Quasi-Weak Cost Functions
A New Variant of Weakness

Achim Blumensath1 Thomas Colcombet2 Denis Kuperberg3
Christof Löding4 Paweł Parys3 Michael Vanden Boom5

1TU Darmstadt 2LIAFA, Paris 3University of Warsaw
4RWTH Aachen
5University of Oxford

FREC 2014
Marseille
Introduction

- Regular cost functions: counting extension of regular languages
- Motivation: solving bound-related problems on regular languages (e.g. star-height)
- Definable over finite or infinite structures, like words or trees
- Definable via automata, logics, algebraic structures,...
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics

$[\mathcal{A}] : A^* \rightarrow \mathbb{N} \cup \{\infty\}$
Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics

$val_B(\rho) := \max$ checked counter value during run ρ

$[A]_B(u) := \min \{ val_B(\rho) : \rho$ is an accepting run of A on $u \}$

Example

$[A]_B(u) = \min$ length of block of a’s surrounded by b’s in u
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics

\begin{align*}
 \text{val}_S(\rho) & := \text{min checked counter value during run } \rho \\
 [\mathcal{A}]_S(u) & := \max\{\text{val}_S(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u\}
\end{align*}

Example

$[\mathcal{A}]_S(u) = \text{min length of block of } a\text{'s surrounded by } b\text{'s in } u$
Boundedness relation

“$[A] = [B]$”: undecidable [Krob ’94]
Boundedness relation

“$[A] = [B]$”: undecidable [Krob ’94]

“$[A] \approx [B]$”: decidable on words

[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, $[A](U)$ bounded iff $[B](U)$ bounded
"$[\mathcal{A}] = [\mathcal{B}]$": undecidable [Krob '94]

"$[\mathcal{A}] \approx [\mathcal{B}]$": decidable on words
[Colcombet '09, following Bojánczyk+Colcombet '06]
for all subsets U, $[\mathcal{A}](U)$ bounded iff $[\mathcal{B}](U)$ bounded
In the following, input structures = A-labelled infinite trees.
In the following, input structures $= A$-labelled infinite trees.

Dual B- and S- semantics as before, defining functions:
$\text{Trees} \rightarrow \mathbb{N} \cup \{\infty\}$.
In the following, input structures = A-labelled infinite trees.

Dual B- and S- semantics as before, defining functions: $\text{Trees} \rightarrow \mathbb{N} \cup \{\infty\}$.

Acceptance condition: any condition on infinite words: Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).
In the following, input structures = A-labelled infinite trees.

Dual B- and S- semantics as before, defining functions:
$\text{Trees} \rightarrow \mathbb{N} \cup \{\infty\}$.

Acceptance condition: any condition on infinite words: Büchi, co-Büchi, Rabin, Parity,... (on all branches in the non-deterministic setting).

Decidability of $[\mathcal{A}] \approx [\mathcal{B}]$ open in general.
A standard automaton \(\mathcal{A}\) computing a language \(L\) can be viewed as a \(B\)- or \(S\)-automaton without any counters. Then \([\mathcal{A}]_B = \chi_L\) and \([\mathcal{A}]_S = \chi_{\overline{L}}\), with

\[
\chi_L(t) = \begin{cases}
0 & \text{if } t \in L \\
\infty & \text{if } t \notin L
\end{cases}
\]
Languages as cost functions

- A standard automaton \mathcal{A} computing a language L can be viewed as a B- or S-automaton without any counters. Then $[\mathcal{A}]_B = \chi_L$ and $[\mathcal{A}]_S = \chi_L$, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \notin L \end{cases}$$

- Switching between B and S semantics corresponds to a complementation.
Languages as cost functions

- A standard automaton \mathcal{A} computing a language L can be viewed as a B- or S-automaton without any counters. Then $\llbracket \mathcal{A} \rrbracket_B = \chi_L$ and $\llbracket \mathcal{A} \rrbracket_S = \chi_L^\perp$, with

$$\chi_L(t) = \begin{cases} 0 & \text{if } t \in L \\ \infty & \text{if } t \not\in L \end{cases}$$

- Switching between B and S semantics corresponds to a complementation.

