Good-for-Games Automata versus Deterministic Automata.

Denis Kuperberg Michał Skrzypczak

TUM Munich and University of Warsaw

Séminaire PLUME
19/11/2015
Lyon
Deterministic automata on words are a central tool in automata theory:

- Polynomial algorithms for inclusion, complementation.
- Safe composition with games, trees.
- Solutions of the synthesis problem (verification).
- Easily implemented.

Problems:

- exponential state blow-up
- technical constructions (Safra)

Can we weaken the notion of determinism while preserving some good properties?
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.
Good-for-Games automata

Idea: Nondeterminism can be resolved without knowledge about the future.

Introduced independently in

- symbolic representation (Henzinger, Piterman ’06) → simplification
- quantitative models (Colcombet ’09) → replace determinism

Applications

- synthesis
- branching time verification
- tree languages (Boker, K, Kupferman, S ’12)
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1

System:
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1

System: O_1
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2$
System: O_1
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2$

System: $O_1 \ O_2$

Church's problem: Can the system win? If yes give strategy.

Classical approach: $\varphi \\; A_{\text{det}}$ then solve game on A_{det}.

2EXP blow-up for φ in LTL

Wrong approach: $\varphi \; A_{\text{non-det}}$: no player can guess the future.
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2 I_3

System: O_1 O_2
Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: I_1 I_2 I_3

System: O_1 O_2 O_3
Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (I\!O)^\omega$ (regular language).

Environment: I_1 I_2 I_3 \cdots

System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3 \ \cdots$
System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church’s problem: Can the system win? If yes give strategy.
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3 \ \cdots$

System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church’s problem: Can the system win? If yes give strategy.

Classical approach: $\varphi \leadsto A_{det}$ then solve game on A_{det}.

2EXP blow-up for φ in LTL
Evaluating a game

Finite alphabets I for inputs and O for outputs.

Synthesis: design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^\omega$ (regular language).

Environment: $I_1 \ I_2 \ I_3 \ \cdots$

System: $O_1 \ O_2 \ O_3 \ \cdots$

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Church’s problem: Can the system win? If yes give strategy.

Classical approach: $\varphi \leadsto A_{det}$ then solve game on A_{det}.

2EXP blow-up for φ in LTL

Wrong approach: $\varphi \leadsto A_{non-det}$: no player can guess the future.
A trivial synthesis example

Trivial instance of the synthesis problem:

- \(I = \{a, b\}, \ O = \{c, d\} \)
- \(\varphi = (IO)^\omega \)
- Synthesis possible (no wrong answer !)
A trivial synthesis example

Trivial instance of the synthesis problem:

- \(I = \{a, b\} \), \(O = \{c, d\} \)
- \(\varphi = (IO)^\omega \)
- Synthesis possible (no wrong answer !)

\[\mathcal{A}_{det} \ (\text{safety}): \]

\[\rightarrow I \leftarrow \]

\[a, b \]

\[\rightarrow O \leftarrow \]

\[c, d \]
Trivial instance of the synthesis problem:

- $I = \{a, b\}$, $O = \{c, d\}$
- $\varphi = (IO)^\omega$
- Synthesis possible (no wrong answer !)

\[A_{det} \ (safety): \]

\[\begin{array}{c}
\text{a, b} \\
I \quad \quad \quad \quad \quad \quad O \\
\end{array}\]

\[\begin{array}{c}
\text{c} \\
\end{array}\]
A trivial synthesis example

Trivial instance of the synthesis problem:

- $I = \{a, b\}$, $O = \{c, d\}$
- $\varphi = (IO)^\omega$
- Synthesis possible (no wrong answer !)

\[\mathcal{A}_{\text{det}} \text{ (safety):} \]

\[\mathcal{A}_{\text{non-det}} \text{ (safety):} \]
A trivial synthesis example

Trivial instance of the synthesis problem:

- \(I = \{a, b\} \), \(O = \{c, d\} \)
- \(\varphi = (IO)^\omega \)
- Synthesis possible (no wrong answer !)

