Cost Functions and Value 1 problem in practice

Nathanaël Fijalkow, Denis Kuperberg

LIAFA/Institute of Informatics, Warsaw University, Poland
ONERA/IRIT, Toulouse

December 18th, 2014
An algorithmic back-end: Stabilization Monoids

What?
- An algebraic structure with two operations: a binary composition and a unary operator $\#$,
- Generalizes the transition monoid of a non-deterministic automaton to two weighted settings.

Where? When?
- First appeared in the Theory of Regular Cost Functions [Colcombet 2009],
- Later used for Probabilistic Automata [Fijalkow, Gimbert, Oualhadj 2012].
Regular Cost functions

\textbf{B-automata}

- Non-deterministic, and are enriched with \textit{counters} with operations: \(+1, r\)
- Introduced to generalize proofs on regular languages: finite substitution, star-height.
- Semantic is a function: \(A^* \rightarrow \mathbb{N} \cup \{\infty\}\),

\textbf{Questions on B-automata}

- \textbf{Equivalence}: bounded on same sets of words,
- \textbf{Boundedness}: equivalent to 0 (bounded).
Examples of B-Automata

A_1: number of a

A_2: smallest block of a

Not equivalent: A_1 is not bounded on $(ab)^*$ but A_2 is.
Problem: Given L, is there $n \in \mathbb{N}$ such that $L^\ast = (L + \epsilon)^n$?
Problem: Given L, is there $n \in \mathbb{N}$ such that $L^* = (L + \epsilon)^n$?

Solution:

1. Start with an automaton for L.
Reductions from Finite Power to Boundedness

Problem: Given L, is there $n \in \mathbb{N}$ such that $L^* = (L + \varepsilon)^n$?

Solution:

1. Start with an automaton for L.
2. Add increment ε-transitions from final states to initial.
Reductions from Finite Power to Boundedness

Problem: Given L, is there $n \in \mathbb{N}$ such that $L^* = (L + \epsilon)^n$?

Solution:

1. Start with an automaton for L.
2. Add increment ϵ-transitions from final states to initial.
3. Decide boundedness
Problems solved using counters

- **Finite Power** (finite words) [Simon ’78, Hashiguchi ’79]
 Is there \(n \) such that \((L + \varepsilon)^n = L^*\)?

- **Fixed Point Iteration** (finite words)
 [Blumensath+Otto+Weyer ’09]
 Bound on the number of fixpoint iterations in a MSO formula?

- **Star-Height** (finite words/trees)
 [Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]
 Given \(n \), is there an expression for \(L \), with at most \(n \) nesting of Kleene stars?

- **Parity Rank** (infinite trees)
 [reduction in Colcombet+Löding ’08, deterministic input
 Niwinski+Walukiewicz ’05, Büchi input K.+Vanden Boom ’11 CKLV ’13]
 Given \(i < j \), is there a parity automaton for \(L \) using ranks \(\{i, i + 1, \ldots, j\} \)?
Problem for probabilistic Automata

Probabilistic automata

- Transitions are distributions $\delta(q, a) : Q \rightarrow [0, 1]$,
- $P_A(w)$ is the probability that A accepts w.

Value 1 problem: Given A, is there a sequence w_n such that $P_A(w_n) \rightarrow 1$?
Problem for probabilistic Automata

Probabilistic automata

- Transitions are distributions $\delta(q, a) : Q \rightarrow [0, 1]$,
- $P_A(w)$ is the probability that A accepts w.

Value 1 problem: Given A, is there a sequence w_n such that $P_A(w_n) \rightarrow 1$?

Undecidable, but decidable in a restricted case: leaktight automata.

