . . . u(i) which terminates in
ϕ̃q,u(i),exit.

In order to define this run DAG, we must select an action cj to associate to
each position j < i. We do this based on the values of formulas θq,c at those
positions. If there is some counter γ such that [[θq,Rγ]](uj) ≤ N , then let cj be
Rγ for the highest such γ (note that in this case, the subformulas θq,cycle,γ′ can
avoid making any mistake at that position by using θq,Rγ). Otherwise, let cj be
ICγ for γ the lowest counter such that [[θq,ICγ]](uj) ≤ N (there must be some γ
like this since [[θq,cycle]](u

j) ≤ N implies [[
∨
c∈C θq,c]](u

j) ≤ N).
Applying the inductive hypothesis, this means that [[Aϕ̃q,u(j),cj]](uj+1) ≤ N .

Consider the run DAG consisting of a spine of transitions from q to q with
action cj when reading u(j) and terminating in the run DAG for Aϕ̃q,u(i),exit
after reading u(i), and with edges at each j to the run DAGs from Aϕ̃q,u(j),cj
(see diagram below). The run DAGs from the subautomata witness value at
most N , and reaching these subautomata resets the counter, so it remains to
prove that the path which stays on the spine until position i has at most N
increments between resets. Assume not. Then there is some segment starting at
position j′ which has more than N increments for some counter γ and no resets
for γ. By the choice of cj , [[θq,Rγ′]](u

l) > N for all positions l on this segment and
for all γ′ ≥ γ. Likewise, at the positions l corresponding to increments for γ on
this segment, it must be the case that [[θq,Rγ′]](u

l) > N for all γ′ (otherwise there

would be a reset at this position by the definition of cl), and [[θq,ICγ′]](u
l) > N

for all γ′ ≤ γ. This means that θq,cycle,γ must make more than N mistakes on

this segment starting from j′. This contradicts the fact that [[θq,cycle]](u
j′) ≤ N .

q q q · · ·

· · ·

q q Aϕ̃q,u(i),exit

Aϕ̃q,u(0),c0 Aϕ̃q,u(1),c1 Aϕ̃q,u(i−1),ci−1
Aϕ̃q,u(i),ci

c0 c1 ci−1 ci

Rk Rk Rk Rk

In the other direction, we prove that if [[Aq]](u) ≤ N then [[θ(q)]](u) ≤ α(N).
Assume that there is a run DAG of Aq of value N , and assume that q /∈ F . There
must be some position i where there are no transitions from q to q (otherwise
the run DAG would have value ∞). This can be viewed as a run of Aϕ̃q,u(i),exit

on ui+1, so by the inductive hypothesis, [[θ(ϕ̃q,u(i),exit)]](u
i+1) ≤ (N + 1)k. For

j < i, let cj denote the action in the run DAG from q to q when reading u(j).
We must prove [[θq,cycle]](u

j) ≤ (N + 1)k for all j < i.

By the definition of cj and the fact that the run DAG witnesses value at
most N , Aϕ̃q,u(j),cj (uj+1) ≤ N . By the inductive hypothesis, this implies that

[[θ(ϕ̃q,u(j),cj)]](u
j+1) ≤ (N + 1)k, which means that [[θq,cj]](u

j) ≤ (N + 1)k for
all j < i. Any subword of c(0)c(1) . . . c(i) can have at most N increments for
a given counter between resets (either explicit, or because a higher counter has
been touched). For a particular counter γ, this can translate into at most (N+1)k

errors in θq,cycle,γ (since resets coming from increments of higher counters do not
allow the number of mistakes to be reset, but the number of such increments
of higher counters is bounded). Hence, [[θq,cycle]](u

j) ≤ (N + 1)k holds for each
j < i.

The proof when q ∈ F is similar.

B.6 S-Automata

We briefly recall the definition of s-automata, see [4] for more details.

As before, we use counters from a set Γ , that are initially assigned value 0.

This time, the atomic actions are S := {i, ε, r, cr}. We still collect all checked
values of a word of u ∈ Sω in a set C(u), but in the S-semantic, we will be
interested in the infimum of these values: valS(u) := inf C(u).

The global counter actions are defined as CS := SΓS , acting simultaneously
on all counters.

An alternating S-Büchi automaton A = 〈Q,A, F, q0, Γ, δ〉 on infinite words
has a finite set of states Q, alphabet A, initial state q0 ∈ Q, a set of Büchi states
F , a finite set Γ of S-counters, and a transition function δ : Q×A→ B+(CS×Q)
(where B+(C × Q) is the set of positive boolean combinations, written as a
disjunction of conjunctions of elements (ci, qi) ∈ CS ×Q).

A run of A on (ai)i∈N ∈ Aω is a labelled tree R = (r, c) with r : dom(R)→ Q
and c : (dom(R) \ {ε})→ C such that

– r(ε) = q0;

– if x ∈ dom(R) and δ(r(x), a|x|) = ϕ, then there is some disjunct (c1, q1) ∧
. . . ∧ (ck, qk) in ϕ such that for all 1 ≤ j ≤ k, x · j ∈ dom(R), r(x · j) = qj
and c(x · j) = cj , and for all j > k, x · j /∈ dom(R).

