
Expressive power of Cost Logics over
Infinite Words

Denis Kuperberg and Michael Vanden Boom

Séminaire Automates
24-02-2012

Introduction

I Regular cost functions: counting extension of regular
languages

I Motivation: solving bound-related problems on regular
languages (e.g. star-height)

I Definable over finite or infinite structures, like words or trees

I Definable via automata, logics, algebraic structures,...

Introduction

I Regular cost functions: counting extension of regular
languages

I Motivation: solving bound-related problems on regular
languages (e.g. star-height)

I Definable over finite or infinite structures, like words or trees

I Definable via automata, logics, algebraic structures,...

Introduction

I Regular cost functions: counting extension of regular
languages

I Motivation: solving bound-related problems on regular
languages (e.g. star-height)

I Definable over finite or infinite structures, like words or trees

I Definable via automata, logics, algebraic structures,...

Introduction

I Regular cost functions: counting extension of regular
languages

I Motivation: solving bound-related problems on regular
languages (e.g. star-height)

I Definable over finite or infinite structures, like words or trees

I Definable via automata, logics, algebraic structures,...

Cost automata over infinite words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics
[[A]] : Aω → N ∪ {∞}

Cost automata over infinite words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics
valB(ρ) := max checked counter value during run ρ

[[A]]B(u) := min{valB(ρ) : ρ is an accepting run of A on u}

Example

[[A]]B(u) = min length of block of a’s surrounded by b’s in u

b : ε

a, b : ε a :IC

b : ε

a, b : ε

Cost automata over infinite words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics
valS(ρ) := min checked counter value during run ρ

[[A]]S(u) := max{valS(ρ) : ρ is an accepting run of A on u}

Example

[[A]]S(u) = min length of block of a’s surrounded by b’s in u

b : ε

a : ε a :I

b :CR

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

[[A]] ≈ [[B]]

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

[[A]] 6≈ [[B]]

Applications

Many problems for a regular language L can be reduced to
deciding ≈ for some class of automata with counting features:

I Finite power property (finite words)
[Simon ’78, Hashiguchi ’79]

is there some n such that (L + ε)n = L∗?

I Star-height problem (finite words/trees)
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

given n, is there a regular expression for L
with at most n nestings of Kleene star?

I Parity-index problem (infinite trees)
[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a parity automaton for L
which uses only priorities {i , i + 1, . . . , j}?

Applications

Many problems for a regular language L can be reduced to
deciding ≈ for some class of automata with counting features:

I Finite power property (finite words)
[Simon ’78, Hashiguchi ’79]

is there some n such that (L + ε)n = L∗?

I Star-height problem (finite words/trees)
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]

given n, is there a regular expression for L
with at most n nestings of Kleene star?

I Parity-index problem (infinite trees)
[reduction in Colcombet+Löding ’08, decidability open]

given i < j , is there a parity automaton for L
which uses only priorities {i , i + 1, . . . , j}?

distance

nested
distance-
desert

cost-parity

Languages as cost functions

I A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [[A]]B = χL and [[A]]S = χL, with

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

I Switching between B and S semantics corresponds to a
complementation.

I If L and L′ are languages, χL ≈ χL′ iff L = L′, so cost function
theory, even up to ≈, strictly extends language theory.

I Aim: Extend classic theorems from languages to cost
functions

Languages as cost functions

I A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [[A]]B = χL and [[A]]S = χL, with

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

I Switching between B and S semantics corresponds to a
complementation.

I If L and L′ are languages, χL ≈ χL′ iff L = L′, so cost function
theory, even up to ≈, strictly extends language theory.

I Aim: Extend classic theorems from languages to cost
functions

Languages as cost functions

I A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [[A]]B = χL and [[A]]S = χL, with

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

I Switching between B and S semantics corresponds to a
complementation.

I If L and L′ are languages, χL ≈ χL′ iff L = L′, so cost function
theory, even up to ≈, strictly extends language theory.

I Aim: Extend classic theorems from languages to cost
functions

Languages as cost functions

I A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [[A]]B = χL and [[A]]S = χL, with

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

I Switching between B and S semantics corresponds to a
complementation.

I If L and L′ are languages, χL ≈ χL′ iff L = L′, so cost function
theory, even up to ≈, strictly extends language theory.

