SMT Solving and modeling for biology

Denis Kuperberg
CNRS, LIP, ENS Lyon

GdT Plume
11/12/2023

Part 1

Wolbachia-induced infertility in mosquitoes

With
Sylvain Charlat, Alice Namias, Mathieu Sicard, Mylène Weill

Cytoplasmic Incompatibility

Credit: [Namias et al 2022]

The toxin/antidote hypothesis

Credit: [Namias et al 2022]

Different Wolbachia strains

Different Wolbachia strains

Hypothesis: each strain has its own cocktail.

The data

39 lines with phenotypic and molecular data

239 lines with phenotypic data

Optimizing the parameters

How many kind of toxins needed ?

Optimizing the parameters

How many kind of toxins needed ?

```
NP-complete [Nor et al 2012]:
```

biclique cover

Optimizing the parameters

How many kind of toxins needed ?
NP-complete [Nor et al 2012]:

biclique cover

Variant: quantitative model

Using SAT/SMT Solver

Before SAT solving [Nor et al 2012]:

- ad-hoc heuristics for 19*19 matrix
- fill missing data manually
- approximate results

Using SAT/SMT Solver

Before SAT solving [Nor et al 2012]:

- ad-hoc heuristics for 19*19 matrix
- fill missing data manually
- approximate results

With minisat/Z3 (this work):

- deal with 239*239 matrix
- robust to missing data
- explore various models and questions

Results

Boolean

Toxs per strain	Types
1	14
2	10
3	9

Quantitative

Levels	Types
1	14
2	7
3	5

Results

Boolean

Toxs per strain	Types
1	14
2	10
3	9

Quantitative

Levels	Types
1	14
2	7
3	5

And more:

- test robustness
- predict missing data
- find cells discriminating models

Perspectives

- Confront predictions with new data
- Prescribe tests to discriminate models
- Find correlations with genetic data
- Evolutionary explanations

Part 2

Detection of autocatalytic cycles

With
Sylvain Charlat, Etienne Rajon, Nicolas Lartillot

—— LABORATOIRE DE BIOMÉTRIE

Origin of Life dichotomy

Replicator first

Origin of Life dichotomy

Replicator first
Metabolism first

Soup of chemical reactions

Spontaneous (auto)catalysis

Catalysis

Spontaneous (auto)catalysis

Catalysis

Autocatalysis

$$
A+A \stackrel{A_{2}}{\varrho} A_{2}
$$

Reaction matrix

$\left(R_{1}\right) \quad A+B \rightleftharpoons A B$
$\left(R_{2}\right) \quad A+A \rightleftharpoons A A$

Reaction matrix

$\left(R_{1}\right) \quad A+B \rightleftharpoons A B$
$\left(R_{2}\right) \quad A+A \rightleftharpoons A A$

	R_{1}	R_{2}
A	-1	-2
B	-1	0
$A A$	0	1
$A B$	1	0

Reaction matrix

$$
\begin{array}{ll}
\left(R_{1}\right) & A+B \rightleftharpoons A B \\
\left(R_{2}\right) & A+A \rightleftharpoons A A
\end{array}
$$

	R_{1}	R_{2}
A	-1	-2
B	-1	0
$A A$	0	1
$A B$	1	0

$\vec{v} \in \mathbb{R}^{2}$ flow vector $\Rightarrow M \cdot \vec{v}$ balance for each entity.

Autocatalysis via matrices

Autocatalytic core [Blockhuis et al 2022]:
Submatrix N of M such that

- each column and line contains coef <0 and coef >0
- $\exists \vec{v} \in \mathbb{R}^{k}$ such that $N \cdot \vec{v} \in\left(\mathbb{R}^{*+}\right)^{k}$
- N minimal

Autocatalysis via matrices

Autocatalytic core [Blockhuis et al 2022]:
Submatrix N of M such that

- each column and line contains coef <0 and coef >0
- $\exists \vec{v} \in \mathbb{R}^{k}$ such that $N \cdot \vec{v} \in\left(\mathbb{R}^{*+}\right)^{k}$
- N minimal

