
Soundness in negotiations.

J. Esparza1 D. Kuperberg1,2,3 A. Muscholl1,2,4 I. Walukiewicz1,4

1TU Munich, 2IAS, 3ENS Lyon, 4LaBRI,CNRS

Séminaire 68NQRT, IRISA, Rennes
12/01/2017



Introduction

Negotiations [Desel, Esparza ’13] CONCUR

model multiparty distributed cooperation,

better complexity than alternative models (Petri Nets),

embeds natural concepts: soundness, race properties,...

This paper [EKMW ’16] CONCUR:

study of different restrictions on the model,

complexity of deciding soundness, concurrency relationships

application to workflow analysis for programs



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of

a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of

a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of

a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of
a set of processes Proc,

a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of
a set of processes Proc,
a set of outcomes R,

a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of
a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,

a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of
a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,

a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Negotiations

An atomic negotiation or node involves a set of processes
(participants) and has a set of possible outcomes.

If all participants are ready to engage in the node
(synchronization), then the node can be fired:
the processes agree on one of the outcomes (choice) and
move on.

A negotiation N consists of
a set of processes Proc,
a set of outcomes R,
a set of nodes N
with two distinguished initial and final nodes,
a domain function dom : N → P(Proc)
assigning to each node a set of participants,
a transition table δ : N × R × Proc → P(N)
δ(n, a, p) = {n′, n′′} means: if the participants of n choose a,
then p is ready to engage in n′ or n′′.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Run of a negotiation

ninit initial node, nfin final node.
Here: 3 processes p1, p2, p3 and only one action a.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

p2 is non-deterministic, while p1 and p3 are deterministic.



Deterministic and weakly non-deterministic negotiations

Deterministic negotiations: All processes are deterministic.

Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.



Deterministic and weakly non-deterministic negotiations

Deterministic negotiations: All processes are deterministic.

Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.



Deterministic and weakly non-deterministic negotiations

Deterministic negotiations: All processes are deterministic.

Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.



Deterministic and weakly non-deterministic negotiations

Deterministic negotiations: All processes are deterministic.

Weakly non-deterministic negotiations: Each node
involves at least one deterministic process.

Acyclic: No cycle in the transition graph between nodes.

Intuition for weakly non-deterministic negotiations:

The negotiation is guided by the deterministic processes.
Non-deterministic processes are “told” where to go by the
deterministic ones.

Research program: investigate the complexity of analysis
problems for deterministic and weakly non-deterministic
negotiations.



The Soundness problem



Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim: Understand the fine-grained complexity of the following
problem, depending on restrictions on N :
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?



Soundness property

Soundness:
Every partial run can be completed into an accepting run.
Non-blocking property, witnessing good design.

Example: Previous negotiation is sound.

Aim: Understand the fine-grained complexity of the following
problem, depending on restrictions on N :
INPUT: A negotiation N = (N,Proc,R, δ).
OUTPUT: Is N sound ?



Subclasses of negotiations

Soundness problem PSPACE-complete in general [DE ’13].

Complexity of the soundness problem for classes of negotiations?

Theorem (DE ’14)

Deciding soundness is in PTIME for deterministic negotiations.

This paper [EKMW ’16]: explores the room between the two.



Results on the complexity of the soundness problem

Theorem (EKMW ’16)

Deciding soundness is in PTIME for acyclic weakly
non-deterministic negotiations.

Main tool used in the proof: the Omitting Theorem.

Theorem (EKMW ’16)

It can be decided in PTIME if for a given deterministic, acyclic,
and sound negotiation N and two sets P ⊆ N × R and B ⊆ N,
there is a successful run of N containing P and omitting B.

General interest: characterize the important parts of a negotiation.



Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic weakly non-deterministic
negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
Enough here to prevent cycles in actual runs.



Soundness problem for bigger classes

What happens if we drop restrictions in the previous results ?
Dropping weak non-determinism:

Theorem (EKMW ’16)

The soundness problem for acyclic negotiations is coNP-complete.

Dropping acyclicity for a milder constraint:

Theorem (EKMW ’16)

The soundness problem for det-acyclic weakly non-deterministic
negotiations is coNP-complete.

Det-acyclicity: deterministic processes are acyclic.
Enough here to prevent cycles in actual runs.