I Aim: Extend classic theorems from languages to cost
functions

Cost functions on infinite words

I In the following, input structures = A-labelled infinite words.

I Dual B- and S- semantics as before, defining functions:
Aω → N ∪ {∞}.

I We aim at extending classical theorems on languages to the
setting of cost functions.

Cost functions on infinite words

I In the following, input structures = A-labelled infinite words.

I Dual B- and S- semantics as before, defining functions:
Aω → N ∪ {∞}.

I We aim at extending classical theorems on languages to the
setting of cost functions.

Cost functions on infinite words

I In the following, input structures = A-labelled infinite words.

I Dual B- and S- semantics as before, defining functions:
Aω → N ∪ {∞}.

I We aim at extending classical theorems on languages to the
setting of cost functions.

Logics on infinite words

I LTL on A describes regular languages:
ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ
where the negations have been pushed to the leaves, and the
U corresponds to “Next Until”.

ϕUψ: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9a10

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

We can define X (Next), G (Always) and F (Eventually) in
terms of these operators.

I First-Order Logic (FO):

ϕ := a(x) | x = y | x < y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x .ϕ | ∀x .ϕ

I (Weak) MSO: FO with quantification over (finite) sets, set
variables noted X ,Y .

Cost LTL

I CLTL on A describes regular cost functions:
ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ | ϕU≤Nϕ

I ϕU≤Nψ means that ψ is true somewhere in the future, and ϕ
is false at most N times until then.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9a10
ϕ ϕ ϕ ϕ ϕ× × ψ

I The “error value” variable N is unique, and is shared by all
occurrences of U≤N operator.

I G≤N and R≤N can be defined in terms of the previous
operators.

Cost LTL

I CLTL on A describes regular cost functions:
ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ | ϕU≤Nϕ

I ϕU≤Nψ means that ψ is true somewhere in the future, and ϕ
is false at most N times until then.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9a10
ϕ ϕ ϕ ϕ ϕ× × ψ

I The “error value” variable N is unique, and is shared by all
occurrences of U≤N operator.

I G≤N and R≤N can be defined in terms of the previous
operators.

Cost LTL

I CLTL on A describes regular cost functions:
ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ | ϕU≤Nϕ

I ϕU≤Nψ means that ψ is true somewhere in the future, and ϕ
is false at most N times until then.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9a10
ϕ ϕ ϕ ϕ ϕ× × ψ

I The “error value” variable N is unique, and is shared by all
occurrences of U≤N operator.

I G≤N and R≤N can be defined in terms of the previous
operators.

Cost LTL

I CLTL on A describes regular cost functions:
ϕ := a | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕRϕ | ϕUϕ | ϕU≤Nϕ

I ϕU≤Nψ means that ψ is true somewhere in the future, and ϕ
is false at most N times until then.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9a10
ϕ ϕ ϕ ϕ ϕ× × ψ

I The “error value” variable N is unique, and is shared by all
occurrences of U≤N operator.

I G≤N and R≤N can be defined in terms of the previous
operators.

CFO and CMSO

I CFO on A describes regular cost functions:

ϕ := a(x) | x = y | x < y | ϕ∧ϕ | ϕ∨ϕ | ∃x .ϕ | ∀x .ϕ | ∀≤Nx .ϕ

I As before, N is a unique free variable and counts the number
of mistakes.

I (Weak) CMSO extends CFO with quantification over (finite)
sets.

Semantics of Cost Logics

From formula to cost function:
[[ϕ]] is the cost function associated to ϕ, defined by

[[ϕ]](u) = inf{N ∈ N, ϕ is true on u with N as error value}

Example

For all u ∈ {a, b}ω, we have

I [[bU≤N(Gb)]](u) = [[∀≤Nx .b(x)]](u) = |u|a.

I [[G(⊥U≤Nb)]](u) = [[∀X ,blocka(X)⇒ (∀≤Nx , x /∈ X)]](u) =
maxblocka(u)

Alternating B-automata

I Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

I Weak B-automaton: Büchi condition, no cycle with both
accepting and rejecting states.

I Very-weak B-automaton: Büchi condition, no non-trivial
cycle.