Intuition: leaks allow ”competitive” behaviours, outcome depends on fine tuning of transitions.
Matrix Representation

\[\langle a \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \langle b \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[I \cdot \langle u \rangle \cdot F = 1 \quad \text{if and only if} \quad u \text{ is accepted.} \]
Probabilistic automata

\[\langle a \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \langle b \rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0.7 & 0 & 0.3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[I \cdot \langle u \rangle \cdot F = P_A(u) \]
\[B\text{-automata} \]

\[
\begin{align*}
\langle a \rangle &= \begin{pmatrix}
0 & \bot & \bot & \bot \\
\bot & 1 & r & \bot \\
\bot & \bot & 0 & \bot \\
\bot & \bot & \bot & 0
\end{pmatrix} \quad \quad \langle b \rangle &= \begin{pmatrix}
0 & \bot & \bot & \bot \\
\bot & 1 & \bot & \bot \\
\bot & \bot & r & \bot \\
\bot & \bot & \bot & 0
\end{pmatrix} \\
I \cdot \langle u \rangle \cdot F &= f(u)
\end{align*}
\]
Consider either the rational semiring \((\mathbb{Q}, +, \times)\) or the tropical semiring \((\mathbb{N} \cup \{\infty\}, \min, +)\):

- An automaton \(A\) is given by a matrix \(\langle a \rangle\) for each letter \(a \in A\),
- We would like to finitely represent \(\{\langle u \rangle \mid u \in A^*\}\).
Computing in Infinite Semirings

Consider either the rational semiring \((\mathbb{Q}, +, \times)\) or the tropical semiring \((\mathbb{N} \cup \{\infty\}, \min, +)\):

- An automaton \(A\) is given by a matrix \(\langle a \rangle\) for each letter \(a \in A\),
- We would like to finitely represent \(\{\langle u \rangle \mid u \in A^*\}\).

So we abstract away the precise values and consider two operators:

- a binary composition law: matrix multiplication,
- a stabilization unary operator \(\sharp\).
Consider either the rational semiring \((\mathbb{Q}, +, \times)\) or the tropical semiring \((\mathbb{N} \cup \{\infty\}, \min, +)\):

- An automaton \(A\) is given by a matrix \(\langle a \rangle\) for each letter \(a \in A\),
- We would like to finitely represent \(\{\langle u \rangle \mid u \in A^*\}\).

So we abstract away the precise values and consider two operators:

- a binary composition law: matrix multiplication,
- a stabilization unary operator \(\sharp\).

Intuitively, \(\langle u \rangle^\sharp\) represents \(\lim_n \langle u^n \rangle\).
Stabilization operations

Only defined on idempotents.

\textbf{B-automata:}
Replace $+1$ by ω in the matrix, meaning “unbounded”.

\textbf{Probabilisatic Automata:}
Model long runs \rightarrow Keep only edges going to ergodic strongly connected components.

No reduction from one framework to the other on the automata level \rightarrow versatility of stabilization monoids.
Example of computation

A: $a, b \xrightarrow{b} a : +1 \xrightarrow{b} a, b$

$\mathcal{A}^\#$: Not accepted

$ba^\#b$: Accepted, but not within some bound.
Formally, a stabilization monoid is $(M, \cdot, \# , \leq)$ such that:

- (M, \cdot, \leq) is an ordered monoid (associativity, monotonicity of \cdot),
- $\#$ is a function from idempotents to idempotents,
- $x \leq x^#$,
- $x^# = xx^# = (x^#)^#$.

The order puts a constraint on accepting sets: it has to be upwards-closed.
Stabilization Monoid of an Automaton

Definition

The Stabilization Monoid of A is the closure of $\{\langle a \rangle \mid a \in A\}$ under both operators.

The Stabilization Monoid of A contains a lot of informations about A!
Using the Stabilization Monoid

B-Automata
- Decide whether a B-automaton is bounded,
- Decide whether two B-automata are equivalent.

Probabilistic Automata
- Decide whether a probabilistic automaton has (probably) value 1,
- Decide whether a probabilistic automaton is leaktight.
Algorithmics elements of ACME

Saturation
- Hashtable for elements obtained, and queue for new candidates.
- Worst-case complexity EXPTIME.
- Current improvements: keep short names for elements and rewriting rules.

Minimization
- needed for equivalence checking,
- general Myhill-Nerode Equivalence, needs a new operator $\omega#$.
- Union-find structure for partitions,
- Computation of abstract types,
- Polynomial in $|M|$ (exponential in $|A|$).

Currently migrating from OCaml to C++, with new optimizations.
Demo of ACME

[Demo of ACME]
The end.

Thank you for your attention!