Sensing cost for automata and synthesis

Shaull Almagor¹, **Denis Kuperberg**², Orna Kupferman¹

¹Hebrew University of Jerusalem

²TU Munich

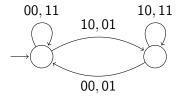
Séminaire MOVE 25-02-2016 LIF, Marseille • Deterministic automata scanning the environment and checking a specification.

- Deterministic automata scanning the environment and checking a specification.
- Input: S set of signals, $\Sigma = 2^{S}$ alphabet of the automaton.

- Deterministic automata scanning the environment and checking a specification.
- Input: S set of signals, $\Sigma = 2^{S}$ alphabet of the automaton.
- New approach: Reading signals via sensors costs energy.

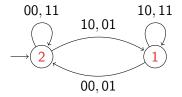
- Deterministic automata scanning the environment and checking a specification.
- Input: S set of signals, $\Sigma = 2^{S}$ alphabet of the automaton.
- New approach: Reading signals via sensors costs energy.
- Goal: Minimize the energy consumption in an average run.

Deterministic automaton \mathcal{A} on 2 signals.



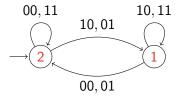
q state : scost(q) = number of relevant signals in q.

Deterministic automaton \mathcal{A} on 2 signals.



q state : scost(q) = number of relevant signals in q.

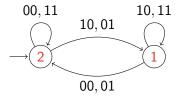
Deterministic automaton \mathcal{A} on 2 signals.



q state : scost(q) = number of relevant signals in q.

w word : scost(w) = average cost of states in the run of A on w.

Deterministic automaton \mathcal{A} on 2 signals.



q state : scost(q) = number of relevant signals in q. w word : scost(w) = average cost of states in the run of A on w.

$$scost(\mathcal{A}) = \lim_{m \to \infty} |\Sigma|^{-m} \sum_{|w|=m} scost(w)$$

Always converge.

Computing the cost

Remarks on the definition of sensing cost:

- Initial state plays a role but not acceptance condition.
- Works on finite or infinite words.
- Cost is deduced from the transition structure.
- Signals can be weighted with different probabilities or sensing cost.

Computing the cost

Remarks on the definition of sensing cost:

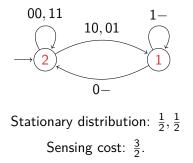
- Initial state plays a role but not acceptance condition.
- Works on finite or infinite words.
- Cost is deduced from the transition structure.
- Signals can be weighted with different probabilities or sensing cost.

Theorem

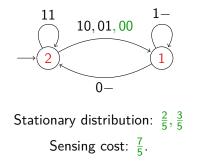
Sensing cost of an automaton is computable in polynomial time.

By computing the stationary distribution of the induced Markov chain.

Back to the example



Back to the example



Sensing cost of a regular language

Sensing cost as a measure of complexity of regular languages.

 $scost(L) := \inf\{scost(A)|L(A) = L\}.$

Can we compute the sensing cost of a language ? How hard is it ?

Sensing cost of a regular language

Sensing cost as a measure of complexity of regular languages.

$$scost(L) := \inf\{scost(A)|L(A) = L\}.$$

Can we compute the sensing cost of a language ? How hard is it ?

Theorem

On finite words, the optimal sensing cost of a language is always reached by its minimal automaton.

• On infinite words: deterministic parity automata.

- On infinite words: deterministic parity automata.
- Computing the minimal number of states is **NP**-complete [Schewe '10].

- On infinite words: deterministic parity automata.
- Computing the minimal number of states is **NP**-complete [Schewe '10].
- Third complexity measure of ω -languages: parity rank.

- On infinite words: deterministic parity automata.
- Computing the minimal number of states is **NP**-complete [Schewe '10].
- Third complexity measure of ω -languages: parity rank.

Theorem

The sensing cost of an ω -regular language is the one of its residual automaton.

Corollary

Computing the sensing cost of an ω -regular language is in **P**.

