Soundness in negotiations.

J. Esparza1 D. Kuperberg1,2 A. Muscholl1,2,3 I. Walukiewicz1,3

1TU Munich, 2IAS, 3LaBRI,CNRS

Highlights of Automata
Bruxelles 08/09/2016
Introduction

Negotiations [Desel, Esparza ’13]
- model multiparty distributed cooperation,
- better complexity than alternative models (Petri Nets),
- embeds natural concepts: soundness, race properties,...

This paper:
- study of different restrictions on the model,
- complexity of deciding soundness, concurrency relationships
- application to workflow analysis for programs
Run of a negotiation

n_{init} initial node, n_{fin} final node.
Here: 3 processes p_1, p_2, p_3 and only one action a.
Run of a negotiation

\(n_{\text{init}} \) initial node, \(n_{\text{fin}} \) final node.
Here: 3 processes \(p_1, p_2, p_3 \) and only one action \(a \).

\[
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
\]
Run of a negotiation

\(n_{\text{init}} \) initial node, \(n_{\text{fin}} \) final node.
Here: 3 processes \(p_1, p_2, p_3 \) and only one action \(a \).

\[
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
\]

\[
\delta(n_1, a, p_2) = \{n_2, n_{\text{fin}}\}
\]
Run of a negotiation

n_{init} initial node, n_{fin} final node. Here: 3 processes p_1, p_2, p_3 and only one action a.

\[
\delta(n_{init}, a, p_2) = \{n_1, n_3\}
\]

\[
\delta(n_1, a, p_2) = \{n_2, n_{fin}\}
\]

\[
\delta(n_2, a, p_2) = \{n_1, n_3\}
\]
Run of a negotiation

n_{init} initial node, n_{fin} final node.
Here: 3 processes p_1, p_2, p_3 and only one action a.

$$
\delta(n_{init}, a, p_2) = \{n_1, n_3\}
$$

$$
\delta(n_1, a, p_2) = \{n_2, n_{fin}\}
$$

$$
\delta(n_2, a, p_2) = \{n_1, n_3\}
$$

$$
\delta(n_3, a, p_2) = \{n_2, n_{fin}\}
$$
Run of a negotiation

n_{init} initial node, n_{fin} final node.
Here: 3 processes p_1, p_2, p_3 and only one action a.

$\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}$

$\delta(n_1, a, p_2) = \{n_2, n_{\text{fin}}\}$

$\delta(n_2, a, p_2) = \{n_1, n_3\}$

$\delta(n_3, a, p_2) = \{n_2, n_{\text{fin}}\}$

p_2 is non-deterministic, while p_1 and p_3 are deterministic.
The Soundness problem
Soundness property

Soundness:
Every partial run can be completed into an accepting run. Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.
Soundness property

Soundness:
Every partial run can be completed into an accepting run. Non-blocking property, witnessing *good design*.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation $\mathcal{N} = (N, \text{Proc}, R, \delta)$.
OUTPUT: Is \mathcal{N} sound?
Soundness property

Soundness:
Every partial run can be completed into an accepting run. Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim:
INPUT: A negotiation $\mathcal{N} = (N, Proc, R, \delta)$.
OUTPUT: Is \mathcal{N} sound?

Soundness problem *PSPACE-complete* in general [DE ’13].
Subclasses of negotiations

Complexity of the soundness problem for classes of negotiations?

Natural Restrictions on negotiations:

- **Deterministic**: All processes are deterministic.
- **Weakly non-deterministic**: All nodes involve at least one deterministic process.
- **Acyclic**: No cycle in the transition graph between nodes.
Subclasses of negotiations

Complexity of the soundness problem for classes of negotiations?

Natural Restrictions on negotiations:

- **Deterministic**: All processes are deterministic.
- **Weakly non-deterministic**: All nodes involve at least one deterministic process.
- **Acyclic**: No cycle in the transition graph between nodes.

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.
Results on the complexity of the soundness problem

Theorem (EKMW '16)

Deciding soundness is in PTIME for acyclic weakly non-deterministic negotiations.

Use of the Omitting Theorem: we can decide in PTIME which parts of a negotiation are essential.
Theorem (EKMW ‘16)

Deciding soundness is in PTIME for acyclic weakly non-deterministic negotiations.

Use of the Omitting Theorem: we can decide in PTIME which parts of a negotiation are essential.

Mildly relaxing acyclicity or weak non-determinism: Soundness problem becomes coNP-complete.

Det-acyclicity: only deterministic processes are acyclic. No cycles in runs of weakly ND negotiations.
Applications of sound negotiations
Race Problem:
INPUT: a sound negotiation \mathcal{N}, and two nodes n, m of \mathcal{N}.
OUTPUT: can n and m be concurrently enabled?

- standard question for concurrent systems
- used for guaranteeing predictable behaviours
- inherently parallel property, hard to work with linearizations
Race Property

Race Problem:

INPUT: a sound negotiation \mathcal{N}, and two nodes n, m of \mathcal{N}.

OUTPUT: can n and m be concurrently enabled?

- standard question for concurrent systems
- used for guaranteeing predictable behaviours
- inherently parallel property, hard to work with linearizations

Theorem (EKMW '16)

The race problem is

- $\textit{NLOGSPACE}$-complete for deterministic acyclic negotiations,
- in \textit{PTIME} for deterministic negotiations.
Application of negotiations: analyze the workflow of programs. We add global variables that can be affected by nodes via operations: $\text{alloc}(x)$, $\text{read}(x)$, $\text{write}(x)$, $\text{dealloc}(x)$.

Acyclic deterministic negotiations with variables \rightsquigarrow formalize data-flow problems from the literature [van der Aalst et al, '09]:

- **Well-defined behaviour**: no concurrent operations on the same variable,
- **No redundancy**: allocated variables are used,
- **Clean memory**: allocated variables are deallocated.
Application of negotiations: analyze the workflow of programs. We add global variables that can be affected by nodes via operations: \(alloc(x) \), \(read(x) \), \(write(x) \), \(dealloc(x) \).

Acyclic deterministic negotiations with variables \(\leadsto \) formalize data-flow problems from the literature [van der Aalst et al, '09]:

- **Well-defined behaviour**: no concurrent operations on the same variable,
- **No redundancy**: allocated variables are used,
- **Clean memory**: allocated variables are deallocated.

Theorem (EKMW '16)

All these properties can be checked in PTIME on data-flows.

Exponential improvement on [van der Aalst et al, '09].
Conclusion

Soundness problem for negotiations:
- PTIME for acyclic weakly non-deterministic
- coNP-complete for mild relaxations

Race problem for sound negotiations:
- NLOGSPACE-complete for deterministic acyclic,
- PTIME for deterministic.

Data-flow analysis:
- modelisation with deterministic acyclic negotiations,
- PTIME algorithms for standard problems on data-flows.

Good Expressivity/Complexity ratio, well-suited for practical use.