\(A_{det} \) (safety):

\(A_{non-det} \) (safety):
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters:
GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words. Refuter plays letters: \(a \)

GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: a, a

GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words.

Refuter plays letters: $a \ a \ b$

GFG Prover: controls transitions

![Diagram of a GFG game automaton](image-url)
Definition of GFG via a game

A automaton on finite or infinite words.

Refuter plays letters: $a \ a \ b \ c$

GFG Prover: controls transitions
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: a a b c c
GFG Prover: controls transitions

\[
\begin{array}{c}
\text{q}_0 \quad a, b, c \\
\text{q}_1 \quad a, b, c \\
\text{q}_2 \quad a, b, c \\
\end{array}
\]
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: $a \ a \ b \ c \ c \ldots = w$

GFG Prover: controls transitions

GFG Prover wins if: $w \in L \Rightarrow$ Run accepting.
Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)
GFG Prover: controls transitions

\[q_0 \overset{a}{\rightarrow} q_0 \overset{a}{\rightarrow} q_1 \overset{b}{\rightarrow} q_2 \overset{a, b, c}{\rightarrow} q_0 \]

GFG Prover wins if: \(w \in L \Rightarrow \) Run accepting.

A GFG means that there is a strategy \(\sigma : A^* \rightarrow Q \), for accepting words of \(L(A) \).
A automaton on finite or infinite words.

Refuter plays letters: \(a \ a \ b \ c \ c \ldots = w \)

GFG Prover: controls transitions

GFG Prover wins if: \(w \in L \Rightarrow \) Run accepting.

A GFG means that there is a strategy \(\sigma : A^* \rightarrow Q \), for accepting words of \(L(A) \).

How close is this to determinism?
Composing a game with an automaton:

Input:
- Game G with complex winning condition L.
 - A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A.
 - Simple accepting condition C.

Output:
- Game $A_L \circ G$, with winning condition C.
- Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \leadsto positional winning strategies
Why Good-for-games

Composing a game with an automaton:

Input:
- Game G with complex winning condition L.
 A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A.
 Simple accepting condition C.

Output:
Game $A_L \circ G$, with winning condition C.
Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \leadsto positional winning strategies

Theorem (Sound Composition)

A_L is GFG if and only if
for all G with condition L, $A_L \circ G$ has same winner as G.
Some properties of GFG automata

GFG Automata:
- “$A \subseteq B$?": in P if A GFG (PSPACE-complete for ND)
- But Complementation \sim Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.
Some properties of GFG automata

GFG Automata:

- “$\mathcal{A} \subseteq \mathcal{B}$?”: in P if \mathcal{A} GFG (PSPACE-complete for ND)
- But Complementation \sim Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '12)

Let \mathcal{A} be an automaton for $L \subseteq \mathcal{A}^\omega$. Then the tree version of \mathcal{A} recognizes $\{t : all \ branches \ of \ t \ are \ in \ L\}$ if and only if \mathcal{A} is GFG.
Some properties of GFG automata

GFG Automata:
- “$A \subseteq B$?”: in \mathbf{P} if A GFG (\mathbf{PSPACE}-complete for ND)
- But Complementation \simeq Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S ’12)

Let A be an automaton for $L \subseteq A^\omega$. Then the tree version of A recognizes $\{t : all\ branches\ of\ t\ are\ in\ L\}$ if and only if A is GFG.

Theorem (Löding)

Let A be GFG on finite words. Then A contains an equivalent deterministic automaton.
Some properties of GFG automata

GFG Automata:
- "\(A \subseteq B? \): in \(\mathbb{P} \) if \(A \) GFG (PSPACE-complete for ND)
- But Complementation \(\sim \) Determinisation.
- Size of GFG strategy \(\sigma \approx \) Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '12)

Let \(A \) be an automaton for \(L \subseteq A^\omega \). Then the tree version of \(A \) recognizes \(\{ t : \text{all branches of } t \text{ are in } L \} \) if and only if \(A \) is GFG.

