Good-for-Games Automata versus Deterministic Automata.

Denis Kuperberg1,2 Michał Skrzypczak1

1University of Warsaw
2IRIT/ONERA (Toulouse)

Séminaire MoVe
12/02/2015
LIF, Luminy
Deterministic automata are a central tool in automata theory:

▶ Polynomial algorithms for inclusion, complementation.
▶ Safe composition with games, trees.
▶ Solutions of the synthesis problem (verification).
▶ Easily implemented.

Problems:

▶ exponential state blow-up
▶ technical constructions (Safra)

Can we weaken the notion of determinism while preserving some good properties?
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.

Introduced independently in
- symbolic representation (Henzinger, Piterman ’06) → simplification
- qualitative models (Colcombet ’09) → replace determinism

Applications
- synthesis
- branching time verification
- tree languages (Boker, K, Kupferman, S ’12)
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1

System:
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1

System: O_1
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 \ I_2$
System: O_1
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2
System: O_1 O_2
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3
System: O_1 O_2
Evaluating a game

Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3
System: O_1 O_2 O_3
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3 \cdots
System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3 \cdots
System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \rightsquigarrow A_{det}$ then solve game on A_{det}.
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: I_1 I_2 I_3 \cdots
System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \leadsto A_{det}$ then solve game on A_{det}.
Wrong approach: $\varphi \leadsto A_{non-det}$: no player can guess the future.
Synthesis: design a system responding to environment, while satisfying a constraint φ.

Environment: $I_1 I_2 I_3 \cdots$
System: $O_1 O_2 O_3 \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Classical approach: $\varphi \rightarrow A_{det}$ then solve game on A_{det}.

Wrong approach: $\varphi \rightarrow A_{non-det}$: no player can guess the future.

New approach: $\varphi \rightarrow A_{GFG}$.
A automaton on finite or infinite words.

- **Refuter** plays letters:
- **Prover:** controls transitions

![Diagram of automaton]

- States: q_0, q_1, q_2
- Transitions:
 - q_0 to q_1: a, b, c
 - q_1 to q_0: b, c
 - q_1 to q_2: a
 - q_2 to q_1: c
 - q_2 to q_0: a, b, c
Definition via a game

A automaton on finite or infinite words.
Refuter plays letters: a
Prover: controls transitions
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: $a \ a$

Prover: controls transitions

![Diagram of a finite automaton](image-url)

- q_0 with transitions: a, b, c
- q_1 with transitions: a, b, c (green transition)
- q_2 with transitions: a, b, c
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \)

Prover: controls transitions

\[
\begin{array}{c}
q_0 \overset{a}{\rightarrow} q_1 \overset{b}{\rightarrow} q_2 \\
\downarrow b, c \quad \downarrow c \\
a, b, c \quad a, b, c
\end{array}
\]
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \)

Prover: controls transitions

![Diagram of an automaton with states and transitions](image-url)
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \)

Prover: controls transitions

\[
\begin{array}{c}
q_0 \\
\quad \quad \quad \quad \quad \quad a, b, c \\
\quad \quad \quad \quad \quad \quad a \\
\quad \quad \quad \quad \quad \quad b, c \\
\quad \quad \quad \quad \quad \quad b \\
\quad \quad \quad \quad \quad \quad c \\
\quad \quad \quad \quad \quad \quad a, b, c \\
q_1 \\
\quad \quad \quad \quad \quad \quad a \\
\quad \quad \quad \quad \quad \quad a \\
\quad \quad \quad \quad \quad \quad b \\
\quad \quad \quad \quad \quad \quad c \\
\quad \quad \quad \quad \quad \quad a, b, c \\
q_2 \\
\end{array}
\]
A automaton on finite or infinite words.
Refuter plays letters: $a \ a \ b \ c \ c \ldots = w$
Prover: controls transitions

Player GFG wins if: $w \in L \Rightarrow$ Run accepting.
Definition via a game

A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w\)

Prover: controls transitions

Player GFG wins if: \(w \in L \Rightarrow \text{Run accepting.}\)

A GFG means that there is a strategy \(\sigma : A^* \rightarrow Q\), for accepting words of \(L(A)\).
Definition via a game

A automaton on finite or infinite words.
Refuter plays letters: $a\ a\ b\ c\ c\ c\ldots = w$
Prover: controls transitions

Player GFG wins if: $w \in L \Rightarrow \text{Run accepting.}$

A GFG means that there is a strategy $\sigma : A^* \rightarrow Q$, for accepting words of $L(A)$.
How close is this to determinism?
Some properties of GFG automata

Composition with games: $A \circ G$ has same winner as G with condition $L(A)$.
Some properties of GFG automata

Composition with games: \(\mathcal{A} \circ G \) has same winner as \(G \) with condition \(L(\mathcal{A}) \).

Theorem

If \(\mathcal{A} \) is nondeterministic and \(\mathcal{B} \) is GFG, it is in \(\mathsf{P} \) to decide whether \(L(\mathcal{A}) \subseteq L(\mathcal{B}) \).
Some properties of GFG automata

Composition with games: $\mathcal{A} \circ G$ has same winner as G with condition $L(\mathcal{A})$.

Theorem

If \mathcal{A} is nondeterministic and \mathcal{B} is GFG, it is in \mathbf{P} to decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$.