We say a run is accepting if for every branch π in R = (r, c), there are
infinitely-many positions x such that r(x) ∈ F . This means that no matter

We assign S-values to runs as follows. Given a branch π = (xi)i ∈ ω in a run
R, the value of π is valS(π) = valS(c(x1)c(x2) . . .) and valS(R) is the infimum
over the values of the branches.

Notice that this time, Player Or tries to maximize the value of the run. That
is why if the run do not satisfy the Büchi condition, the value is 0 and this Player
has failed.

If δ only uses disjunctions, then we say the automaton is non-deterministic.
In this case, a run tree is just a single branch, and only Min has choices to make.
Then the run is accepting if there are infinitely many Büchi states on its unique
branch π, and its value is the value of π.

The S-semantic of an S-automaton A is [[A]]S : Aω → N∞

[[A]]S(u) := sup {valS(R) : R is an accepting run of A on u}

The idea is that the S-semantic maximizes the value over S-accepting runs.

C From B-NBA to S-NBA

Let B = 〈Q,A, F, q0, Γ,∆〉 be a B-NBA, and f = [[S]]. We want to build a S-NBA
S recognizing f .

C.1 Semigroup of actions

Let B be the set of atomic B-actions. We define C to be an extension of BΓ ,
describing the global action of an arbitrary part of a run.

Let C1 := {r, ε, ic,⊥}, and C = CΓ1 .
Action ⊥ corresponds to a lot of increments, i.e. a fail of the run.
We give to C1 a semigroup structure by the following product operation,

which represents the concatenation of two global actions. The left column rep-
resenting the left operand. We also define a unary operation ω on C1.

· r ε ic ⊥ ·ω

r r r r ⊥ r

ε r ε ic ⊥ ε
ic r ic ic ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

We also define an order by r ≤ ε ≤ ic ≤ ⊥.
The product, order and ω-power of C are then defined component-wise, rel-

ative to each counter.

C.2 Types

We define the set of types T to be the ≤-closed subsets of Sig := Q2 × C× {0, 1},
where ≤ is defined on Sig by (p, q, c, b) ≤ (p′, q′, c′, b′) if (p, q, b) = (p′, q′, b′) and
c ≤ c′. Elements of Sig will be called signatures.

Intuitively, for n ∈ N, the n-type of a word u ∈ A∗, noted Tn(u) ∈ T , will
contain signature (p, q, c, b) iff the automaton B can go from p to q by reading u,
doing global action at most c ∈ C, where action ⊥ corresponds to values bigger
than n, and seeing a Büchi state iff b = 1.

Note than for any u ∈ A∗ and n ≤ m, we have Tn(u) ⊆ Tm(u).

(T , ·, ω, T ω) has the structure of an ω-semigroup. The product is defined as
t1 ·t2 := {(p, r, c1c2, b1 ∨ b2) : ∃q, (p, q, c1, b1) ∈ t1 and (q, r, c2, b2) ∈ t2}. And the
ω-power on idempotents: E(T)→ T ω = 2Q×C×{0,1} by

tω = {(p, c1cω, b) : ∃q, b1 ∈ Q× {0, 1} , (p, q, c1, b1) ∈ t and (q, q, c, b) ∈ t} .

We also define a mixed product · : T × T ω → T ω by
s · t = {(p, c · c′, b) : (p, q, c, b0) ∈ s and (q, c′, b) ∈ t}.

Elements of T ω describe sets of infinite runs, each one described by some
(p, c, b): p is the starting state, c describes the global action performed by the
run, and b is 1 if infinitely many accepting state are seen.

We finally define accepting types Acc ⊆ T ×E(T) to be the set of pairs (s, t)
such there is c ∈ C with (q0, c, 1) ∈ s · tω and for all γ ∈ Γ , c(γ) 6= ⊥. Intuitively,
(s, t) is accepting means that if u = u0u1u2 . . . with s ⊆ Tn(u0) and for all i ≥ 1,
t ⊆ Tn(ui), then f(u) ≤ n because the types describe a valid n-run of B on u.
We call Ref the complement of Acc in T × E(T).

Notice that Ref is ⊆-closed, in the sense that if (s, t) ∈ Ref and s′ ⊆ s, t′ ⊆ t
then (s′, t′) ∈ Ref.

C.3 Back to finite words

If t ∈ T , let gt be the cost function on A∗ defined by

gt(u) = inf {n : Tn(u) 6⊆ t} .

We show that for all t ∈ T , gt is a regular cost function on finite words, by
building a B-automaton Bt for gt. It suffices to design a B-automaton for one
(p, q, c, b) /∈ t, that checks that (p, q, c, b) ∈ Tn(u). We can then do the union of
all those automata. Given s = (p, q, c, b) /∈ t, the B-automaton B(p,q) has the
same states and transitions as B, with p as initial state, q as final state. We also
need to verify that global action at least c is performed. For each c ∈ C1, we
design an automaton Ac on finite words, which accepts a sequence of action with
value n if the global action is at most c, with threshold n for switching form ic

to ⊥. Automata Ac with c ∈ C are then simply products of automata for atomic
actions.