- If L and L' are languages, $\chi_L \approx \chi_{L'}$ iff $L = L'$, so cost function theory, even up to \approx, strictly extends language theory.
Languages as cost functions

A standard automaton \(A \) computing a language \(L \) can be viewed as a \(B \)- or \(S \)-automaton without any counters. Then \(\llbracket A \rrbracket_B = \chi_L \) and \(\llbracket A \rrbracket_S = \chi_L^\bot \), with

\[
\chi_L(t) = \begin{cases}
0 & \text{if } t \in L \\
\infty & \text{if } t \notin L
\end{cases}
\]

Switching between \(B \) and \(S \) semantics corresponds to a complementation.

If \(L \) and \(L' \) are languages, \(\chi_L \approx \chi_{L'} \) iff \(L = L' \), so cost function theory, even up to \(\approx \), strictly extends language theory.

Aim: Extend classic theorems from languages to cost functions
Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by an alternating weak automaton iff there are nondeterministic Büchi automata U and U' such that

$$L = L(U) = \overline{L(U')}.$$
Weak automata and games

Alternating parity automaton \mathcal{A} with priorities $\{1, 2\}$
+ no cycle in the transition function which visits both priorities
⇒ $\exists M. \forall t$. any play of (\mathcal{A}, t) has at most M alternations between priorities

Game (\mathcal{A}, t)

Semantics
A strategy σ for Eve is winning if every play in σ stabilizes in priority 2
\mathcal{A} accepts t if Eve has a winning strategy from the initial position
Alternating parity automaton \mathcal{A} with priorities $\{1, 2\}$
+ no cycle in the transition function which visits both priorities
$\Rightarrow \exists M. \forall t. \text{ any play of } (\mathcal{A}, t) \text{ has at most } M \text{ alternations }$ between priorities
+ finite set of counters and counter actions I, R, C, ε on transitions

Game (\mathcal{A}, t)

![Game Diagram]

- Eve (min)
- Adam (max)

Semantics

$val(\sigma) := \text{max value of any play in strategy } \sigma$

$[\mathcal{A}](t) := \text{min}\{val(\sigma) : \sigma \text{ is a winning strategy for Eve in } (\mathcal{A}, t)\}$
Translation from weak to nondeterminist B-Büchi, S-Büchi
Results on weak cost functions [Vanden Boom ’11]

- Translation from weak to nondeterminist B-Büchi, S-Büchi
- Good closure properties of the weak class, equivalence with logic.
Results on weak cost functions [Vanden Boom '11]

- Translation from weak to nondeterminist B-Büchi, S-Büchi
- Good closure properties of the weak class, equivalence with logic.
- Does Rabin theorem extend to the weak cost function class?
Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata U and U' such that

$$L = L(U) = \overline{L(U')}.$$

Conjecture

A cost function f on infinite trees is recognizable by a **weak B-automaton** iff there exists a nondeterministic B-Büchi automaton U and a nondeterministic S-Büchi automaton U' such that

$$f \approx [U]_B \approx [U']_S.$$
Rabin-style characterization

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language \(L \) of infinite trees is recognizable by a weak automaton iff there are nondeterministic Büchi automata \(U \) and \(U' \) such that

\[
L = L(U) = \overline{L(U')}.
\]

Theorem (KV ’11)

A cost function \(f \) on infinite trees is recognizable by a **quasi-weak \(B \)-automaton**

iff there exists a nondeterministic \(B \)-Büchi automaton \(U \) and a nondeterministic \(S \)-Büchi automaton \(U' \) such that

\[
f \approx \llbracket U \rrbracket_B \approx \llbracket U' \rrbracket_S.
\]
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td></td>
</tr>
<tr>
<td>$\exists M. \forall t$. any play in (A, t) has at most M alternations between priorities</td>
<td></td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td></td>
</tr>
</tbody>
</table>

- A is a set of states, t a term, M an integer.
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B- Büchi</td>
<td>alternating B- Büchi</td>
</tr>
<tr>
<td>$\exists M. \forall t. \text{ any play in } (A, t) \text{ has at most } M \text{ alternations between priorities}$</td>
<td></td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of alternating B- Büchi automaton with a cycle between priorities 1 and 2 marked as forbidden](image)
Variants of weakness

