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Introduction

Negotiations [Desel, Esparza ’13] CONCUR

model multiparty distributed cooperation,

better complexity than alternative models (Petri Nets),

embeds natural concepts: soundness, race properties,...

This paper [EKMW ’16] CONCUR:

study of different restrictions on the model,

complexity of deciding soundness, concurrency relationships

application to workflow analysis for programs



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of

a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.
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Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.
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Deterministic and weakly non-deterministic negotiations

Deterministic negotiations: All processes are deterministic.

Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.
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The Soundness problem



Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim: Understand the fine-grained complexity of the following
problem, depending on restrictions on N :
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?
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Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE ’13].

Complexity of the soundness problem for classes of negotiations?

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.

This paper [EKMW ’16]: explores the room between the two.



Results on the complexity of the soundness problem

Theorem (EKMW ’16)

Deciding soundness is in PTIME for acyclic weakly
non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.

Theorem (EKMW ’16)

It can be decided in PTIME if for a given deterministic, acyclic,
and sound negotiation N and two sets P ⊆ N × R and B ⊆ N,
there is a successful run of N containing P and omitting B.

General interest: characterize the important parts of a negotiation.



Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic weakly non-deterministic
negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
Enough here to prevent cycles in actual runs.
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Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.
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Applications of sound negotations



Races

Race Problem:
GIVEN: a negotiation N , and two nodes n,m of N .
DECIDE: can n and m be concurrently enabled ?

standard question for concurrent systems

inherently concurrent property, hard to work with linearizations
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Complexity of the race problem

The race problem is PSPACE-complete in the general case and
NP-complete for acyclic negotiations.

Determinism alone does not help:

Theorem (EKMW ’16)

The race problem stays PSPACE-complete and NP-complete for
deterministic and acyclic deterministic negotiations.

But determinism and soundness together help:

Theorem (EKMW ’16)

The race problem is

in PTIME for sound deterministic negotiations.

NLOGSPACE-complete for sound deterministic acyclic
negotiations,
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Workflow Analysis

Application of negotiations: analyze the workflow of programs.

Data-flows: Petri-net-based modeling notation, widely used
(Protos) [van der Aalst et al, ’09].

Model the behaviour of programs or protocols acting on global
variables via operations: alloc(x), read(x), write(x), dealloc(x).



Negotiations for data-flow analysis

Sound acyclic deterministic negotiations with variables
 formalize data-flow problems from [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Proof using the Omitting Theorem.

Exponential improvement on [van der Aalst et al, ’09].
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Data-flow result: Embeds typical specifications into a class of
trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with
simple structure.

Can we generalize this ?

Theorem (Unpublished)

There is a property P specified by a 6-state automaton such that
checking P for a sound acyclic deterministic negotiation is
NP-complete.

We get a fine-grained description of the difficulty of trace property
checking.
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