Alternating B-automata

I Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

I Weak B-automaton: Büchi condition, no cycle with both
accepting and rejecting states.

I Very-weak B-automaton: Büchi condition, no non-trivial
cycle.

Alternating B-automata

I Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

I Weak B-automaton: Büchi condition, no cycle with both
accepting and rejecting states.

I Very-weak B-automaton: Büchi condition, no non-trivial
cycle.

Classical picture

MSO Büchi automata
Weak MSO Weak automata

FO
LTL

Very-Weak automata

Regular Languages

Star-Free Languages

Cost Functions

CMSO B/S-Büchi automata
WCMSO Weak B-automata

CFO
CLTL

Very-Weak B-automata
VWBA with one counter

Regular Cost Functions

First-Order Fragment

Proof ideas for WCMSO to CMSO

I By Colcombet, CMSO ⇔ nondeterministic B/S-Büchi
automata.

I By [Vanden Boom 11], WCMSO ⇔ weak alternating
B-automata.

We just need to show a translation nondeterministic B-Büchi
automata → weak alternating B-automata.

Classical Proof from [Kupferman+Vardi ’01]

p qA:

a

a, b a

a, b

Fix a word u, and analyze the run-DAG of the Büchi-automaton on
u (here for u = baabω):

p p p p p p

q q q q q q

b b ba a

· · ·

000

1111

1

11 1

11

Ranks : No more Büchi or finite path on the remaining DAG.

Ranks :

Initial node gets a rank ⇒ u is rejected.

Classical Proof from [Kupferman+Vardi ’01]

p qA:

a

a, b a

a, b

Fix a word u, and analyze the run-DAG of the Büchi-automaton on
u (here for u = baabω):

p p p p p p

q q q q q q

b b ba a

· · ·
000

1111

1

11 1

11

Ranks : No more Büchi or finite path on the remaining DAG.

Ranks :

Initial node gets a rank ⇒ u is rejected.

Classical Proof from [Kupferman+Vardi ’01]

p qA:

a

a, b a

a, b

Fix a word u, and analyze the run-DAG of the Büchi-automaton on
u (here for u = baabω):

p p p p p p

q q q q q q

b b ba a

· · ·
000

1111

1

11 1

11

Ranks : No more Büchi or finite path on the remaining DAG.

Ranks :

Initial node gets a rank ⇒ u is rejected.

Extending to cost functions

p qA:

a : IC

a : ε a : IC

a : ε

Run-DAG for u = aω:

p p p p p p

q q q q q q

a a a a a

· · ·

Problem to assign ranks : how to prove that this run has value ∞ ?

Solution :
Normal form for nondeterministic B-Büchi automata : must do a
reset on every counter after each Büchi state.
The modified automaton guesses whether there is

I a finite number of increments ⇒ add resets to Büchi states:

· · ·IC IC IC IC

B B B B B B BX X X X
R R R

I infinitely many resets ⇒ delay Büchi states after the next
reset (equivalent up to ≈):

· · ·R R R R

BX BX BX BXB B B

On these Büchi automata in normal form, we can define ranks in a
sound way, for each value n.

Description of the weak alternating automaton

The weak B-automaton W describes a game between two players:

I Eve wants to prove that A accepts with low value

I Adam wants to prove that this is not the case

It allows Eve to play a run of A, and Adam to guess ranks. It is
designed in such a way that

I playing a n-run (if exists) is a strategy of value ≤ n for Eve.

I playing the n-ranks (if exists) is a strategy of value > n for
Adam.

From this we get [[W]] = [[A]].

Summary

CMSO B/S-Büchi automata
WCMSO Weak B-automata

CFO
CLTL

Very-Weak B-automata
VWBA with one counter

Regular Cost Functions

First-Order Fragment

What are the limits of this correspondence ?

On Infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by
an alternating weak automaton iff there are nondeterministic Büchi
automata U and U ′ such that

L = L(U) = L(U ′).

Weak automata
Weak MSO

Büchi Büchi

Reg
MSO

Extension to Cost Functions

Complementation becomes switching between B- and S-semantic:

Weak B-automata
WCMSO

B-Büchi S-Büchi

Quasi-Weak

Weak: Quasi-Weak:

Inclusions are strict [K.+Vanden Boom ’11]

Thank you !