<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td>alternating B-Büchi</td>
</tr>
<tr>
<td>$\exists M. \forall t. \text{any play in } (A, t) \text{ has at most } M \text{ alternations between priorities}$</td>
<td>$\forall N. \exists M. \forall t. \forall \sigma \text{ for Eve in } (A, t). \text{val}(\sigma) \leq N \rightarrow \text{any play in } \sigma \text{ has at most } M \text{ alternations between priorities}$</td>
</tr>
</tbody>
</table>

there is no cycle with both priorities

![Diagram](image)
<table>
<thead>
<tr>
<th>Weak B-automaton</th>
<th>Quasi-weak B-automaton</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternating B-Büchi</td>
<td>alternating B-Büchi</td>
</tr>
<tr>
<td>$\exists M. \forall t. \text{ any play in } (A, t)$ has at most M alternations between priorities</td>
<td>$\forall N. \exists M. \forall t. \forall \sigma \text{ for Eve in } (A, t)$. $val(\sigma) \leq N \rightarrow \text{ any play in } \sigma$ has at most M alternations between priorities</td>
</tr>
<tr>
<td>there is no cycle with both priorities</td>
<td>if there is a cycle with both priorities, then there is some IC without R</td>
</tr>
</tbody>
</table>

![Diagram](image)
Theorem (KV '11)

There is a quasi-weak cost function which is not weak.
Logical equivalents

- **Monadic Second-Order logic**:
 - **Weak MSO**: Set variables range over *finite* sets.
 - **CWMSO [Vanden Boom '11]**: Weak MSO + $|X| \leq N$.
 \[
 \mathcal{L}(t) = \inf\{n| \varphi[N \leftarrow n] \text{ is true} \}.
 \]
 - **QWMSO [BCKPV '14]**: WCMSO + $\mu^N x. \varphi(x)$.
 Fixpoint operator with a bounded number of expansions.
Logical equivalents

- **Monadic Second-Order logic** :
 - **Weak MSO**: Set variables range over *finite* sets.
 - **CWMSO** [Vanden Boom ’11]: Weak MSO + |X| ≤ N.
 \[[[\varphi]](t) = \inf\{n | \varphi[N \leftarrow n] \text{ is true} \} \]
 - **QWMSO** [BCKPV ’14]: WCMSO + \(\mu^N x. \varphi(x)\).
 Fixpoint operator with a bounded number of expansions.

- **\(\mu\)-calculus**
 - **alternation free**: no \(\nu\)-scope intersects a \(\mu\)-scope

- **\(\mu^N\)-calculus** [BCKPV ’14]: \(\mu\)-calculus + \(\mu^N x. \varphi(x)\).
 - **Weak**: no \(\nu\)-scope intersects a \(\mu\)-scope, and no \(\mu^N\)-scope simultaneously intersects a \(\mu\)-scope and a \(\nu\)-scope.
 - **Quasi-Weak** if no \(\nu\)-scope intersects a \(\mu\)-scope.

Proofs use two-way alternating \(B\)-automata as an intermediary tool.
Open question: Given a regular language L, is it weak?

Partial Answer [CKLV '13]: If L is Büchi then we can decide it.

Construction:

1. Start from a nondeterministic Büchi automaton U for L; dual U is coBüchi for L.
2. Build automaton $W = U_{\text{Acc}} \cup U_{\text{Rej}}$, with U_{Acc} Büchi $\rightarrow U_{\text{Rej}}$ and U_{Rej} Eve: IC $\rightarrow U_{\text{Acc}}$.
3. W is Quasi-weak, and we can show that $[W] \approx \chi_L$ iff L is weak.

- If $[W] \approx \chi_L$, then L is weak by just storing counter values of W up to the bound.
- If $t \in L$, then $[W](t) = \infty$ since Adam can play an accepting run of U.
- If L is weak, Kupferman-Vardi construction $\Rightarrow \sigma_{\text{Eve}}$ bounded when $t /\in L$.

Open question : Given a regular language \(L \), is it weak ?
Partial Answer [CKLV '13] : If \(L \) is Büchi then we can decide it.
Open question: Given a regular language \(L \), is it weak?
Partial Answer [CKLV ’13]: If \(L \) is Büchi then we can decide it.

Construction:

- Start from a nondeterministic Büchi automaton \(\mathcal{U} \) for \(L \), dual \(\overline{\mathcal{U}} \) is coBüchi for \(\overline{L} \).
- Build automaton \(\mathcal{W} = \overline{U}_{\text{Acc}} \cup \overline{U}_{\text{Rej}} \),
 with \(\overline{U}_{\text{Acc}} \xrightarrow{\text{Büchi}} \overline{U}_{\text{Rej}} \) and \(\overline{U}_{\text{Rej}} \xrightarrow{\text{Eve: IC}} \overline{U}_{\text{Acc}} \).

\[\overline{W} \approx \chi_L \text{ iff } \mathcal{W} \]
Open question: Given a regular language L, is it weak?