We also define a two-state automaton Ab remembering if a Büchi state has
been seen. The desired B automaton Ss can finally be defined as the composition
of B(p,q) and Bc ×Ab, which will analyse the output of B(p,q).

Here are the automata Bic and Br for one counter, where ν ∈ {ic, ε, r}.

ic r

r : r
ε : ε

ic : ic

ν : ν

ic : ic
ε : ε

r : r

ν : ν

Since the gt are regular cost functions on finite words, for each t ∈ T we can
build a S-automaton At recognizing gt.

Finally, let g′t(u) := sup {n : Tn(u) ⊆ t}, and remark that for all t ∈ T ,
g′t ≤ gt ≤ g′t + 1. It means that gt ≈ g′t, and so [[At]] ≈ g′t.

C.4 From finite to infinite words

If t ∈ T and n ∈ N, let Lnt := {u ∈ A∗ : Tn(u) ⊆ t}.

Lemma 10. Let n ∈ N, then

Aω =
⋃

(s,t)∈T ×E(T)

Lns (Lnt)ω. (1)

Moreover there is α such that for all n,

– if (s, t) ∈ Acc and u ∈ Lns (Lnt)ω, then f(u) ≤ α(n) (2),
– if (s, t) ∈ Ref and u ∈ Lns (Lnt)ω, then f(u) > n (3).

Proof. (1): Let n ∈ N and u ∈ Aω. We have to show that there exists (s, t) ∈
T ×E(T) such that u ∈ Lns (Lnt)ω. Tn : A∗ → T is a semigroup morphism, so by
a Ramsey theorem we can conclude that there is s ∈ T and t idempotent in T
such that u = u0u1u2 . . . with Tn(u0) = s and for all i ≥ 1, Tn(ui) = t. We get
that u ∈ Lns (Lnt)ω.

(2): We assume u ∈ Lns (Lnt)ω for some (s, t) ∈ Acc. It means that there is c
such that (q0, c, 1) ∈ s · tω and for all γ ∈ Γ , c(γ) 6= ⊥.

By definition of products and ω-power on T , we have the existence of (p0, q, c0, b0) ∈
s and (q, q, c′, 1) ∈ t with c0 · c′ω = c.

But u ∈ Lns (Lnt)ω, so u can be written u0u1u2 . . . with Tn(u0) = s and for
all i ≥ 1, Tn(ui) = t. This means that there is a n-run of B from p0 to q on
u0u1 . . . uk for some k doing global action c0, and moreover B can read each ui
while doing a n-loop around q containing a Büchi state, with action c′ < ic. By
definition of the action product, this describes an accepting 2n-run of B on u.
The 2 factor comes from the gluing of two n-paths containing an r. We conclude
that f(u) ≤ 2n.

(3): We show the result by contraposition. Assume f(u) ≤ n. Let u =
u0u1u2 . . . be any Ramsey decomposition of u with respect to the semigroup
morphism Tn. Let s = Tn(u0) and t = Tn(ui) for all i ≥ 1, with t idempotent.

There is an accepting n-run ρ of B over u. Let q be a state that appear
infinitely many often as a frontier between the ui’s in ρ.

Since t is an idempotent and ρ is accepting with value at most n, we must
have some (p0, p, c0, b0) ∈ s, (p, q, c1, b1) ∈ t and (q, q, c, 1) ∈ t such that for all
γ ∈ Γ , c0 · c1 · cω(γ) 6= ⊥. This implies (s, t) ∈ Acc.

We showed that if f(u) ≤ n, any Ramsey decomposition (s, t) with respect
to Tn is in Acc. So by contraposition, if (s, t) ∈ Ref and u ∈ Lns (Lnt)ω, then
f(u) > n.

ut

Corollary 3. Let g be the cost function on infinite words defined by

g(u) := sup {n ∈ N : ∃(s, t) ∈ Ref, u ∈ Lns (Lnt)ω} .

Then f ≈ g.

Proof. Let u ∈ Aω such that f(u) > α(n). By Lemma 10 there is (s, t) ∈
T × E(T) such that u ∈ Lns (Lnt)ω.

If (s, t) ∈ Acc, we get by Lemma 10 that f(u) ≤ α(n) which is absurd, so
(s, t) ∈ Ref and g(u) ≥ n.

Conversely, if g(u) ≥ n, let (s, t) ∈ Ref such that u ∈ Lns (Lnt)ω. Then by
Lemma 10 f(u) > n. ut

C.5 Construction of S-NBA S

Let s, t ∈ T , we define gs,t(u) = sup {n ∈ N : u ∈ Lns (Lnt)ω}

Lemma 11. For all s, t ∈ T , there is an S-NBA Ss,t recognizing gs,t.