Theorem (Boker, K, Kupferman, Skrzypczak, ICALP '12)

If \mathcal{A} and \mathcal{B} are GFG for L and \bar{L}, there is a deterministic automaton for L of size $|\mathcal{A}| \cdot |\mathcal{B}|$.
Some properties of GFG automata

Composition with games: $\mathcal{A} \circ G$ has same winner as G with condition $L(\mathcal{A})$.

Theorem

If \mathcal{A} is nondeterministic and \mathcal{B} is GFG, it is in P to decide whether $L(\mathcal{A}) \subseteq L(\mathcal{B})$.

Theorem (Boker, K, Kupferman, Skrzypczak, ICALP ’12)

If \mathcal{A} and \mathcal{B} are GFG for L and \overline{L}, there is a deterministic automaton for L of size $|\mathcal{A}| \cdot |\mathcal{B}|$.

Theorem (Boker, K, Kupferman, Skrzypczak, ICALP ’12)

Let \mathcal{A} be an automaton for $L \subseteq A^\omega$. Then the tree version of \mathcal{A} recognizes \{ $t : all \ branches \ of \ t \ are \ in \ L$ \} if and only if \mathcal{A} is GFG.
An automaton that is not GFG

This automaton for \(L = (a + b)^* a^\omega \) is not GFG:

![Automaton Diagram]

Opponent strategy: play \(a \) until Eve goes in \(q \), then play \(ba^\omega \).
An automaton that is not GFG

This automaton for $L = (a + b)^* a^\omega$ is not GFG:

Opponent strategy: play a until Eve goes in q, then play ba^ω.

Fact

GFG automata with condition C have same expressivity as deterministic automata with condition C.

Therefore, GFG could improve succinctness but not expressivity.
An automaton that is not GFG

This automaton for \(L = (a + b)^* a^\omega \) is not GFG:

\[
\begin{align*}
\text{Opponent strategy}: \text{play } a \text{ until Eve goes in } q, \text{ then play } ba^\omega.
\end{align*}
\]

Fact

GFG automata with condition C have same expressivity as deterministic automata with condition C.

Therefore, **GFG** could improve succinctness but not expressivity.

But **GFG** on finite words \(\iff \) deterministic (+useless transitions).

What about infinite words?
Büchi condition: Run is accepting if infinitely many Büchi transitions are seen.

Language: \([(xa + xb)^{\omega} (xaxa + xbxb)^{\omega}]\)
Determinization of Büchi GFG

Theorem

Let \mathcal{A} a GFG Büchi automaton. There exists a deterministic Büchi automaton \mathcal{B} with $L(\mathcal{B}) = L(\mathcal{A})$ and $|\mathcal{B}| \leq |\mathcal{A}|^2$.

Proof scheme:

- Use brutal powerset determinisation,
- rank signatures of Walukiewicz
- iterative normalization of \mathcal{A}
- dependency graph over the automaton

Conclusion: the automaton can use itself as memory structure \Rightarrow quadratic blow-up only.

Is it true for all ω-regular conditions?
CoBüchi counter-example: the language L_n

n paths: σ, π permute paths, \# cuts the current 0-path.

Here for $n = 5$:

$$\alpha: \begin{array}{ccccccc}
\sigma & \pi & \sigma & \# & \pi & \sigma & \pi & \# \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}$$

The word α is in L_n if it contains an infinite path.
Automaton for L_n

GFG coBüchi automaton for L_n with n states:

- letters σ and π permute states deterministically.
- letter $\#$:
 - state 0 \rightarrow go anywhere but pay a coBüchi (must be finitely many times)
 - states 1, ..., n: do nothing

Strategy σ: try paths one after the other. Uses memory 2^n, to ensure that all paths are visited.
Automaton for L_n

GFG coBüchi automaton for L_n with n states:

- letters σ and π permute states deterministically.
- letter $\#$:
 - state 0 \rightarrow go anywhere but pay a coBüchi (must be finitely many times)
 - states 1, \ldots, n: do nothing

Strategy σ: try paths one after the other. Uses memory 2^n, to ensure that all paths are visited.

Theorem

Any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) **GFG** automata can provide both succinctness and sound behaviour with respect to games.

Question: Can we effectively use them?
Recognizing GFG automata

Question: Given an automaton \mathcal{A}, is it GFG?

Theorem

The complexity of deciding GFG-ness is in

- NP for Büchi automata
- P for coBüchi automata (involved proof)
- at least as hard as solving parity games ($\text{NP} \cap \text{coNP}$) for parity automata.

Open Problems

- Is it in P for any **fixed** acceptance condition?
- Is it equivalent to parity games in the general case?
Summary and conclusion

Results

- **GFG** automata capture good properties of deterministic automata.
- Inclusion is in \mathbf{P}, but Complementation \sim Determinisation.
- Conditions Büchi and lower: **GFG** \approx Deterministic.
- Conditions coBüchi and higher: exponential succinctness.
- Recognizing **GFG** coBüchi is in \mathbf{P}.

Open Problems

- Can we build small **GFG** automata in a systematic way?
- Complexity of deciding **GFG**-ness for parity automata?
- Exact cost of Büchi **GFG** determinisation?