Remarks on the result:

• Optimal sensing cost might be reached only in the limit, not by a particular automaton.

- Optimal sensing cost might be reached only in the limit, not by a particular automaton.
- Proof uses lemma of [Niwinski, Walukiewicz '98] on the structure of automata of optimal parity index.

- Optimal sensing cost might be reached only in the limit, not by a particular automaton.
- Proof uses lemma of [Niwinski, Walukiewicz '98] on the structure of automata of optimal parity index.
- Trade-off between sensing cost and size.

- Optimal sensing cost might be reached only in the limit, not by a particular automaton.
- Proof uses lemma of [Niwinski, Walukiewicz '98] on the structure of automata of optimal parity index.
- Trade-off between sensing cost and size.
- No trade-off between sensing cost and parity rank.

- Optimal sensing cost might be reached only in the limit, not by a particular automaton.
- Proof uses lemma of [Niwinski, Walukiewicz '98] on the structure of automata of optimal parity index.
- Trade-off between sensing cost and size.
- No trade-off between sensing cost and parity rank.
- Idea of the proof of general interest: one can "ignore" the input for arbitrary long periods and still recognize the language.

Limitation of the probabilistic model: Safety automata always have cost 0. Only ergodic components matter in the long run.

Solution: Average only on accepted words.

Limitation of the probabilistic model: Safety automata always have cost 0. Only ergodic components matter in the long run.

Solution: Average only on accepted words.

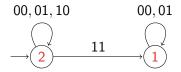
Two options: Word average:

$$wcost(\mathcal{A}) = \lim_{m \to \infty} \frac{1}{L \cap |\Sigma|^m} \sum_{w \in L \cap |\Sigma|^m} scost(w)$$

Letter-by-letter: lcost(A) via Markov chain induced by A: letters are randomly picked step-by-step to stay in L.

Equivalent when all words were considered, different if we restrict attention to L.

Two variants of safety cost

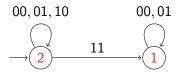


After 11, no more 1 on the first component.

 $lcost(\mathcal{A}) = 1$, $wcost(\mathcal{A}) = 2$.

Remark: *wcost* takes into account the transient components: if left self-loop has 2 labels, then wcost(A) = 3/2.

Two variants of safety cost



After 11, no more 1 on the first component.

 $lcost(\mathcal{A}) = 1$, $wcost(\mathcal{A}) = 2$.

Remark: *wcost* takes into account the transient components: if left self-loop has 2 labels, then wcost(A) = 3/2.

Theorem

lcost(A) and wcost(A) are computable in polynomial time. Their minimal is reached on the minimal automaton.

For wcost: generating series, algorithms on algebraic numbers.

Synthesis

Cost of synthesis of a I/O specificiation L: Infimum of costs of transducers realizing L.

Computational problem:

Input: Deterministic automaton *D* for $L \subseteq (I \cup O)^{\omega}$. **Output**: Cost of synthesis of *L*.

Synthesis

Cost of synthesis of a I/O specificiation L: Infimum of costs of transducers realizing L.

Computational problem:

Input: Deterministic automaton D for $L \subseteq (I \cup O)^{\omega}$. **Output**: Cost of synthesis of L.

Theorem

For a safety specification, the problem is **EXPTIME**-complete, and an optimal transducer always exists.

Remarks

- Without cost constraint: **P** with transducer of size |D|
- Optimal transducer can be exponential in the input deterministic automaton.
- \rightsquigarrow Membership in **EXPTIME** by a game argument.
- Hardness by reduction from Tree Automata Intersection.
- For general languages as inputs, decidability open.

Conclusion

Results

- General definition of sensing cost for finite and infinite words.
- Optimal cost computable in **P**.
- Refined definitions for safety languages, well-behaved.
- EXPTIME-completeness of optimal safety synthesis.
- Minimally-sensing transducer for safety specifications (exponential)

Future work:

- Decidability of cost of synthesis for parity specifications
- Precise study of the trade-off between different complexity measures
- Refining the model: cost of switching,...