Proof. For all r ∈ T , we had [[Ar]] ≈αr g′r for some αr. Let αs,t = max(αs, αt).
The automaton Ss,t just needs to guess the factorization of u witnessing gs,t(u) ≥
n, and independently run As on u0 and At on each ui, checking that they accept
with value at least n. The Büchi states are at the end of each ui, forcing the
automaton to guess infinitely many of them.

If [[Ss,t]](u) ≥ αs,t(n), it means that there is a factorisation u = u0u1u2 . . .
with [[As]](u0) ≥ αs(n) and [[At]](ui) ≥ αt(n) for all i ≥ 1.

It means that g′s(u0) ≥ n and g′t(ui) ≥ n for all i ≥ 1. Hence gs,t(u) ≥ n. We
got [[Ss,t]] 4 gs,t.

Conversely, assume gs,t(u) ≥ n. Then there is a factorisation u = u0u1u2 . . .
with gs(u0) ≥ n ans gt(ui) ≥ n for all i ≥ 1. By guessing this factorisation, Ss,t
has a run of value at least n on u.

Finally, [[Ss,t]] ≈ gs,t.
ut

It now suffices to define S =
⋃

(s,t)∈Ref Ss,t. Since g = max(s,t)∈Ref gs,t, we
can conclude that S recognizes f by Corollary 3.

C.6 From S-NBA to B-NBA

The converse follows the same proof scheme, but it gets a little more complicated.

Indeed, a partial run can have more different effects on a counter, and there-
fore the possible types are C1 := {Ω, i, ε, r, crΩ, cr,⊥}, where Ω means “a lot
of increments”.

The composition law is the following:

· Ω i ε r crΩ cr ⊥ ·ω

Ω Ω Ω Ω r Ω r ⊥ Ω
i Ω i i r crΩ cr ⊥ Ω
ε Ω i ε r crΩ cr ⊥ ε
r Ω r r r ⊥ ⊥ ⊥ r

crΩ crΩ crΩ crΩ cr crΩ cr ⊥ crΩ
cr crΩ cr cr cr ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

The set of accepting types Acc ⊆ T × E(T) becomes the set of pairs (s, t)
such there is c ∈ C with (q0, c, 1) ∈ s · tω and for all γ ∈ Γ , c(γ) /∈ {cr, crΩ,⊥}:
a check at the beginning of the word is not allowed.

We also need to design S-automata on finite words that recognize each of
these types.

Types starting with cr or ending with Ω are a little puzzling: here are the
automata AΩ and Acr for one counter, where ν ∈ {i, ε, r, cr}.

Ω cr

ν : ν

i, ε : cr

i : i
ε : ε

cr : r

ν : ν

Remark 1.

– If c ends with Ω, we cannot use the states to verify that we reached a high
value. However, Ac can perform action crγ at the end of the word, as it
done in AΩ . This way, the run will be accepting if and only if a high value
is reached.

– Likewise, if c begins with cr, then when see the first cr in S, we do not
perform cr in As, but we remember that we saw a cr in the input, as it is
done in Acr.

Then again, we can use the result of [4] on finite words: B and S-automata
have same expressive power. This gets us a B-automaton Bt for any type t.
Combining these automata with respect to accepting types finally gets us the
wanted B-automaton.

The proof of correctnes is almost identical to the previous one, we just need
to reverse some inequalities. Indeed going from B to S switches between inf and
sup.

For instance Lemma 10 becomes

Lemma 12. Let n ∈ N, then

Aω =
⋃

(s,t)∈T ×E(T)

Lns (Lnt)ω. (1)

Moreover there is α such that for all n,

– if (s, t) ∈ Acc and u ∈ Lns (Lnt)ω, then f(u) > n (2),
– if (s, t) ∈ Ref and u ∈ Lns (Lnt)ω, then f(u) ≤ α(n) (3).

D Equivalence between B-NBA and CMSO

In this part we will use for convenience the alternative definition of CMSO, with
predicate “|X| ≤ N”.

D.1 From B-NBA to CMSO

Let B = 〈Q,A, F, q0, Γ,∆〉 be a B-NBA. We want to build a CMSO-formula ϕB
recognizing [[B]].

Since both the semantics (CMSO and B-automata) are defined as an infi-
mum, the formula ϕB just needs to express that there is a run of B on u of value
at most N .

Let ∆ = {δ1, . . . , δk} ⊆ Q×A×C×Q. For each δ = (p, a, ν, q) ∈ ∆, we will
use a second-order variable Xδ to describe the set of positions where δ is used.
We will note π1, πA, πC, π2 the projections of δ onto its components. For each
γ ∈ Γ , we also define πγ(δ) to be the projection of πC(γ) on the counter γ.

We then define the following auxiliary formula, having Xδ1 , . . . , Xδk as free
variables :

– Partition := ∀x,
∨

1≤i≤k(x ∈ Xδi ∧ (
∧
j 6=i x /∈ Xδj)).

This formula expresses that the Xδi ’s form a partition of the set of positions.
– Word := ∀x,

∨
a∈A(a(x) ∧

∨
πA(δ)=a

x ∈ Xδ)).
This formula ensure the coherence between the input word and the sequence
of transitions described by the Xδ’s.