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Det-acyclicity example

Det-acyclicity + Weak ND =⇒ no cycles in runs,
Here not weakly ND.

p1 p2 p3
ninit

p1 p2
n1

p2 p3
n3

p2
n2

p1 p2 p3
nfin

δ(ninit , a, p2) = {n1, n3}δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}

δ(ninit , a, p2) = {n1, n3}

δ(n1, a, p2) = {n2, nfin}

δ(n2, a, p2) = {n1, n3}

δ(n3, a, p2) = {n2, nfin}



Applications of sound negotations



Races

Race Problem:
GIVEN: a negotiation N , and two nodes n,m of N .
DECIDE: can n and m be concurrently enabled ?

standard question for concurrent systems

inherently concurrent property, hard to work with linearizations



Races

Race Problem:
GIVEN: a negotiation N , and two nodes n,m of N .
DECIDE: can n and m be concurrently enabled ?

standard question for concurrent systems

inherently concurrent property, hard to work with linearizations



Complexity of the race problem

The race problem is PSPACE-complete in the general case and
NP-complete for acyclic negotiations.

Determinism alone does not help:

Theorem (EKMW ’16)

The race problem stays PSPACE-complete and NP-complete for
deterministic and acyclic deterministic negotiations.

But determinism and soundness together help:

Theorem (EKMW ’16)

The race problem is

in PTIME for sound deterministic negotiations.

NLOGSPACE-complete for sound deterministic acyclic
negotiations,



Complexity of the race problem

The race problem is PSPACE-complete in the general case and
NP-complete for acyclic negotiations.

Determinism alone does not help:

Theorem (EKMW ’16)

The race problem stays PSPACE-complete and NP-complete for
deterministic and acyclic deterministic negotiations.

But determinism and soundness together help:

Theorem (EKMW ’16)

The race problem is

in PTIME for sound deterministic negotiations.

NLOGSPACE-complete for sound deterministic acyclic
negotiations,



Workflow Analysis

Application of negotiations: analyze the workflow of programs.

Data-flows: Petri-net-based modeling notation, widely used
(Protos) [van der Aalst et al, ’09].

Model the behaviour of programs or protocols acting on global
variables via operations: alloc(x), read(x), write(x), dealloc(x).



Negotiations for data-flow analysis

Sound acyclic deterministic negotiations with variables
 formalize data-flow problems from [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Proof using the Omitting Theorem.

Exponential improvement on [van der Aalst et al, ’09].



Negotiations for data-flow analysis

Sound acyclic deterministic negotiations with variables
 formalize data-flow problems from [van der Aalst et al, ’09]:

Well-defined behaviour: no concurrent operations on the
same variable,

No redundancy: allocated variables are used,

Clean memory: allocated variables are deallocated.

Theorem (EKMW ’16)

All these properties can be checked in PTIME on data-flows.

Proof using the Omitting Theorem.

Exponential improvement on [van der Aalst et al, ’09].



Trace Property testing

Data-flow result: Embeds typical specifications into a class of
trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with
simple structure.

Can we generalize this ?

Theorem (Unpublished)

There is a property P specified by a 6-state automaton such that
checking P for a sound acyclic deterministic negotiation is
NP-complete.

We get a fine-grained description of the difficulty of trace property
checking.



Trace Property testing

Data-flow result: Embeds typical specifications into a class of
trace properties easy to decide (PTIME).

All these properties can be described by fixed-size automata with
simple structure.

Can we generalize this ?

Theorem (Unpublished)

There is a property P specified by a 6-state automaton such that
checking P for a sound acyclic deterministic negotiation is
NP-complete.

We get a fine-grained description of the difficulty of trace property
checking.



Conclusion

The negotiation model provides new insights on what
makes communicating finite-state processes hard to analyze.

Soundness is a key property that can decrease the
complexity of checking other properties.

Detailed picture of complexities of property checking.

Applications to the static analysis of workflow processes.

Open problem
Soundness for Weakly non-deterministic negotiations:
PSPACE-complete ? coNP-complete ?.



Conclusion

The negotiation model provides new insights on what
makes communicating finite-state processes hard to analyze.

Soundness is a key property that can decrease the
complexity of checking other properties.

Detailed picture of complexities of property checking.

Applications to the static analysis of workflow processes.

Open problem
Soundness for Weakly non-deterministic negotiations:
PSPACE-complete ? coNP-complete ?.