Example: $A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{2}+A_{2}$

A_{2}	-1	0	2
A_{3}	1	-1	0
A_{4}	0	1	-1

Autocatalysis via matrices

Autocatalytic core [Blockhuis et al 2022]:
Submatrix N of M such that

- each column and line contains coef <0 and coef >0
- $\exists \vec{v} \in \mathbb{R}^{k}$ such that $N \cdot \vec{v} \in\left(\mathbb{R}^{*+}\right)^{k}$
- N minimal

Example: $A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{2}+A_{2}$

A_{2}	-1	0	2
A_{3}	1	-1	0
A_{4}	0	1	-1

$$
N \cdot\left(\begin{array}{l}
6 \\
5 \\
4
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Autocatalysis via matrices

Autocatalytic core [Blockhuis et al 2022]:
Submatrix N of M such that

- each column and line contains coef <0 and coef >0
- $\exists \vec{v} \in \mathbb{R}^{k}$ such that $N \cdot \vec{v} \in\left(\mathbb{R}^{*+}\right)^{k}$
- N minimal

Example: $A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{2}+A_{2}$

A_{2}	-1	0	2
A_{3}	1	-1	0
A_{4}	0	1	-1

$$
N \cdot\left(\begin{array}{l}
6 \\
5 \\
4
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Goal: Find autocatalytic cores in a chemical soup.

Autocatalysis via matrices

Autocatalytic core [Blockhuis et al 2022]:
Submatrix N of M such that

- each column and line contains coef <0 and coef >0
- $\exists \vec{v} \in \mathbb{R}^{k}$ such that $N \cdot \vec{v} \in\left(\mathbb{R}^{*+}\right)^{k}$
- N minimal

Example: $A_{2} \rightarrow A_{3} \rightarrow A_{4} \rightarrow A_{2}+A_{2}$

A_{2}	-1	0	2
A_{3}	1	-1	0
A_{4}	0	1	-1

$$
N \cdot\left(\begin{array}{l}
6 \\
5 \\
4
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

Goal: Find autocatalytic cores in a chemical soup.
NP-complete?

From concentrations to flows

$$
A+B \rightleftharpoons A B
$$

How to compute flow ?

From concentrations to flows

$$
A+B \rightleftharpoons A B
$$

How to compute flow ?

- $k_{\text {assoc }}=[A][B]$
- $k_{\text {dissoc }}=[A B]$
- flow $=k_{\text {assoc }}-k_{\text {dissoc }}$

From concentrations to flows

$$
A+B \rightleftharpoons A B
$$

How to compute flow ?

- $k_{\text {assoc }}=[A][B]$
$-k_{\text {dissoc }}=[A B]$
- flow $=k_{\text {assoc }}-k_{\text {dissoc }}$

Consistent core: Flow witness must be realistic

Concentration vector $\vec{u} \rightsquigarrow$ flow vector \vec{v}.

From concentrations to flows

$$
A+B \rightleftharpoons A B
$$

How to compute flow ?

- $k_{\text {assoc }}=[A][B]$
- $k_{\text {dissoc }}=[A B]$
- flow $=k_{\text {assoc }}-k_{\text {dissoc }}$

Consistent core: Flow witness must be realistic

Concentration vector $\vec{u} \rightsquigarrow$ flow vector \vec{v}.

Compatible cores: share the same witness

What we want

- design systems
- sample systems
- find autocatalytic cores
- mark consistent cores
- find sets of compatible cores

What we want

- design systems
- sample systems
- find autocatalytic cores
- mark consistent cores
- find sets of compatible cores

SMT Solver Z3

JUCE OrganicUI

The program

Perspectives

- Spectrum of interactions between cores
- Quantitative analysis (expectancy of autocatalysis,...)
- Links with multiplicity of equilibria
- Identification of scales of individuality
- Spatialisation

Perspectives

- Spectrum of interactions between cores
- Quantitative analysis (expectancy of autocatalysis,...)
- Links with multiplicity of equilibria
- Identification of scales of individuality
- Spatialisation

Very long term goals:

- Quantify natural selection
- Criteria for life
- Possible build-up scenario

Thank you!