– Init :=
∨
π1(δ)=q0

(∃x, x ∈ Xδ ∧ ∀y, x ≤ y).
This formula ensures that the first transition starts from the initial state q0.

– Büchi :=
∨
π2(δ)∈F (∀x, ∃y, y ∈ Xδ ∧ x ≤ y).

This formula expresses that there is a transition towards a Büchi state that
occurs infinitely often.

– For each γ ∈ Γ , we define a formula
Measureγ(X) := (∀x, x ∈ X ⇒

∨
πγ(δ)=ic x ∈ Xδ)∧

∀x, y, z(x ∈ X ∧ y ∈ X ∧ x ≤ z ≤ y)⇒
∨
πγ(δ)∈{ic,ε} z ∈ Xδ)

expressing that X marks consecutive increments (possibly separated by ε’s)
for counter γ.

– Cost :=
∧
γ∈Γ (∀X,Measureγ(X)⇒ |X| ≤ N).

This formula expresses that for each counter, there are at most N consecutive
increments in the run.

We can finally define the formula

ϕB := ∃Xδ1 , . . . , Xδk ,Partition ∧Word ∧ Init ∧Büchi ∧Cost.

It is easy to see that [[ϕB]] = [[B]], since for any u ∈ Aω, runs of value at most
n are in bijection with instanciations of Xδ1 , . . . , Xδk witnessing (u, n) |= ϕB.

D.2 From CMSO to B-Büchi

Here we want to show that for any CMSO formula ϕ, we can build a B-Büchi
automaton Bϕ. This is done by using closure properties of the class of cost
functions recognized by B- and S-Büchi automata, and the equivalence between
these two formalisms.

Going back to the definition of CMSO, we had two types of formulas : type
ϕ, where predicates “|X| ≤ N” appear positively. We can also define the dual
logic : CMSO, where predicates “|X| ≤ N” appear only negatively. We will note
ϕ the formulas of CMSO.

We can introduce the negation in the syntax, and define the two dual logics
in the following way :

ϕ := a(x) | x ≤ y | x ∈ X | ϕ ∧ ϕ | ∃x, ϕ | ∃X,ϕ | ¬ϕ | |X| ≤ N,
ϕ := a(x) | x ≤ y | x ∈ X | ϕ ∧ ϕ | ∃x, ϕ | ∃X,ϕ | ¬ϕ.

We saw that formulae ϕ naturally correspond to B-automata, since in both
cases, the semantic is defined in term of an infimum.

In the same manner, we can give a semantic to a formula ϕ, by [[ϕ]](u) :=
sup {n ∈ N, (u, n) |= ϕ}. The natural automata model for formulas ϕ of CMSO
is now S-automata, since the semantics is defined as a supremum in both cases.

Lemma 13. If ϕ is a CMSO or CMSO formula, then [[ϕ]] ≈ [[¬ϕ]].

Proof. First notice that if ϕ is a CMSO formula, then ϕ is a CMSO formula,
and vice-versa.

Assume ϕ is a CMSO formula.Let u be a word of Aω. We recall that [[ϕ]](u) =
inf {n ∈ N, (u, n) |= ϕ}. Since predicates |X| ≤ N only appear positively in ϕ,
we get that for all k ≤ n ∈ N, (u, k) |= ϕ =⇒ (u, n) |= ϕ. Two cases can now
occur :

– If [[ϕ]](u) > 0 , the largest k such that (u, k) 6|= ϕ is exactly [[ϕ]](u)− 1. But
notice that (u, k) 6|= ϕ⇐⇒ (u, k) |= ¬ϕ. Hence [[¬ϕ]](u) = [[ϕ]](u)− 1.

– If [[ϕ]](u) = 0, then [[¬ϕ]](u) = sup ∅ = 0.

In all cases [[¬ϕ]](u) ≤ [[ϕ]](u) ≤ [[¬ϕ]](u) + 1, and this is true for all u ∈ Aω, so
[[ϕ]] ≈ [[¬ϕ]].

The proof when ϕ is a CMSO formula is similar. ut

Theorem 6. If f is a cost function on infinite words, the following statements
are equivalent :

– f is recognized by a B-Büchi automaton,

– f is recognized by an S-Büchi automaton,

– f is recognized by a formula of CMSO,

– f is recognized by a formula of CMSO.

Proof. We do this proof by induction on formulas. We start by using B-automata
for CMSO formulae, and S-automata for CMSO formulae. When necessary, we
can use equivalence between the two kinds of automata.

The automata may represent formulae with free variables, so an automaton
Aϕ will read words on alphabet A×{0, 1}k, where k is the number of free variable
in ϕ. A word in {0, 1}ω describe a valuation for a set of positions, by marking
with 1 the positions belonging to the set. First-order variables can be considered
as singletons.

In this setting, it is easy to design classical Büchi automata for predicates
a(x), x ≤ y, x ∈ X. Considered as B-automata, they recognize the same cost
function as the corresponding formulae. We can also design Büchi automata for
the complement of these properties. Considered as S-automata, they recognize
the same cost function as the corresponding formulae.

