Expressive power of Cost Logics over
Infinite Words

Denis Kuperberg and Michael Vanden Boom

Séminaire Automates
24-02-2012

Introduction

» Regular cost functions: counting extension of regular
languages

Introduction

» Regular cost functions: counting extension of regular
languages

» Motivation: solving bound-related problems on regular
languages (e.g. star-height)

Introduction

» Regular cost functions: counting extension of regular
languages

» Motivation: solving bound-related problems on regular
languages (e.g. star-height)

» Definable over finite or infinite structures, like words or trees

Introduction

v

Regular cost functions: counting extension of regular
languages

v

Motivation: solving bound-related problems on regular
languages (e.g. star-height)

v

Definable over finite or infinite structures, like words or trees

v

Definable via automata, logics, algebraic structures,...

Cost automata over infinite words

Nondeterministic finite-state automaton A

+ finite set of counters
(initialized to 0, values range over N)

+ counter operations on transitions
(increment I, reset R, check C, no change ¢)

Semantics

[A] : AY = NU {o0}

Cost automata over infinite words

Nondeterministic finite-state automaton A

+ finite set of counters
(initialized to 0, values range over N)

+ counter operations on transitions
(increment I, reset R, check C, no change ¢)

Semantics
valg(p) := max checked counter value during run p

[A]s(u) := min{valg(p) : p is an accepting run of A on u}

Example

[A]s(u) = min length of block of a's surrounded by b's in u
a,b:e 3:IC a,b:e

.y

Cost automata over infinite words

Nondeterministic finite-state automaton A

+ finite set of counters
(initialized to 0, values range over N)

+ counter operations on transitions
(increment I, reset R, check C, no change ¢)

Semantics
vals(p) := min checked counter value during run p

[Als(u) := max{vals(p) : p is an accepting run of A on u}

Example

[A]ls(u) = min length of block of a's surrounded by b's in u
a:e a:l

b:

Boundedness relation
“[A] = [B]": undecidable [Krob '94]

Boundedness relation
“[A] = [B]": undecidable [Krob '94]
“[A] = [B]": decidable on words

[Colcombet '09, following Bojanczyk+Colcombet '06]
for all subsets U, [A](U) bounded iff [B](U) bounded

structures

[A] ~ [B]

Boundedness relation
“[A] = [B]": undecidable [Krob '94]
“[A] = [B]": decidable on words

[Colcombet '09, following Bojanczyk+Colcombet '06]
for all subsets U, [A](U) bounded iff [B](U) bounded

OF-N ...

structures

[A] # [5]

Applications

Many problems for a regular language L can be reduced to
deciding ~ for some class of automata with counting features:

» Finite power property (finite words)
[Simon '78, Hashiguchi '79]

is there some n such that (L + ¢)" = L*?

» Star-height problem (finite words/trees)
[Hashiguchi '88, Kirsten '05, Colcombet+Léding '08]

given n, is there a regular expression for L
with at most n nestings of Kleene star?

» Parity-index problem (infinite trees)
[reduction in Colcombet+Ldding '08, decidability open]

given i < j, is there a parity automaton for L
which uses only priorities {i,i +1,...,j}7

Applications

Many problems for a regular language L can be reduced to
deciding ~ for some class of automata with counting features:

» Finite power property (finite words)
[Simon '78, Hashiguchi '79] distance

is there some n such that (L + ¢)" = L*?

» Star-height problem (finite words/trees)

[Hashiguchi '88, Kirsten '05, Colcombet+Léding '08] n_ested
distance-
given n, is there a regular expression for L desert
with at most n nestings of Kleene star?
» Parity-index problem (infinite trees)
[reduction in Colcombet+Ldding '08, decidability open]
cost-parity

given i < j, is there a parity automaton for L
which uses only priorities {i,i +1,...,j}7

Languages as cost functions

» A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [A]g = x¢ and [A]s = x7. with

() = 0 ifuel
A WS ifuél

Languages as cost functions

» A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [A]g = x¢ and [A]s = x7. with

() = 0 ifuel
A WS ifuél

» Switching between B and S semantics corresponds to a
complementation.

Languages as cost functions

» A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [A]g = x¢ and [A]s = x7. with

() = 0 ifuel
A WS ifuél

» Switching between B and S semantics corresponds to a
complementation.

» If L and L’ are languages, x1 ~ x iff L = L', so cost function
theory, even up to =z, strictly extends language theory.

Languages as cost functions

» A standard automaton A computing a language L can be
viewed as a B- or S-automaton without any counters.
Then [A]g = x¢ and [A]s = x7. with

() = 0 ifuel
A WS ifuél

» Switching between B and S semantics corresponds to a
complementation.

» If L and L’ are languages, x1 ~ x iff L = L', so cost function
theory, even up to =z, strictly extends language theory.

» Aim: Extend classic theorems from languages to cost
functions

Cost functions on infinite words

> In the following, input structures = A-labelled infinite words.

Cost functions on infinite words

> In the following, input structures = A-labelled infinite words.

» Dual B- and S- semantics as before, defining functions:
AY — N U {oo}.

Cost functions on infinite words

> In the following, input structures = A-labelled infinite words.
» Dual B- and S- semantics as before, defining functions:
AY — N U {oo}.
» We aim at extending classical theorems on languages to the
setting of cost functions.

