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Framework

Deterministic automata scanning the environment and
checking a specification.

Input: S set of signals, Σ = 2S alphabet of the automaton.

New approach: Reading signals via sensors costs energy.

Goal: Minimize the energy consumption in an average run.
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Sensing cost of a deterministic automaton

Deterministic automaton A on 2 signals.
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q state : scost(q) = number of relevant signals in q.
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Deterministic automaton A on 2 signals.

2 1

10, 01
00, 11

00, 01

10, 11

q state : scost(q) = number of relevant signals in q.

w word : scost(w) = average cost of states in the run of A on w .

scost(A) = lim
m→∞

|Σ|−m ∑
|w |=m

scost(w)

Always converge.
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Computing the cost

Remarks on the definition of sensing cost:

Initial state plays a role but not acceptance condition.

Works on finite or infinite words.

Cost is deduced from the transition structure.

Signals can be weighted with different probabilities or sensing
cost.

Theorem
Sensing cost of an automaton is computable in polynomial time.

By computing the stationary distribution of the induced Markov
chain.
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Back to the example
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Sensing cost of a regular language

Sensing cost as a measure of complexity of regular languages.

scost(L) := inf{scost(A)|L(A) = L}.

Can we compute the sensing cost of a language ? How hard is it ?

Theorem
On finite words, the optimal sensing cost of a language is always
reached by its minimal automaton.
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Sensing cost of ω-regular languages

On infinite words: deterministic parity automata.

Computing the minimal number of states is NP-complete
[Schewe ’10].

Third complexity measure of ω-languages: parity rank.
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Sensing cost of ω-regular languages

On infinite words: deterministic parity automata.

Computing the minimal number of states is NP-complete
[Schewe ’10].

Third complexity measure of ω-languages: parity rank.

Theorem
The sensing cost of an ω-regular language is the one of its residual
automaton.

Corollary
Computing the sensing cost of an ω-regular language is in P.
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Remarks

Remarks on the result:

Optimal sensing cost might be reached only in the limit, not
by a particular automaton.

Proof uses lemma of [Niwinski, Walukiewicz ’98] on the
structure of automata of optimal parity index.
Trade-off between sensing cost and size.
No trade-off between sensing cost and parity rank.
Idea of the proof of general interest: one can “ignore” the
input for arbitrary long periods and still recognize the
language.

8 / 12



Remarks

Remarks on the result:

Optimal sensing cost might be reached only in the limit, not
by a particular automaton.
Proof uses lemma of [Niwinski, Walukiewicz ’98] on the
structure of automata of optimal parity index.

Trade-off between sensing cost and size.
No trade-off between sensing cost and parity rank.
Idea of the proof of general interest: one can “ignore” the
input for arbitrary long periods and still recognize the
language.

8 / 12



Remarks

Remarks on the result:

Optimal sensing cost might be reached only in the limit, not
by a particular automaton.
Proof uses lemma of [Niwinski, Walukiewicz ’98] on the
structure of automata of optimal parity index.
Trade-off between sensing cost and size.

No trade-off between sensing cost and parity rank.
Idea of the proof of general interest: one can “ignore” the
input for arbitrary long periods and still recognize the
language.

8 / 12



Remarks

Remarks on the result:

Optimal sensing cost might be reached only in the limit, not
by a particular automaton.
Proof uses lemma of [Niwinski, Walukiewicz ’98] on the
structure of automata of optimal parity index.
Trade-off between sensing cost and size.
No trade-off between sensing cost and parity rank.

Idea of the proof of general interest: one can “ignore” the
input for arbitrary long periods and still recognize the
language.

8 / 12



Remarks

Remarks on the result:

Optimal sensing cost might be reached only in the limit, not
by a particular automaton.
Proof uses lemma of [Niwinski, Walukiewicz ’98] on the
structure of automata of optimal parity index.
Trade-off between sensing cost and size.
No trade-off between sensing cost and parity rank.
Idea of the proof of general interest: one can “ignore” the
input for arbitrary long periods and still recognize the
language.

8 / 12



Safety Setting

Limitation of the probabilistic model: Safety automata always have
cost 0. Only ergodic components matter in the long run.

Solution: Average only on accepted words.

Two options:
Word average:

wcost(A) = lim
m→∞

1
L ∩ |Σ|m

∑
w∈L∩|Σ|m

scost(w)

Letter-by-letter: lcost(A) via Markov chain induced by A: letters
are randomly picked step-by-step to stay in L.

Equivalent when all words were considered, different if we restrict
attention to L.
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Two variants of safety cost

2 111

00, 01, 10 00, 01

After 11, no more 1 on the first component.

lcost(A) = 1, wcost(A) = 2.

Remark: wcost takes into account the transient components:
if left self-loop has 2 labels, then wcost(A) = 3/2.

Theorem
lcost(A) and wcost(A) are computable in polynomial time.
Their minimal is reached on the minimal automaton.

For wcost: generating series, algorithms on algebraic numbers.
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Synthesis

Cost of synthesis of a I/O specificiation L: Infimum of costs of
transducers realizing L.
Computational problem:
Input: Deterministic automaton D for L ⊆ (I ∪ O)ω.
Output: Cost of synthesis of L.

Theorem
For a safety specification, the problem is EXPTIME-complete,
and an optimal transducer always exists.

Remarks
Without cost constraint: P with transducer of size |D|
Optimal transducer can be exponential in the input
deterministic automaton.
 Membership in EXPTIME by a game argument.
Hardness by reduction from Tree Automata Intersection.
For general languages as inputs, decidability open.

11 / 12



Synthesis

Cost of synthesis of a I/O specificiation L: Infimum of costs of
transducers realizing L.
Computational problem:
Input: Deterministic automaton D for L ⊆ (I ∪ O)ω.
Output: Cost of synthesis of L.

Theorem
For a safety specification, the problem is EXPTIME-complete,
and an optimal transducer always exists.

Remarks
Without cost constraint: P with transducer of size |D|
Optimal transducer can be exponential in the input
deterministic automaton.
 Membership in EXPTIME by a game argument.
Hardness by reduction from Tree Automata Intersection.
For general languages as inputs, decidability open.

11 / 12



Conclusion

Results
General definition of sensing cost for finite and infinite words.
Optimal cost computable in P.
Refined definitions for safety languages, well-behaved.
EXPTIME-completeness of optimal safety synthesis.
Minimally-sensing transducer for safety specifications
(exponential)

Future work:

Decidability of cost of synthesis for parity specifications
Precise study of the trade-off between different complexity
measures
Refining the model: cost of switching,. . .
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