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Introduction

Negotiations [Desel, Esparza '13] CONCUR

m model multiparty distributed cooperation,
m better complexity than alternative models (Petri Nets),

m embeds natural concepts: soundness, race properties,...

This paper [EKMW '16] CONCUR:
m study of different restrictions on the model,
m complexity of deciding soundness, concurrency relationships

m application to workflow analysis for programs
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Negotiations

m An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

m If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.
m A negotiation AV consists of
m a set of processes Proc,
m a set of outcomes R,
m a set of nodes V
with two distinguished initial and final nodes,
m a domain function dom : N — P(Proc)
assigning to each node a set of participants,
m a transition table ¢ : N x R x Proc — P(N)
d(n,a,p) ={n’,n"} means: if the participants of n choose a,
then p is ready to engage in n’ or n”.
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ninie initial node, ng, final node.

Here: 3 processes p1, p2, p3 and only one action a.

O(Ninie, a, p2) = {n1, n3}
(S(nla a, P2) - {n2t nfin}
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p2 is non-deterministic, while p; and p3 are deterministic.
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m Deterministic negotiations: All processes are deterministic.

m Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

m Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.
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Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim: Understand the fine-grained complexity of the following
problem, depending on restrictions on N:

INPUT: A negotiation N' = (N, Proc, R, ).

OUTPUT: Is V sound ?



Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE "13].

Complexity of the soundness problem for classes of negotiations?

Theorem (DE '14)

Deciding soundness is in PTIME for deterministic negotiations.

This paper [EKMW "16]: explores the room between the two.



Results on the complexity of the soundness problem

Theorem (EKMW '16)

Deciding soundness is in PTIME for acyclic weakly
non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.
Theorem (EKMW '16)

It can be decided in PTIME if for a given deterministic, acyclic,
and sound negotiation N' and two sets P C N x R and B C N,
there is a successful run of N containing P and omitting B.

General interest: characterize the important parts of a negotiation.
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Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW '16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:
Theorem (EKMW '16)
The soundness problem for det-acyclic weakly non-deterministic

negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
Enough here to prevent cycles in actual runs.
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Det-acyclicity example

Det-acyclicity + Weak ND = no cycles in runs,
Here not weakly ND.
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Applications of sound negotations
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Race Problem:
GIVEN: a negotiation A/, and two nodes n, m of N.
DECIDE: can n and m be concurrently enabled ?

m standard question for concurrent systems

m inherently concurrent property, hard to work with linearizations
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Complexity of the race problem

The race problem is PSPACE-complete in the general case and
NP-complete for acyclic negotiations.

Determinism alone does not help:
Theorem (EKMW '16)

The race problem stays PSPACE-complete and NP-complete for
deterministic and acyclic deterministic negotiations.

But determinism and soundness together help:
Theorem (EKMW '16)

The race problem is
m in PTIME for sound deterministic negotiations.

m NLOGSPACE-complete for sound deterministic acyclic
negotiations,



Workflow Analysis

Application of negotiations: analyze the workflow of programs.
Data-flows: Petri-net-based modeling notation, widely used
(Protos) [van der Aalst et al, '09].

Model the behaviour of programs or protocols acting on global
variables via operations: alloc(x), read(x), write(x), dealloc(x).
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Negotiations for data-flow analysis

Sound acyclic deterministic negotiations with variables
~~ formalize data-flow problems from [van der Aalst et al, '09]:

m Well-defined behaviour: no concurrent operations on the
same variable,

m No redundancy: allocated variables are used,

m Clean memory: allocated variables are deallocated.



Negotiations for data-flow analysis

Sound acyclic deterministic negotiations with variables
~~ formalize data-flow problems from [van der Aalst et al, '09]:

m Well-defined behaviour: no concurrent operations on the
same variable,

m No redundancy: allocated variables are used,

m Clean memory: allocated variables are deallocated.
Theorem (EKMW '16)
All these properties can be checked in PTIME on data-flows.

Proof using the Omitting Theorem.

Exponential improvement on [van der Aalst et al, '09].
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Trace Property testing

Data-flow result: Embeds typical specifications into a class of
trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with
simple structure.

Can we generalize this 7

Theorem (Unpublished)

There is a property P specified by a 6-state automaton such that
checking P for a sound acyclic deterministic negotiation is
NP-complete.

We get a fine-grained description of the difficulty of trace property
checking.



Conclusion

m The negotiation model provides new insights on what
makes communicating finite-state processes hard to analyze.

m Soundness is a key property that can decrease the
complexity of checking other properties.

m Detailed picture of complexities of property checking.

m Applications to the static analysis of workflow processes.



Conclusion

m The negotiation model provides new insights on what
makes communicating finite-state processes hard to analyze.

m Soundness is a key property that can decrease the
complexity of checking other properties.

m Detailed picture of complexities of property checking.

m Applications to the static analysis of workflow processes.

Open problem
Soundness for Weakly non-deterministic negotiations:
PSPACE-complete 7 coNP-complete ?.



