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Specifying properties

MSO formulae:

φ := a(x) | E (x , y) | x ∈ X | ∃X .φ | ¬φ | φ ∨ φ

Example: φ(r) for “∃ ∞ path from the root r”:
∃X .
r ∈ X∧
∀x .x ∈ X ⇒ ∃y .E (x , y) ∧ y ∈ X

µ-calculus formulae:

ψ := a | ψ ∨ ψ | ¬ψ | ⋄ψ| □ψ | µX .ψ| νX .ψ

Example: ψ for “∃ ∞ path from the root”: νX . ⋄ X
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Unfold and Bisimulation equivalence
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Bisimulation = unfold + children duplication
Fact: µ-calculus is bisimulation-invariant.
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Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

µ-calculus → bisim-inv MSO : Easy

Bisim-inv MSO → µ-calculus : Hard
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Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems
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Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for µ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.
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Examples of the difference

MSO formula φ for “∃ cycle”:

▶ φ is not bisim-invariant on all systems.

▶ φ is bisim-invariant on finite systems.

▶ Equivalent to ψ = νX . ⋄ X on finite systems.

=⇒ using Janin-Walukiewicz does not work for finite systems.

8 / 12



Examples of the difference

MSO formula φ for “∃ cycle”:

▶ φ is not bisim-invariant on all systems.

▶ φ is bisim-invariant on finite systems.

▶ Equivalent to ψ = νX . ⋄ X on finite systems.

=⇒ using Janin-Walukiewicz does not work for finite systems.

8 / 12



Algebra of systems

Systems have open ports and arities:
a2

b1

c3 x2

x1

Algebra: Remember only relevant information about a system.
Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

≡ a0 b2

b1

≡
b2

b2

Then L = {Systems evaluating to a0}, via h :Systems→ A.
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Another example of algebra

Language L = {∃ branch with ∞ many a’s}.

Then An = 2{1,...,n} ∪ {⊤n}, and L = h−1(⊤0)

≡ ⊤0

b1

≡

A is sortwise-finite but not sortwise-bounded.
Intuition: Enough for regularity.
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Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is rec-
ognized by some automaton model.

Key Lemma
∀a ∈ An, ∃(v ji )i ,j from A1 such that:

a

v j1

v jn

≡
⋃

j

With new operators in the algebras.
Consequences

▶ A1 actually contains all the information about An.

▶ Algebras can be turned into automata.
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Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!
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