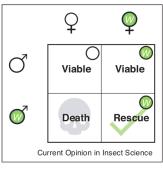
SMT Solving and modeling for biology

Denis Kuperberg CNRS, LIP, ENS Lyon

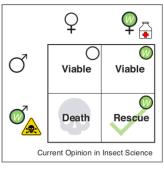
GdT Plume 11/12/2023

Part 1

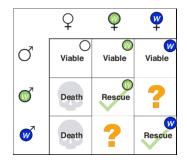
Wolbachia-induced infertility in mosquitoes

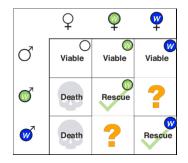

With Sylvain Charlat, Alice Namias , Mathieu Sicard, Mylène Weill

Cytoplasmic Incompatibility



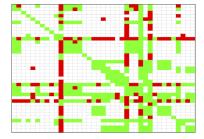
Credit: [Namias et al 2022]

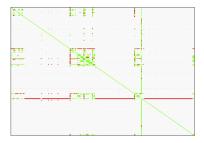

The toxin/antidote hypothesis



Credit: [Namias et al 2022]

Different Wolbachia strains

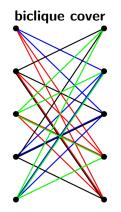

Different Wolbachia strains


Hypothesis: each strain has its own cocktail.

The data

39 lines with phenotypic and molecular data

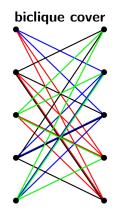
239 lines with phenotypic data


Optimizing the parameters

How many kind of toxins needed ?

Optimizing the parameters

How many kind of toxins needed ?


NP-complete [Nor et al 2012]:

Optimizing the parameters

How many kind of toxins needed ?

NP-complete [Nor et al 2012]:

Variant: quantitative model

Using SAT/SMT Solver

Before SAT solving [Nor et al 2012]:

- ad-hoc heuristics for 19*19 matrix
- fill missing data manually
- approximate results

Using SAT/SMT Solver

Before SAT solving [Nor et al 2012]:

- ad-hoc heuristics for 19*19 matrix
- fill missing data manually
- approximate results

With minisat/Z3 (this work):

- deal with 239*239 matrix
- robust to missing data
- explore various models and questions

Results

Boolean						
Toxs per strain	Types					
1	14					
2	10					
3	9					

Quantitative

Levels	Types
1	14
2	7
3	5

Results

Boolean	Quant	itative		
Toxs per strain Types			Levels	Types
1	14		1	14
2	10		2	7
3	9		3	5

And more:

test robustness

- predict missing data
- find cells discriminating models

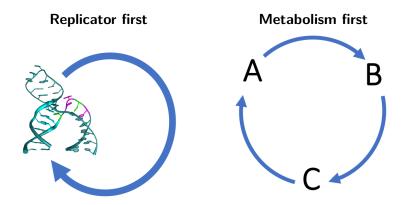
Perspectives

- Confront predictions with new data
- Prescribe tests to discriminate models
- Find correlations with genetic data
- Evolutionary explanations

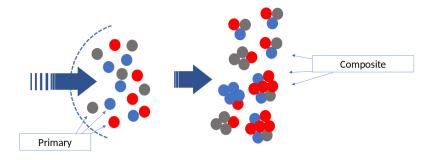
Part 2

Detection of autocatalytic cycles

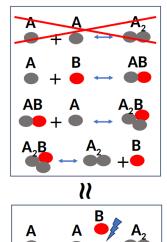
With Sylvain Charlat, Etienne Rajon, Nicolas Lartillot



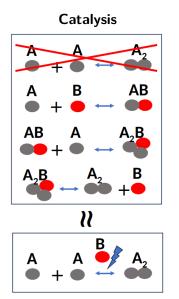
Origin of Life dichotomy


Replicator first

Origin of Life dichotomy

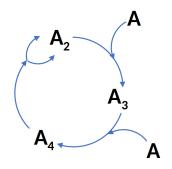


Soup of chemical reactions



Spontaneous (auto)catalysis

Catalysis



Spontaneous (auto)catalysis

Autocatalysis

Reaction matrix

$$\begin{array}{ll} (R_1) & A+B \rightleftharpoons AB \\ (R_2) & A+A \rightleftharpoons AA \end{array}$$

