Soundness in negotiations.

J. Esparza1 D. Kuperberg1,2,3 A. Muscholl1,2,4 I. Walukiewicz1,4

1TU Munich, 2IAS, 3ENS Lyon, 4LaBRI,CNRS

Séminaire 68NQRT, IRISA, Rennes
12/01/2017
Introduction

Negotiations [Desel, Esparza ’13] CONCUR

- model multiparty distributed cooperation,
- better complexity than alternative models (Petri Nets),
- embeds natural concepts: soundness, race properties,...

This paper [EKMW ’16] CONCUR:

- study of different restrictions on the model,
- complexity of deciding soundness, concurrency relationships
- application to workflow analysis for programs
An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.
Negotiations

- An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.
- If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.
An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.

If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.

A negotiation \mathcal{N} consists of
Negotiations

- An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.
- If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.
- A negotiation \mathcal{N} consists of
 - a set of processes Proc,
An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.

If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.

A negotiation \mathcal{N} consists of
- a set of processes Proc,
- a set of outcomes R.

An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes. If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.

A negotiation \mathcal{N} consists of
- a set of processes Proc,
- a set of outcomes R,
- a set of nodes N with two distinguished initial and final nodes,
An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.

If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.

A negotiation N consists of

- a set of processes Proc,
- a set of outcomes R,
- a set of nodes N with two distinguished initial and final nodes,
- a domain function $\text{dom} : N \rightarrow \mathcal{P}(\text{Proc})$ assigning to each node a set of participants,
Negotiations

- An atomic negotiation or node involves a set of processes (participants) and has a set of possible outcomes.
- If all participants are ready to engage in the node (synchronization), then the node can be fired: the processes agree on one of the outcomes (choice) and move on.
- A negotiation \(\mathcal{N} \) consists of
 - a set of processes \(\text{Proc} \),
 - a set of outcomes \(R \),
 - a set of nodes \(N \) with two distinguished initial and final nodes,
 - a domain function \(\text{dom}: N \to \mathcal{P}(\text{Proc}) \) assigning to each node a set of participants,
 - a transition table \(\delta: N \times R \times \text{Proc} \to \mathcal{P}(N) \)
 \(\delta(n, a, p) = \{n', n''\} \) means: if the participants of \(n \) choose \(a \), then \(p \) is ready to engage in \(n' \) or \(n'' \).
Run of a negotiation

n_{init} initial node, n_{fin} final node.
Here: 3 processes p_1, p_2, p_3 and only one action a.

$$
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
$$

p_2 is non-deterministic, while p_1 and p_3 are deterministic.
Run of a negotiation

n_{init} initial node, n_{fin} final node. Here: 3 processes p_1, p_2, p_3 and only one action a.

$$\delta(n_{init}, a, p_2) = \{n_1, n_3\}$$
Run of a negotiation

n_{init} initial node, n_{fin} final node.
Here: 3 processes p_1, p_2, p_3 and only one action a.

$$\delta(n_{init}, a, p_2) = \{n_1, n_3\}$$

$$\delta(n_1, a, p_2) = \{n_2, n_{fin}\}$$
Run of a negotiation

\(n_{init} \) initial node, \(n_{fin} \) final node.
Here: 3 processes \(p_1, p_2, p_3 \) and only one action \(a \).

\[
\delta(n_{init}, a, p_2) = \{ n_1, n_3 \}
\]
\[
\delta(n_1, a, p_2) = \{ n_2, n_{fin} \}
\]
\[
\delta(n_2, a, p_2) = \{ n_1, n_3 \}
\]
Run of a negotiation

\(n_{init} \) initial node, \(n_{fin} \) final node.
Here: 3 processes \(p_1, p_2, p_3 \) and only one action \(a \).

\[
\delta(n_{init}, a, p_2) = \{n_1, n_3\}
\]

\[
\delta(n_1, a, p_2) = \{n_2, n_{fin}\}
\]

\[
\delta(n_2, a, p_2) = \{n_1, n_3\}
\]

\[
\delta(n_3, a, p_2) = \{n_2, n_{fin}\}
\]

\(p_2 \) is non-deterministic, while \(p_1 \) and \(p_3 \) are deterministic.
Run of a negotiation