The following B-automaton recognize [[|X| ≤ N]], followed by a B-automaton
for x ≤ y (as an example):

(A, 1) : ic

(A, 0) : ε

(A, 0, 0)

(A, 1, 0)

(A, 0, 0)

(A, 0, 1)

A× {0, 1}2

It remains to deal with the constructors ¬,∧,∃x,∃X. We showed that B-
and S-automata have same expressive power on infinite words, so this settles
the case of the negation. The other constructors correspond to the closure of
the class of cost functions recognized by B- or S-automata by the operations
min,max, inf-projection and sup-projection. More precisely, existential quantifi-
cators in CMSO corresponds to inf-projections in CMSO, and to sup-projections
in CMSO, which explains the choice of B-automata for CMSO and S-automata
for CMSO. See [4, 18] for the closure of B-automata by min,max, inf-projection
and closure of S-automata by min,max, sup-projection.

Using these constructions, we finally get a B-automaton Bϕ for all formula
ϕ of CMSO. ut

E From B-NBA to B-WAA

Let A = 〈QA,A, IA, FA, Γ,∆A〉 be a B-NBA, and f = [[B]]. We want to build a
B-WAA recognizing f .

Here FA is the set of Büchi states, so a run is accepting if infinitely many
states from F are seen. If it is not the case the value of the run is ∞.

The proof scheme is the following: we start by building another B-NBA B in
some normal form, recognizing f . Indeed the problem we encounter when dealing
with cost automata is the interplay between counters and acceptance condition.
Automaton B will avoid some of these problem, by establishing a link between
counter actions and Büchi states.

We then extend the proof of [16]: we describe strategies proving that there
is no n-run of B on some input. This allows us to build a B-WAA for f , where
the opponent is able to play these strategies.

E.1 Normal form for B-NBA

A B-NBA B = 〈Q,A, I, F, Γ,∆〉 is in normal form if for any run ρ of B, and for
any counter γ ∈ Γ , all transitions leaving a Büchi state in ρ perform a reset on
γ.

We will build a B-NBA B in normal form, with [[B]] ≈ f .
The principle is that for all n ∈ N and γ ∈ Γ , any n-run of A must either

perform infinitely many rγ , either perform a finite number of icγ . The automa-
ton B will be forced to guess which of these cases is occuring, and to verify it. In
case 1, this can be done by waiting a reset before acknowledging the next Büchi
state. States 1′ will carry the information that a reset has been seen. Moreover,
the transitions leaving acknowledged Büchi states are changed to resets. In the
case 2 (finite number of icγ), the automaton must guess the moment after which
no more icγ will be seen, we call the part after this phase 2′. Büchi states will
only occur in phase 2′, and it does not change the cost of the play to replace ε
by r in this phase.

Formally, B = 〈Q,A, I, F, Γ,∆〉, with

– Q = QA × {1, 1′, 2, 2′}Γ

– I = IA × {1, 2}Γ

– F = FA × {1′, 2′}Γ
– ∆ = {((p,x), a, g′(x, τ, b), (q,x′)) : (p, a, τ, q) ∈ ∆A,

x′ ∈ g(x, τ, b), b = B if (p,x) ∈ F and ��B otherwise},
where g and g′ are defined below. Notice that g(p,x, τ) is a set, so it is
possible that several (or zero) transitions in B correspond to one in A.

The aim of g is to update the x component, depending on the action τ . It
suffices to define g for one particular γ, the general case is obtained from this by
using this g on each component. We also define g′(x, τ, b) for each component:
it is equal to r if x ∈ {1′, 2′} and b = B, and to τ otherwise. The b component
(in
{
B,��B

}
) is used to remember whether the current state is Büchi in the new

automaton. We can now define, for all b ∈
{
B,��B

}
:

– g(1, ic, b) = g(p, 1, ε) = {1},
– g(1, r, b) = g(p, 1′, r) = {1′},
– g(1′, ic, B) = g(1′, ε, B) = {1},
– g(1′, ic,��B) = g(1′, ε,��B) = {1′}
– g(2, τ, b) = {2, 2′} for all τ ∈ {ic, ε, r},
– g(2′, ε, b) = g(2′, r, b) = {2′}
– g(2′, ic, b) = ∅.

It is easy to verify that B is in normal form. Notice that B has the same set
of counters as A, and |Q| = |QA| × 4|Γ |.

Lemma 14. [[B]] ≈ [[A]]

Proof. Let u ∈ Aω, and n ∈ N.

Assume [[B]](u) ≤ n. Let ρ be a n-run of B over u. Each transition ((p,x), a, τ, (q,x′) ∈
∆ corresponds to a transition (p, a, τ ′, q) ∈ ∆A. This means that we can define a
run ρ′ ofA over u. Moreover, the action sequence is the same, except that for each
counter, we added at most one reset in ρ between two resets in ρ′, or we added
some resets after the last increment. This means that valB(ρ′) ≤ 2∗valB(ρ) = 2n,
hence [[A]](u) ≤ 2n. This is true for all u so [[A]] ≤ 2[[B]].