Partial Answer [CKLV '13]: If L is Büchi then we can decide it.

Construction:
- Start from a nondeterministic Büchi automaton \mathcal{U} for L, dual $\overline{\mathcal{U}}$ is coBüchi for \overline{L}.
- Build automaton $\mathcal{W} = \overline{\mathcal{U}}_{\text{Acc}} \cup \overline{\mathcal{U}}_{\text{Rej}}$, with $\overline{\mathcal{U}}_{\text{Acc}} \xrightarrow{\text{Büchi}} \overline{\mathcal{U}}_{\text{Rej}}$ and $\overline{\mathcal{U}}_{\text{Rej}} \xrightarrow{\text{Eve: IC}} \overline{\mathcal{U}}_{\text{Acc}}$.

\mathcal{W} is Quasi-weak, and we can show that $\lceil \mathcal{W} \rceil \approx \chi_{\overline{L}}$ iff L is weak.
Open question: Given a regular language L, is it weak?

Partial Answer [CKLV ’13]: If L is Büchi then we can decide it.

Construction:

- Start from a nondeterministic Büchi automaton U for L, dual \overline{U} is coBüchi for L.
- Build automaton $W = U_{\text{Acc}} \cup U_{\text{Rej}}$, with $U_{\text{Acc}} \xrightarrow{\text{Büchi}} U_{\text{Rej}}$ and $U_{\text{Rej}} \xrightarrow{\text{Eve}: IC} U_{\text{Acc}}$.

W is Quasi-weak, and we can show that $\llbracket W \rrbracket \approx \chi_L$ iff L is weak.

- If $\llbracket W \rrbracket \approx \chi_L$, then L is weak by just storing counter values of W up to the bound.
- If $t \in L$, then $\llbracket W \rrbracket(t) = \infty$ since Adam can play an accepting run of U.
- If L is weak, Kupferman-Vardi construction $\Rightarrow \sigma_{Eve}$ bounded when $t \notin L$.
Summary and conclusion

Theorem

- Quasi-weak B-automata have characterizations in term of
 - Büchi cost functions (Rabin-style)
 - Cost MSO
 - μ^N-calculus

If A and B are Quasi-weak B-automata, then it is decidable whether or not $[A] \approx [B]$.

Quasi-weak B-automata are strictly more expressive than weak B-automata over infinite trees.

If A is a Büchi automaton, it is decidable whether $L(A)$ is a weak language.

Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Is \approx decidable for cost-parity automata?
Summary and conclusion

Theorem

- Quasi-weak B-automata have characterizations in term of
 - Büchi cost functions (Rabin-style)
 - Cost MSO
 - μ^N-calculus
- If A and B are Quasi-weak B-automata, then it is decidable whether or not $[[A]] \approx [[B]]$.
Summary and conclusion

Theorem

- Quasi-weak B-automata have characterizations in term of
 - Büchi cost functions (Rabin-style)
 - Cost MSO
 - μ^N-calculus

- If \mathcal{A} and \mathcal{B} are Quasi-weak B-automata, then it is **decidable** whether or not $[[\mathcal{A}]] \approx [[\mathcal{B}]]$.

- Quasi-weak B-automata are **strictly more expressive** than weak B-automata over infinite trees.

- If \mathcal{A} is a Büchi automaton, it is decidable whether $L(\mathcal{A})$ is a weak language.
Summary and conclusion

Theorem

- Quasi-weak B-automata have characterizations in term of
 - Büchi cost functions (Rabin-style)
 - Cost MSO
 - μ^N-calculus
- If \mathcal{A} and \mathcal{B} are Quasi-weak B-automata, then it is decidable whether or not $[[\mathcal{A}]] \approx [[\mathcal{B}]]$.
- Quasi-weak B-automata are strictly more expressive than weak B-automata over infinite trees.
- If \mathcal{A} is a Büchi automaton, it is decidable whether $L(\mathcal{A})$ is a weak language.

Quasi-weak B-automata extend the class of cost automata over infinite trees for which \approx is known to be decidable.

Is \approx decidable for cost-parity automata?