\(n_{\text{init}} \) initial node, \(n_{\text{fin}} \) final node.
Here: 3 processes \(p_1, p_2, p_3 \) and only one action \(a \).

\[
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
\]
\[
\delta(n_1, a, p_2) = \{n_2, n_{\text{fin}}\}
\]
\[
\delta(n_2, a, p_2) = \{n_1, n_3\}
\]
\[
\delta(n_3, a, p_2) = \{n_2, n_{\text{fin}}\}
\]

\(p_2 \) is non-deterministic, while \(p_1 \) and \(p_3 \) are deterministic.
Deterministic and weakly non-deterministic negotiations

- **Deterministic negotiations**: All processes are deterministic.
Deterministic and weakly non-deterministic negotiations

- **Deterministic negotiations**: All processes are deterministic.
- **Weakly non-deterministic negotiations**: Each node involves at least one deterministic process.
- **Acyclic**: No cycle in the transition graph between nodes.
Deterministic and weakly non-deterministic negotiations

- **Deterministic negotiations**: All processes are deterministic.
- **Weakly non-deterministic negotiations**: Each node involves at least one deterministic process.
- **Acyclic**: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes. Non-deterministic processes are “told” where to go by the deterministic ones.
Deterministic and weakly non-deterministic negotiations

- **Deterministic negotiations**: All processes are deterministic.
- **Weakly non-deterministic negotiations**: Each node involves at least one deterministic process.
- **Acyclic**: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is *guided* by the deterministic processes. Non-deterministic processes are “told” where to go by the deterministic ones.

Research program: investigate the complexity of analysis problems for deterministic and weakly non-deterministic negotiations.
The Soundness problem
Soundness:
Every partial run can be completed into an accepting run. Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.
Soundness property

Soundness:
Every partial run can be completed into an accepting run. Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim: Understand the fine-grained complexity of the following problem, depending on restrictions on \mathcal{N}:

INPUT: A negotiation $\mathcal{N} = (N, Proc, R, \delta)$.

OUTPUT: Is \mathcal{N} sound?
Subclasses of negotiations

Soundness problem **PSPACE-complete** in general [DE ’13].

Complexity of the soundness problem for *classes of negotiations*?

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.

This paper [EKMW ’16]: explores the room between the two.
Theorem (EKMW ’16)

Deciding soundness is in PTIME for acyclic weakly non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.

Theorem (EKMW ’16)

It can be decided in PTIME if for a given deterministic, acyclic, and sound negotiation \(N \) and two sets \(P \subseteq N \times \mathbb{R} \) and \(B \subseteq N \), there is a successful run of \(N \) containing \(P \) and omitting \(B \).

General interest: characterize the important parts of a negotiation.
What happens if we drop restrictions in the previous results? Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.
What happens if we drop restrictions in the previous results?

Dropping **weak non-determinism**:

Theorem (EKMW ’16)

The soundness problem for *acyclic negotiations* is coNP-complete.

Dropping **acyclicity** for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for **det-acyclic weakly non-deterministic negotiations** is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.

Enough here to prevent cycles in actual runs.
Det-acyclicity example

Det-acyclicity + Weak ND \implies no cycles in runs,
Here not weakly ND.

\[
\begin{align*}
\delta(n_{\text{init}}, a, p_2) &= \{n_1, n_3\} \\
\delta(n_1, a, p_2) &= \{n_2\} \\
\delta(n_2, a, p_2) &= \{n_1, n_3\} \\
\delta(n_3, a, p_2) &= \{n_2\}
\end{align*}
\]
Det-acyclicity example

Det-acyclicity + Weak ND \implies no cycles in runs,
Here not weakly ND.

$$\delta(n_{init}, a, p_2) = \{n_1, n_3\}$$
Det-acyclicity example

Det-acyclicity + Weak ND \implies no cycles in runs,
Here not weakly ND.

\[
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
\]

\[
\delta(n_1, a, p_2) = \{n_2, n_{\text{fin}}\}
\]
Det-acyclicity + Weak ND \implies no cycles in runs,
Here not weakly ND.

\[\delta(n_{init}, a, p_2) = \{n_1, n_3\} \]
\[\delta(n_1, a, p_2) = \{n_2, n_{fin}\} \]
\[\delta(n_2, a, p_2) = \{n_1, n_3\} \]
Det-acyclicity example