Conversely, assume [[A]](u) ≤ n, and let ρ be a n-run of A over u, starting in
state q0 ∈ I.

We want to associate a run ρ′ of B to ρ.

First, we need to choose an initial state. For all counter γ, let xγ = 1 if there
are infinitely many icγ in ρ, and 2 otherwise. xγ is called the type of γ. Notice
that if xγ = 1, then there are infinitely many rγ in ρ, otherwise the value of ρ
would not be finite. Let x = (xγ1 , . . . , xγk), and q′0 = (q0,x).

For counters γ of type 1, we have no more choice, since g(x, τ, b) is always a
singleton when x ∈ {1, 1′}, and the component {1, 1′} and {2, 2′} are disjoint.
For counters γ of type 2, we still have to define when to switch to component 2′.
We can do this as soon as we enter the suffix with no more icγ . This defines a
run ρ′ , which has value less than n, since the only change is the actions is the
replacement of some actions by resets. We still have to show that ρ′ is accepting.
The Büchi states of B are defined as F = FA × {1′, 2′}Γ , which means that all
components must be equal to 1′ or 2′. Every γ of type 2 enters the 2′ component
at some point, so these counters are not a problem: they can only delay the
appearance of the first Büchi state for a finite amount of time. We look at the
behaviour of counters γ of type 1. Each time a rγ is see, the component switches
to 1′. Then it waits a Büchi state of B to go back to 1. At any point, it suffices
to wait for every component to switch to 1′, and then to wait for the next Büchi
state of A, in order to witness a Büchi state of B. Only then, all components
will simultaneously go back to 1 (excepts for the one directly seeing a reset). We
showed that ρ′ is avvalid n-run of B over u, so [[B]](u) ≤ n.

Finally, we get [[B]] ≤ [[A]] ≤ 2[[B]], so [[B]] ≈ [[A]]. ut

E.2 The B-Büchi game for B

We look here from the point of view of the opponent in the B-Büchi game
corresponding to automaton B, i.e. Player Max. His aim is to guarantee either
a high counter value, or the failure of the Büchi condition.

In fact Player Max has no role at all in the transitions of B, since all the
decisions in a run of B are taken by Player Min who aims at a low value. However,
we will be interested in Player Max proving that Player Min does not have a
good strategy. This will be done by assigning ranks to positions in the game,
satisfying certain constraints.

E.3 Playing with graphs

Let C = BΓ be the set of actions on counters of Γ .
Let u = a0a1 · · · ∈ Aω. We define the C-labelled DAG G = (V,E) in order to

describe all possible behaviours of B on u. We have V = Q×N and E ⊆ V ×C×V
is the set {((p, l), ν, (q, l + 1)) : (p, al, ν, q) ∈ ∆}.

The rank definition is a generalization of the one in [16]. Let K := 2|Q|+ 1.
Let n ∈ N. A n-path in G is a path of global value at most n. Let G′ be a
subgraph of G. We say that a vertex v in G′ is n-endangered in G′ iff there is
no infinite n-path in G′ starting in v. We say that v is n-safe in G′ iff no vertex
(q, l) of G′ with q ∈ F is reachable from v via a n-path.

For each n ∈ N, we define the DAGs (Gnk)k∈N by

– Gn0 = Gn,
– Gn2i+1 = Gn2i \ {v : v is n-endangered in Gn2i},
– Gn2i+2 = Gn2i+1 \

{
v : v is n-safe in Gn2i+1

}
.

We simultaneously define for all v ∈ V , rankn(v) =
{
k : v ∈ Gnk \Gnk+1

}
.

Intuitively, rankn(v) evaluates how hard it is to be convinced that there is
no Büchi n-run from v. For instance rankn(v) is 0 if there is no infinite path of
value at most n starting in v.

Lemma 15. For all n < [[B]](u) and i ≥ 0, there exists li such that for all l ≥ li,
there are at most |Q| − i vertices of the form (q, l) in Gn2i.

Proof. We fix n < [[B]](u), and prove the lemma by induction on i. The case
i = 0 follows from the fact that Gn0 ⊆ G, and G has at most |Q| vertices of the
form (q, l) for any l. We assume the lemma for i, and show it for i+ 1.

We consider the graph Gn2i. If it is finite, then Gn2i+1 is empty and Gn2i+2 is
empty as well, so the lemma trivially holds for i+ 1. Otherwise, Gn2i is infinite.
We show that there is a n-safe vertex in Gn2i+2. Assume it is not the case. Since
we removed all n-endangered vertices from Gn2i, G

n
2i+1 is infinite and without

leaves. Let q0 ∈ I, the additional assumption that no vertex is n-safe allows
us to build a path π in Gn2i+1 starting in (q0, 0) with infinitely many F -states,
connected by n-paths. To achieve this, we start in (q0, 0), and use the fact that
it is not n-safe to reach (q1, l

′
1) via a n-path, with q1 ∈ F . We can then use the

fact (q1, l
′
1) is not a leaf, and choose a successor (q′1, l

′
1 + 1). From this we can

again find an n-path to reach (q2, l
′
2) with q2 ∈ F , and so on...

