Good-for-Games Automata versus Deterministic Automata.

Denis Kuperberg Michał Skrzypczak

IRIT/ONERA (Toulouse) and University of Warsaw

Séminaire du LACL
05/01/2015
Crteil
Deterministic automata are a central tool in automata theory:

- Polynomial algorithms for inclusion, complementation.
- Safe composition with games, trees.
- Solutions of the synthesis problem (verification).
- Easily implemented.

Problems:

- exponential state blow-up
- technical constructions (Safra)

Can we weaken the notion of determinism while preserving some good properties?
Idea : Nondeterminism can be resolved without knowledge about the future.
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.

Introduced independently in

- symbolic representation (Henzinger, Piterman ’06) → simplification
- qualitative models (Colcombet ’09) → replace determinism

Applications

- synthesis
- branching time verification
- tree languages (Boker, K, Kupferman, S ’12)
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1

System:
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1
System: O_1
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2$
System: O_1
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2
System: O_1 O_2
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: l_1 l_2 l_3
System: O_1 O_2
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3
System: O_1 O_2 O_3
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2 \ I_3 \ \cdots$
System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2 \ I_3 \ \cdots$
System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \leadsto A_{det}$ then solve game on A_{det}.
Synthesis : design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2 \ I_3 \ \cdots$
System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \rightarrow A_{det}$ then solve game on A_{det}.

Wrong approach: $\varphi \rightarrow A_{non-det}$: no player can guess the future.
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2 \ I_3 \ \cdots$
System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \rightarrow \mathcal{A}_{\text{det}}$ then solve game on \mathcal{A}_{det}.
Wrong approach: $\varphi \rightarrow \mathcal{A}_{\text{non-det}}$: no player can guess the future.
New approach: $\varphi \rightarrow \mathcal{A}_{\text{GFG}}$.

Definition via a game

A automaton on finite or infinite words.

Refuter plays letters:

Prover: controls transitions
A automaton on finite or infinite words.

Refuter plays letters: \(a\)

Prover: controls transitions
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: $a \ a$

Prover: controls transitions
A automaton on finite or infinite words.

Refuter plays letters: \(a\ a\ b\)

Prover: controls transitions
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: $a \ a \ b \ c$

Prover: controls transitions
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: $a\ a\ b\ c\ c$

Prover: controls transitions
A automaton on finite or infinite words.

Refuter plays letters: $a \ a \ b \ c \ c \ \ldots \ = \ w$

Prover: controls transitions

Player **GFG** wins if: $w \in L \Rightarrow \text{Run accepting}$.
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)

Prover: controls transitions

Player **GFG** wins if: \(w \in L \Rightarrow \text{Run accepting.} \)

A **GFG** means that there is a strategy \(\sigma : A^* \to Q \), for accepting words of \(L(A) \).
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)

Prover: controls transitions

\[
\begin{array}{c}
\xrightarrow{a, b, c} \quad a \\
\xrightarrow{a} \quad b, c \\
\xrightarrow{b} \quad c \\
\xrightarrow{a, b, c} \quad q_0 \quad q_1 \quad q_2
\end{array}
\]

Player GFG wins if: \(w \in L \Rightarrow \) Run accepting.

A GFG means that there is a strategy \(\sigma : A^* \to Q \), for accepting words of \(L(A) \).

How close is this to determinism?
Some properties of GFG automata

Composition with games: $\mathcal{A} \circ G$ has same winner as G with condition $L(\mathcal{A})$.

Theorem (Boker, K, Kupferman, S ’12)

Let \mathcal{A} be an automaton for $L \subseteq A^\omega$. Then the tree version of \mathcal{A} recognizes $\{t : \text{all branches of } t \text{ are in } L\}$ if and only if \mathcal{A} is GFG.

Fact

Let \mathcal{A} be GFG on finite words. Then \mathcal{A} contains an equivalent deterministic automaton.

What about infinite words?
An automaton that is not GFG

This automaton for $L = (a + b)^* a^\omega$ is not GFG:

Opponent strategy: play a until Eve goes in q, then play ba^ω.

Fact

GFG automata with condition C have same expressivity as deterministic automata with condition C.

Therefore, GFG could improve succinctness but not expressivity.
Büchi condition: Run is accepting if infinitely many Büchi transitions are seen.

Language: \([(xa + xb)^* (xaxa + xbxb)]^\omega\)
Theorem

Let A a GFG Büchi automaton. There exists a deterministic automaton B with $L(B) = L(A)$ and $|B| \leq |A|^2$.

Proof scheme:

- Use brutal powerset determinisation,
- rank signatures of Walukiewicz
- iterative normalization of A
- dependency graph over the automaton

Conclusion: the automaton can use itself as memory structure \Rightarrow quadratic blow-up only.

Is it true for all ω-regular conditions?
The language L_n

n paths: σ, π permute paths, $\#$ cuts the current 0-path.
Here for $n = 5$:

$$\alpha: \quad \begin{array} \sigma & \pi & \sigma & \# & \pi & \sigma & \pi & \# \\ \end{array}$$

$$\text{DAG:} \quad \left\{ \begin{array} \hline 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ \hline \end{array} \right.$$

$$\text{time:} \quad \begin{array} \hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \end{array}$$

The word α is in L_n if it contains an infinite path.
Automaton for L_n

GFG coBüchi automaton for L_n with n states:
- letters σ and π permute states deterministically.
- letter $\#$:
 - state 0 \rightarrow go anywhere but pay a coBüchi (must be finitely many times)
 - states $1, \ldots, n$: do nothing

Strategy σ: try paths one after the other. Uses memory 2^n, to ensure that all paths are visited.

Theorem

Any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) **GFG** automata can provide both succinctness and sound behaviour with respect to games.
Automaton for L_n

GFG coBüchi automaton for L_n with n states:

- letters σ and π permute states deterministically.
- letter $\#$:
 - state $0 \rightarrow$ go anywhere but pay a coBüchi (must be finitely many times)
 - states $1, \ldots, n$: do nothing

Strategy σ: try paths one after the other. Uses memory 2^n, to ensure that all paths are visited.

Theorem

Any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) **GFG** automata can provide both succinctness and sound behaviour with respect to games.

Question: Can we effectively use them?
Recognizing GFG automata

Question: Given an automaton \mathcal{A}, is it GFG?

Theorem

The complexity of deciding GFG-ness is in

- P for coBüchi automata
- NP for Büchi automata
- at least as hard as solving parity games ($NP \cap coNP$) for parity automata.

Open Problems

- Is it in P for any fixed acceptance condition?
- Is it equivalent to parity games in the general case?
Summary and conclusion

Results

- **GFG** automata capture good properties of deterministic automata.
- Inclusion is in P, but Complementation \sim Determinisation.
- Conditions Büchi and lower: **GFG** \approx Deterministic.
- Conditions coBüchi and higher: exponential succinctness.
- Recognizing **GFG** coBüchi is in P.

Open Problems

- Can we build small **GFG** automata in a systematic way?
- Complexity of deciding **GFG**-ness for parity automata?