
Tree Algebras and Bisimulation-Invariant MSO
on Finite Graphs

Thomas Colcombet, Amina Doumane, Denis Kuperberg

CNRS, LIP, ENS Lyon

MOVE Team Seminar

1 / 12

Transitions systems

a

b

c

2 / 12

Specifying properties

MSO formulae:

φ := a(x) | E (x , y) | x ∈ X | ∃X .φ | ¬φ | φ ∨ φ

Example: φ(r) for “∃ ∞ path from the root r”:
∃X .
r ∈ X∧
∀x .x ∈ X ⇒ ∃y .E (x , y) ∧ y ∈ X

µ-calculus formulae:

ψ := a | ψ ∨ ψ | ¬ψ | ⋄ψ| □ψ | µX .ψ| νX .ψ

Example: ψ for “∃ ∞ path from the root”: νX . ⋄ X

3 / 12

Specifying properties

MSO formulae:

φ := a(x) | E (x , y) | x ∈ X | ∃X .φ | ¬φ | φ ∨ φ

Example: φ(r) for “∃ ∞ path from the root r”:
∃X .
r ∈ X∧
∀x .x ∈ X ⇒ ∃y .E (x , y) ∧ y ∈ X

µ-calculus formulae:

ψ := a | ψ ∨ ψ | ¬ψ | ⋄ψ| □ψ | µX .ψ| νX .ψ

Example: ψ for “∃ ∞ path from the root”: νX . ⋄ X

3 / 12

Unfold and Bisimulation equivalence

b a

a

a

b

a

a

b

a

b

b a

a

Bisimulation = unfold + children duplication
Fact: µ-calculus is bisimulation-invariant.

4 / 12

Unfold and Bisimulation equivalence

b a

a

a

b

a

a

b

a

b

b a

a

Bisimulation = unfold + children duplication

Fact: µ-calculus is bisimulation-invariant.

4 / 12

Unfold and Bisimulation equivalence

b a

a

a

b

a

a

b

a

b

b a

a

Bisimulation = unfold + children duplication
Fact: µ-calculus is bisimulation-invariant.

4 / 12

Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

µ-calculus → bisim-inv MSO : Easy

Bisim-inv MSO → µ-calculus : Hard

5 / 12

Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

µ-calculus → bisim-inv MSO : Easy

Bisim-inv MSO → µ-calculus : Hard

5 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Proof sketch for bisim-inv MSO → µ-calculus

Let φ ∈ bisim-inv MSO:

▶ φ is in particular a formula on infinite trees.

▶ φ⇝ automaton A on infinite trees. [Rabin 1968]

▶ A⇝ µ-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

▶ φ and ψ are equivalent on infinite trees

▶ Every system is bisimilar to an infinite tree

▶ φ and ψ are bisim-invariant

▶ =⇒ φ and ψ are equivalent on all systems

6 / 12

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for µ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

7 / 12

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for µ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

7 / 12

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for µ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

7 / 12

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for µ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.

2. Being µ-calculus-definable.

7 / 12

Examples of the difference

MSO formula φ for “∃ cycle”:

▶ φ is not bisim-invariant on all systems.

▶ φ is bisim-invariant on finite systems.

▶ Equivalent to ψ = νX . ⋄ X on finite systems.

=⇒ using Janin-Walukiewicz does not work for finite systems.

8 / 12

Examples of the difference

MSO formula φ for “∃ cycle”:

▶ φ is not bisim-invariant on all systems.

▶ φ is bisim-invariant on finite systems.

▶ Equivalent to ψ = νX . ⋄ X on finite systems.

=⇒ using Janin-Walukiewicz does not work for finite systems.

8 / 12

Algebra of systems

Systems have open ports and arities:
a2

b1

c3 x2

x1

Algebra: Remember only relevant information about a system.
Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

≡ a0 b2

b1

≡
b2

b2

Then L = {Systems evaluating to a0}, via h :Systems→ A.

9 / 12

Algebra of systems

Systems have open ports and arities:
a2

b1

c3 x2

x1

Algebra: Remember only relevant information about a system.
Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

≡ a0 b2

b1

≡
b2

b2

Then L = {Systems evaluating to a0}, via h :Systems→ A.

9 / 12

Algebra of systems

Systems have open ports and arities:
a2

b1

c3 x2

x1

Algebra: Remember only relevant information about a system.
Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

≡ a0 b2

b1

≡
b2

b2

Then L = {Systems evaluating to a0}, via h :Systems→ A.

9 / 12

Algebra of systems

Systems have open ports and arities:
a2

b1

c3 x2

x1

Algebra: Remember only relevant information about a system.
Arity stratification ⇝ Algebra A = (An)n∈N.

Example: L = {Systems with an a}. An = {an, bn}

a2

b1

≡ a0 b2

b1

≡
b2

b2

Then L = {Systems evaluating to a0}, via h :Systems→ A.

9 / 12

Another example of algebra

Language L = {∃ branch with ∞ many a’s}.

Then An = 2{1,...,n} ∪ {⊤n}, and L = h−1(⊤0)

≡ ⊤0

b1

≡

A is sortwise-finite but not sortwise-bounded.
Intuition: Enough for regularity.

10 / 12

Another example of algebra

Language L = {∃ branch with ∞ many a’s}.

Then An = 2{1,...,n} ∪ {⊤n}, and L = h−1(⊤0)

≡ ⊤0

b1

≡

A is sortwise-finite but not sortwise-bounded.
Intuition: Enough for regularity.

10 / 12

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is rec-
ognized by some automaton model.

Key Lemma
∀a ∈ An, ∃(v ji)i ,j from A1 such that:

a

v j1

v jn

≡
⋃

j

With new operators in the algebras.
Consequences

▶ A1 actually contains all the information about An.

▶ Algebras can be turned into automata.

11 / 12

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is rec-
ognized by some automaton model.

Key Lemma
∀a ∈ An, ∃(v ji)i ,j from A1 such that:

a

v j1

v jn

≡
⋃

j

With new operators in the algebras.

Consequences

▶ A1 actually contains all the information about An.

▶ Algebras can be turned into automata.

11 / 12

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is rec-
ognized by some automaton model.

Key Lemma
∀a ∈ An, ∃(v ji)i ,j from A1 such that:

a

v j1

v jn

≡
⋃

j

With new operators in the algebras.
Consequences

▶ A1 actually contains all the information about An.

▶ Algebras can be turned into automata.

11 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

Proof of Main Theorem

µ-calculus → bisim-inv MSO is easy, same as before.

Bisim-inv MSO → µ-calculus:

▶ MSO → algebra by standard compositional methods
[Feferman-Vaught 1959, Shelah 1975].

▶ Algebra → unfold-invariant automata by the key lemma.

▶ Unfold-invariant → bisimulation-invariant automata by adding
duplication as in [Janin-Walukiewicz 1996].

▶ Bisim-invariant automata → µ-calculus as in
[Janin-Walukiewicz 1996].

Thanks for your attention!

12 / 12