But the automaton B is in normal form, so for each counter γ, all transitions
leaving Büchi states perform a rγ . Since n-paths have value at most n, we get
that the value of π is at most n.

This contradicts the fact that n < [[B]](u), so we can conclude that there is a
n-safe vertex v = (q, l) in Gn2i+1. We claim that we can take li+1 = l.

Since v is in Gn2i+1, it is not n-endangered in Gn2i, there is an infinite n-path
π starting in v in Gn2i, which still exists in Gn2i+1. Moreover the fact that v is
n-safe in Gn2i+1 implies that all vertices in π are as well. This means that π is
absent in Gn2i+2, so the width of the Gn2i+2 after depth l is at most |Q| − i − 1,
by induction hypothesis. ut

Corollary 4. For all u ∈ A∗ and n ∈ N, [[B]](u) > n iff GnK is empty.

Proof. By Lemma 15, if [[B]](u) > n, then there is l|Q| such that Gn2|Q| has

0 vertices of the form (q, l) for all l ≥ l|Q|. It means that all vertices are n-
endangered in Gn2|Q|, so GK = G2|Q|+1 is empty.

Conversely, if [[B]](u) ≤ n, then there is an n-path π in G with infinitely many
F -vertices on it. A straightforward induction shows that for all k, no vertex of
π is n-endangered or n-safe in Gnk , and so π is in all the (Gnk)k≥0. This suffices
to show that GnK is not empty. ut

E.4 Definition of weak automaton W

We can now describe the B-WAA W . It is the same as in [16], excepts that it
copies counter actions from B.

Formally, let W := 〈QW ,A, Qin, FW , Γ, δ〉. We set QW = Q × [0,K − 1],
Qin = I × {K − 1} and FW = Q × ([0,K − 1] ∩ 2N). Intuitively, when the
automaton is in the state (q, i) at position l in the word, it means that the
opponent guessed that rankn(q, l) = i, where n is the value it aims at. Initial
states are an exception to this intuition, because K − 1 is the upper bound for
rankn(q0, 0), for q0 ∈ I. Recall that K = 2|Q|+ 1.

We finally define δ : QW × A→ B+(C×QW) by

δ(〈q, i〉, a) =

{∨
(q,a,ν,p)∈∆

∧
0≤j≤i(ν, 〈p, j〉) if q /∈ F or i even

true if q ∈ F and i odd

If we call the color of a state col(q, i) = i, it is easy to verify that the color
is decreasing in any run of W . Then accepting runs are those which stabilize
in even colors, and W is indeed a weak automaton, with partitions of the form
Qi := Q× {i}.

E.5 Correctness of W

Player Or (or Min) tries to minimize the value of W , by choosing a low value run
of B. Player And (or Max) tries to maximize the value of W , either by forcing
the run to be rejecting (inducing value ∞), or by reaching a high counter value.

Let u ∈ Aω and n = [[B]](u) − 1. By Corollary 4, GnK is empty, so rankn is
a function V → [0,K − 1], and is decreasing along all paths of G. A play of W
corresponds to Player Min choosing a path in G, and player Max labelling this
path with colors. We can look at the strategy σn of player And consisting of
labelling every vertex v of G by rankn(v).

Let P be a play compatible with σn and π be the corresponding path in G.
First of all, the automaton never reaches the transition true, because if rankn(v)
is odd, it means that v is n-safe in some Gn2i+1, so in particular v cannot be an
F -vertex. It means that σn never reaches a state 〈q, i〉 with i odd and q ∈ F .

If π stabilizes in an odd rank, it has value ∞. Assume π stabilizes in an even
rank. It means that after some point, all vertices in π are n-endangered. Since π

is an infinite path in G, it must have value at least n+ 1, otherwise the vertices
on it would not be n-endangered.

The strategy σn witnesses [[W]](u) ≥ n+ 1, so [[W]] ≥ [[B]].

Conversely, if n = [[B]](u), then we show that no strategy of Player Max can
ensure a value at least n + 1. Player Min can play in W an accepting n−run ρ
of B, witnessing infinitely many states from F . Recall that the counter actions
of W are copied from B, so the only way for Player And to ensure value at least
n+ 1 is to make the run rejecting, i.e. stabilize in an odd partition i. However,
since there are infinitely many F -states on ρ, the automaton will reach a state
〈q, i〉 with q ∈ F , and will go to true, so the value of the play will still be at
most n.

We showed [[W]] ≤ [[B]], so finally [[W]] = [[B]].
Remark that we get an equality of the functions computed by W and B, and

not just a cost function equivalence. Moreover, the number of states of W is
quadratic in the number of states of B, and the number of counters is preserved.

By equivalence of CMSO with B-NBA, and of WCMSO with B-WAA (The-
orem 3), we get the following result:

Theorem 7. Any cost function over infinite words definable in CMSO is also
definable in WCMSO.