Theorem (Löding)

Let \(A \) be GFG on finite words. Then \(A \) contains an equivalent deterministic automaton.

What about infinite words? Colcombet’s conjecture: GFG \(\approx \) Det.
An automaton that is not GFG

This automaton for $L = (a + b)^* a^\omega$ is not GFG:

Refuter strategy: play a until Eve goes in q, then play ba^ω.
An automaton that is not GFG

This automaton for \(L = (a + b)^* a^\omega \) is not GFG:

![Automaton diagram](image)

Refuter strategy: play \(a \) until Eve goes in \(q \), then play \(ba^\omega \).

Fact

GFG automata with condition \(C \) have same expressivity as deterministic automata with condition \(C \).

Therefore, **GFG** could improve succinctness but not expressivity.
Büchi condition: Run is accepting if infinitely many Büchi transitions are seen.

Language: \([(xa + xb)^* (xaxa + xbxb)]^\omega\)
Theorem

Let \mathcal{A} a GFG Büchi automaton. There exists a deterministic automaton \mathcal{B} with $L(\mathcal{B}) = L(\mathcal{A})$ and $|\mathcal{B}| \leq |\mathcal{A}|^2$.

Proof scheme:

- Brutal powerset determinisation,
- Use is as a guide to normalize \mathcal{A}.

Conclusion: the automaton can use itself as memory structure \Rightarrow quadratic blow-up only.

Is it true for all ω-regular conditions?
The coBüchi jump

CoBüchi condition: must see **finitely** many rejecting states.

Fact (Miyano-Hayashi ’84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi **GFG** simpler to determinize than Büchi **GFG**?
The coBüchi jump

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi ’84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG? NO

Theorem

For all $n \geq 2$, there exists a language L_n on 3 letters such that

- There is a n-state CoBüchi GFG automaton for L_n,
- any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) GFG automata can provide both succinctness and sound behaviour with respect to games.
(\(i, j\))-Parity condition: Each state has a color in \(\{i, i + 1, \ldots, j\}\).

Accepting runs: Maximal color occurring infinitely often is even.

Blow-up GFG → Det:

- Reachability
 - Safety
 - Büchi \((1, 2)\)
 - Polynomial
 - Co-Büchi \((0, 1)\)
 - Exponential
 - Büchi \((0, 2)\)
 - \((1, 3)\)
 - \((0, 3)\) \(\ldots\)
General picture

(i,j)-Parity condition: Each state has a color in \{i, i + 1, \ldots, j\}.

Accepting runs: Maximal color occurring infinitely often is even.

Blow-up GFG \rightarrow Det:

- Polynomial safety
- Exponential reachability

- Büchi (1,2)
- co-Büchi (0,1)

Question: How practical are these GFG?
Recognizing GFG automata

Question: Given an automaton \mathcal{A}, is it **GFG**?

Theorem

The complexity of deciding **GFG-ness** is in:
- **Upper bound**: EXPTIME (even for $(1,3)$-parity)
- **NP** for Büchi automata
- **P** for coBüchi automata (*surprising given blow-up result*)
- At least as hard as solving parity games ($\text{P} / \text{NP} \cap \text{coNP}$) for parity automata.

Open Problems
- Is it in **P** for any fixed acceptance condition?
- Is it equivalent to parity games for arbitrary condition?
Summary and conclusion

Results

- GFG automata capture good properties of deterministic automata.
- Inclusion is in \(\mathbf{P} \), but Complementation \(\sim \) Determinisation.
- Conditions Büchi and lower: GFG \(\approx \) Deterministic.
- Conditions coBüchi and higher: exponential succinctness.
- Recognizing GFG coBüchi is in \(\mathbf{P} \).

Open Problems

- Can we build small GFG automata in a systematic way?
- Complexity of deciding GFG-ness for parity automata?
 (gap \(\mathbf{P} \) vs \(\mathbf{EXPTIME} \))