Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs

Thomas Colcombet, Amina Doumane, Denis Kuperberg

CNRS, LIP, ENS Lyon

MOVE Team Seminar

Transitions systems

Specifying properties

MSO formulae:

$$
\varphi:=a(x)|E(x, y)| x \in X|\exists X . \varphi| \neg \varphi \mid \varphi \vee \varphi
$$

Example: $\varphi(r)$ for " $\exists \infty$ path from the root r ": $\exists X$.
$r \in X \wedge$
$\forall x . x \in X \Rightarrow \exists y . E(x, y) \wedge y \in X$

Specifying properties

MSO formulae:

$$
\varphi:=a(x)|E(x, y)| x \in X|\exists X . \varphi| \neg \varphi \mid \varphi \vee \varphi
$$

Example: $\varphi(r)$ for " $\exists \infty$ path from the root r ": $\exists X$.
$r \in X \wedge$
$\forall x . x \in X \Rightarrow \exists y . E(x, y) \wedge y \in X$
μ-calculus formulae:

$$
\psi:=a|\psi \vee \psi| \neg \psi|\diamond \psi| \square \psi|\mu X . \psi| \nu X . \psi
$$

Example: ψ for " $\exists \infty$ path from the root" : $\nu X . \diamond X$

Unfold and Bisimulation equivalence

Unfold and Bisimulation equivalence

Bisimulation $=$ unfold + children duplication

Unfold and Bisimulation equivalence

Bisimulation $=$ unfold + children duplication Fact: μ-calculus is bisimulation-invariant.

Starting point

Theorem (Janin and Walukiewicz 1996)
For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.
2. Being μ-calculus-definable.

Starting point

Theorem (Janin and Walukiewicz 1996)

For properties of systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.
2. Being μ-calculus-definable.
μ-calculus \rightarrow bisim-inv MSO : Easy
Bisim-inv MSO $\rightarrow \mu$-calculus: Hard

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

- φ and ψ are equivalent on infinite trees

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

- φ and ψ are equivalent on infinite trees
- Every system is bisimilar to an infinite tree

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

- φ and ψ are equivalent on infinite trees
- Every system is bisimilar to an infinite tree
- φ and ψ are bisim-invariant

Proof sketch for bisim-inv MSO $\rightarrow \mu$-calculus

Let $\varphi \in$ bisim-inv MSO:

- φ is in particular a formula on infinite trees.
- $\varphi \rightsquigarrow$ automaton \mathcal{A} on infinite trees. [Rabin 1968]
- $\mathcal{A} \rightsquigarrow \mu$-calculus formula ψ. [Janin-Walukiewicz 1996]

Correctness:

- φ and ψ are equivalent on infinite trees
- Every system is bisimilar to an infinite tree
- φ and ψ are bisim-invariant
- $\Longrightarrow \varphi$ and ψ are equivalent on all systems

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.
Finite model property for μ-calculus:
If ψ has a model then it has a finite one.

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for μ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Finite systems

The proof of Janin-Walukiewicz needs bisim-inv on infinite systems.

Finite model property for μ-calculus:
If ψ has a model then it has a finite one.

Can we restrict the theorem to finite systems ?

Main Contribution

For properties of finite systems, the following are equivalent:

1. Being MSO-definable and bisimulation-invariant.
2. Being μ-calculus-definable.

Examples of the difference

MSO formula φ for " \exists cycle":

- φ is not bisim-invariant on all systems.
- φ is bisim-invariant on finite systems.
- Equivalent to $\psi=\nu X . \diamond X$ on finite systems.

Examples of the difference

MSO formula φ for " \exists cycle":

- φ is not bisim-invariant on all systems.
- φ is bisim-invariant on finite systems.
- Equivalent to $\psi=\nu X . \diamond X$ on finite systems.
\Longrightarrow using Janin-Walukiewicz does not work for finite systems.

Algebra of systems

Systems have open ports and arities:

Algebra of systems

Systems have open ports and arities:

Algebra: Remember only relevant information about a system. Arity stratification \rightsquigarrow Algebra $\mathcal{A}=\left(A_{n}\right)_{n \in \mathbb{N}}$.

Algebra of systems

Systems have open ports and arities:

Algebra: Remember only relevant information about a system. Arity stratification \rightsquigarrow Algebra $\mathcal{A}=\left(A_{n}\right)_{n \in \mathbb{N}}$.

Example: $L=\{$ Systems with an $a\} . A_{n}=\left\{a_{n}, b_{n}\right\}$

Algebra of systems

Systems have open ports and arities:

Algebra: Remember only relevant information about a system.
Arity stratification \rightsquigarrow Algebra $\mathcal{A}=\left(A_{n}\right)_{n \in \mathbb{N}}$.
Example: $L=\{$ Systems with an $a\} . A_{n}=\left\{a_{n}, b_{n}\right\}$

Then $L=\left\{\right.$ Systems evaluating to $\left.a_{0}\right\}$, via $h:$ Systems $\rightarrow \mathcal{A}$.

Another example of algebra

Language $L=\{\exists$ branch with ∞ many a's $\}$.
Then $A_{n}=2^{\{1, \ldots, n\}} \cup\left\{\top_{n}\right\}$, and $L=h^{-1}\left(T_{0}\right)$

Another example of algebra

Language $L=\{\exists$ branch with ∞ many a's $\}$.
Then $A_{n}=2^{\{1, \ldots, n\}} \cup\left\{\top_{n}\right\}$, and $L=h^{-1}\left(T_{0}\right)$

\mathcal{A} is sortwise-finite but not sortwise-bounded.
Intuition: Enough for regularity.

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is recognized by some automaton model.

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is recognized by some automaton model.

Key Lemma

$\forall a \in A_{n}, \exists\left(v_{i}^{j}\right)_{i, j}$ from A_{1} such that:

With new operators in the algebras.

Recognizability

Main Contribution 2

If L is recognized by a sortwise-finite algebra, then L is recognized by some automaton model.

Key Lemma

$\forall a \in A_{n}, \exists\left(v_{i}^{j}\right)_{i, j}$ from A_{1} such that:

With new operators in the algebras.

Consequences

- A_{1} actually contains all the information about A_{n}.
- Algebras can be turned into automata.

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$-calculus:

- MSO \rightarrow algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.
Bisim-inv MSO $\rightarrow \mu$-calculus:

- MSO \rightarrow algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- Algebra \rightarrow unfold-invariant automata by the key lemma.

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$-calculus:

- MSO \rightarrow algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- Algebra \rightarrow unfold-invariant automata by the key lemma.
- Unfold-invariant \rightarrow bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$-calculus:

- MSO \rightarrow algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- Algebra \rightarrow unfold-invariant automata by the key lemma.
- Unfold-invariant \rightarrow bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].
- Bisim-invariant automata $\rightarrow \mu$-calculus as in [Janin-Walukiewicz 1996].

Proof of Main Theorem

μ-calculus \rightarrow bisim-inv MSO is easy, same as before.

Bisim-inv MSO $\rightarrow \mu$-calculus:

- MSO \rightarrow algebra by standard compositional methods [Feferman-Vaught 1959, Shelah 1975].
- Algebra \rightarrow unfold-invariant automata by the key lemma.
- Unfold-invariant \rightarrow bisimulation-invariant automata by adding duplication as in [Janin-Walukiewicz 1996].
- Bisim-invariant automata $\rightarrow \mu$-calculus as in [Janin-Walukiewicz 1996].

Thanks for your attention!