Reaction matrix

$$\begin{array}{ll} (R_1) & A+B \rightleftharpoons AB \\ (R_2) & A+A \rightleftharpoons AA \end{array}$$

	R_1	R_2
A	-1	-2
В	-1	0
AA	0	1
AB	1	0

Reaction matrix

$$\begin{array}{ll} (R_1) & A+B \rightleftharpoons AB \\ (R_2) & A+A \rightleftharpoons AA \end{array}$$

	R_1	R_2
A	-1	-2
В	-1	0
AA	0	1
AB	1	0

 $ec{v} \in \mathbb{R}^2$ flow vector $\Rightarrow M \cdot ec{v}$ balance for each entity.

Autocatalytic core [Blockhuis et al 2022]: Submatrix N of M such that

- each column and line contains coef< 0 and coef> 0
- $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$
- N minimal

Autocatalytic core [Blockhuis et al 2022]: Submatrix N of M such that

- each column and line contains coef< 0 and coef> 0
- $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$

N minimal

Example: $A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_2 + A_2$

A_2	-1	0	2
A_3	1	-1	0
A_4	0	1	-1

Autocatalytic core [Blockhuis et al 2022]: Submatrix *N* of *M* such that

- each column and line contains coef< 0 and coef> 0
- $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$

N minimal

Example: $A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_2 + A_2$

A_2	-1	0	2		(6)		(2)
A_3	1	-1	0	Ν·	5	=	1
A_4	0	1	-1		(4)		(1)

Autocatalytic core [Blockhuis et al 2022]: Submatrix *N* of *M* such that

- each column and line contains coef< 0 and coef> 0
- $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$

N minimal

Example: $A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_2 + A_2$

A_2	-1	0	2		(6)		(2)
A_3	1	-1	0	Ν·	5	=	1
A_4	0	1	-1		(4)		(1)

Goal: Find autocatalytic cores in a chemical soup.

Autocatalytic core [Blockhuis et al 2022]: Submatrix *N* of *M* such that

- each column and line contains coef< 0 and coef> 0
- $\exists \vec{v} \in \mathbb{R}^k$ such that $N \cdot \vec{v} \in (\mathbb{R}^{*+})^k$

N minimal

Example: $A_2 \rightarrow A_3 \rightarrow A_4 \rightarrow A_2 + A_2$

A_2	-1	0	2		(6)		(2)
<i>A</i> ₃	1	-1	0	Ν·	5	=	1
A_4	0	1	-1		(4)		(1)

Goal: Find autocatalytic cores in a chemical soup.

NP-complete ?

 $A + B \rightleftharpoons AB$

How to compute flow ?

$$A + B \rightleftharpoons AB$$

How to compute flow ?

$$A + B \rightleftharpoons AB$$

How to compute flow ?

Consistent core: Flow witness must be realistic

Concentration vector $\vec{u} \rightsquigarrow$ flow vector \vec{v} .

$$A + B \rightleftharpoons AB$$

How to compute flow ?

Consistent core: Flow witness must be realistic

Concentration vector $\vec{u} \rightsquigarrow$ flow vector \vec{v} .

Compatible cores: share the same witness

What we want

- design systems
- sample systems
- find autocatalytic cores
- mark consistent cores
- find sets of compatible cores

What we want

- design systems
- sample systems
- find autocatalytic cores
- mark consistent cores
- find sets of compatible cores

SMT Solver Z3

JUCE OrganicUI

The program

Perspectives

- Spectrum of interactions between cores
- Quantitative analysis (expectancy of autocatalysis,...)
- Links with multiplicity of equilibria
- Identification of scales of individuality
- Spatialisation

Perspectives

- Spectrum of interactions between cores
- Quantitative analysis (expectancy of autocatalysis,...)
- Links with multiplicity of equilibria
- Identification of scales of individuality
- Spatialisation

Very long term goals:

- Quantify natural selection
- Criteria for life
- Possible build-up scenario

Thank you !