Det-acyclicity $+$ Weak ND \implies no cycles in runs, Here not weakly ND.

\[
\begin{align*}
\delta(n_{init}, a, p_2) &= \{n_1, n_3\} \\
\delta(n_1, a, p_2) &= \{n_2, n_{\text{fin}}\} \\
\delta(n_2, a, p_2) &= \{n_1, n_3\} \\
\delta(n_3, a, p_2) &= \{n_2, n_{\text{fin}}\}
\end{align*}
\]
Det-acyclicity example

Det-acyclicity + Weak ND \implies no cycles in runs,
Here not weakly ND.

$$
\delta(n_{\text{init}}, a, p_2) = \{n_1, n_3\}
$$

$$
\delta(n_1, a, p_2) = \{n_2, n_{\text{fin}}\}
$$

$$
\delta(n_2, a, p_2) = \{n_1, n_3\}
$$

$$
\delta(n_3, a, p_2) = \{n_2, n_{\text{fin}}\}
$$
Race Problem:

GIVEN: a negotiation \mathcal{N}, and two nodes n, m of \mathcal{N}.
DECIDE: can n and m be concurrently enabled?
Race Problem:
GIVEN: a negotiation \mathcal{N}, and two nodes n, m of \mathcal{N}.
DECIDE: can n and m be concurrently enabled?

- standard question for concurrent systems
- inherently concurrent property, hard to work with linearizations
The race problem is PSPACE-complete in the general case and NP-complete for acyclic negotiations.

Determinism alone does not help:

Theorem (EKMW ’16)

The race problem stays PSPACE-complete and NP-complete for deterministic and acyclic deterministic negotiations.
The race problem is PSPACE-complete in the general case and NP-complete for acyclic negotiations.

Determinism alone does not help:

Theorem (EKMW '16)

The race problem stays PSPACE-complete and NP-complete for deterministic and acyclic deterministic negotiations.

But determinism **and** soundness **together** help:

Theorem (EKMW '16)

The race problem is

- in \(PTIME \) for sound deterministic negotiations.
- NLOGSPACE-complete for sound deterministic acyclic negotiations,
Application of negotiations: analyze the workflow of programs.

Data-flows: Petri-net-based modeling notation, widely used (Protos) [van der Aalst et al, ’09].

Model the behaviour of programs or protocols acting on global variables via operations: $\text{alloc}(x), \text{read}(x), \text{write}(x), \text{dealloc}(x)$.
Sound acyclic deterministic negotiations with variables

\[\Rightarrow\text{formalize data-flow problems from}\ [\text{van der Aalst et al, ’09}]:\]

- **Well-defined behaviour**: no concurrent operations on the same variable,
- **No redundancy**: allocated variables are used,
- **Clean memory**: allocated variables are deallocated.
Sound acyclic deterministic negotiations with variables
formalize data-flow problems from [van der Aalst et al, '09]:

- **Well-defined behaviour**: no concurrent operations on the same variable,
- **No redundancy**: allocated variables are used,
- **Clean memory**: allocated variables are deallocated.

Theorem (EKMW '16)

All these properties can be checked in PTIME on data-flows.

Proof using the Omitting Theorem.

Exponential improvement on [van der Aalst et al, '09].
Data-flow result: Embeds typical specifications into a class of trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with simple structure.

Can we generalize this?
Data-flow result: Embeds typical specifications into a class of trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with simple structure.

Can we generalize this?

Theorem (Unpublished)

There is a property P specified by a 6-state automaton such that checking P for a sound acyclic deterministic negotiation is NP-complete.

We get a fine-grained description of the difficulty of trace property checking.
Conclusion

- **The negotiation model provides new insights** on what makes communicating finite-state processes hard to analyze.
- **Soundness is a key property** that can decrease the complexity of checking other properties.
- **Detailed picture** of complexities of property checking.
- **Applications** to the static analysis of workflow processes.
Conclusion

- The negotiation model provides new insights on what makes communicating finite-state processes hard to analyze.
- Soundness is a key property that can decrease the complexity of checking other properties.
- Detailed picture of complexities of property checking.
- Applications to the static analysis of workflow processes.

Open problem
Soundness for Weakly non-deterministic negotiations: PSPACE-complete? coNP-complete?.