Logics on infinite words

> LTL on A describes regular languages:

p=alohp|eVel|eRe|pUp
where the negations have been pushed to the leaves, and the
U corresponds to “Next Until".

pYPpeepp
pUy: ag a1 ap a3 aa as ag ay ag A9a1Q
We can define X (Next), G (Always) and F (Eventually) in
terms of these operators.
» First-Order Logic (FO):

pr=a(x) | x=y|x<yl|lpAp|oVe|Ixp|Ixp

» (Weak) MSO: FO with quantification over (finite) sets, set
variables noted X, Y.

Cost LTL

» CLTL on A describes regular cost functions:
p=aloAe Vel eRe | pUp|pU=Ny

Cost LTL

» CLTL on A describes regular cost functions:
p=aloAe Vel eRe | pUp|pU=Ny

» ©U=Ny) means that 1) is true somewhere in the future, and ¢
is false at most N times until then.

SOUSNW P XPPXPPP
: ap a1 a2 a3 a4 as ag a7 ag 4910

Cost LTL

» CLTL on A describes regular cost functions:
p=aloAe Vel eRe | pUp|pU=Ny

» ©U=Ny) means that 1) is true somewhere in the future, and ¢
is false at most N times until then.

<N OXPOXPPYP
U=
dp @1 a2 a3 a4 as Ag A7 Ag 49a10

» The “error value” variable N is unique, and is shared by all
occurrences of USN operator.

Cost LTL

» CLTL on A describes regular cost functions:
p=aloAe Vel eRe | pUp|pU=Ny

» ©U=Ny) means that 1) is true somewhere in the future, and ¢
is false at most N times until then.

<N ... PXPPXPPP
U=
40 d1 82 a3 d4 a5 de a7 dg A9d10

» The “error value” variable N is unique, and is shared by all
occurrences of USN operator.

» G=N and RSN can be defined in terms of the previous
operators.

CFO and CMSO

» CFO on A describes regular cost functions:
p=a(x) [x=ylx<ylere|oVe|Ixe | Vx|V xp

» As before, N is a unique free variable and counts the number
of mistakes.

» (Weak) CMSO extends CFO with quantification over (finite)
sets.

Semantics of Cost Logics

From formula to cost function:
[¢] is the cost function associated to ¢, defined by

[el(u) = inf{N € N, ¢ is true on u with N as error value}

Example

For all u € {a, b}*, we have
> [bU=N(GH)](u) = [v="x.b(x)](u) = |ula.
» [G(LUSNB)](u) = [VX, blockas(X) = (V=Nx, x ¢ X)](u) =
maxblock,(u)

Alternating B-automata

» Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

Alternating B-automata

» Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

» Weak B-automaton: Biichi condition, no cycle with both
accepting and rejecting states.

Alternating B-automata

» Alternating B-automaton: Game between Eve and Adam,
with counter actions on transitions. Eve must satisfy
acceptance condition AND low counter value.

» Weak B-automaton: Biichi condition, no cycle with both
accepting and rejecting states.

» Very-weak B-automaton: Biichi condition, no non-trivial
cycle.

Classical picture

Cost Functions

Proof ideas for WCMSO to CMSO

» By Colcombet, CMSO < nondeterministic B/S-Biichi
automata.

» By [Vanden Boom 11], WCMSO <« weak alternating
B-automata.

We just need to show a translation nondeterministic B-Biichi
automata — weak alternating B-automata.

Classical Proof from [Kupferman+Vardi ’01]

a, b a

.

a, b
Fix a word u, and analyze the run-DAG of the Biichi-automaton on
u (here for u = baab®):

Ranks : No more Biichi or finite path on the remaining DAG.
Initial node gets a rank = u is rejected.

Classical Proof from [Kupferman+Vardi ’01]

a, b a

.

a, b
Fix a word u, and analyze the run-DAG of the Biichi-automaton on
u (here for u = baab®):

;><;><QV .O/ 0

G—0@—@

Ranks : No more Biichi or finite path on the remaining DAG.
Initial node gets a rank = u is rejected.

Classical Proof from [Kupferman+Vardi ’01]

a, b a

.

a, b
Fix a word u, and analyze the run-DAG of the Biichi-automaton on
u (here for u = baab®):

Ranks : No more Biichi or finite path on the remaining DAG.
Initial node gets a rank = u is rejected.

Extending to cost functions

Run-DAG for u = a%:
H?‘%&&&&C@
O O O e O O O

Problem to assign ranks : how to prove that this run has value oo 7

Solution :

Normal form for nondeterministic B-Biichi automata : must do a
reset on every counter after each Biichi state.

The modified automaton guesses whether there is

» a finite number of increments = add resets to Buchi states:
| IC IC IC IC R R R

"™ B R R' B B B

> infinitely many resets = delay Biichi states after the next
reset (equivalent up to =):
| R R R R
"R B R B R R B

On these Biichi automata in normal form, we can define ranks in a
sound way, for each value n.

Description of the weak alternating automaton

The weak B-automaton W describes a game between two players:

» Eve wants to prove that A accepts with low value
» Adam wants to prove that this is not the case

It allows Eve to play a run of A, and Adam to guess ranks. It is
designed in such a way that

» playing a n-run (if exists) is a strategy of value < n for Eve.

» playing the n-ranks (if exists) is a strategy of value > n for
Adam.

From this we get [W] = [A].

Summary

What are the limits of this correspondence ?

[m]

=

DA

On Infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)

A language L of infinite trees is recognizable by

an alternating weak automaton iff there are nondeterministic Biichi
automata // and U’ such that

L= L) = LQD).

Extension to Cost Functions

Complementation becomes switching between B- and S-semantic

IC

Weak: 15822 ‘Quasi—Weak: 1? ?2

Inclusions are strict [K.+-Vanden Boom '11]

[m]

=

Thank you !

