Good-for-Games Automata: State of the art and perspectives

Denis Kuperberg

CNRS, LIP, ENS Lyon

Dagstuhl Seminar
Unambiguity in Automata Theory
Two Players: Eve, Adam

Arena: finite graph $G = (V, E)$, with $V = V_a \sqcup V_b$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V_\omega$.

Winning Condition: $W \subseteq V_\omega$.

Eve wins a play π if $\pi \in W$.
Games

Two Players:

Arena: finite graph $G = (V, E)$, with $V = V_{\text{green}} \cup V_{\text{red}}$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V_\omega$.

Winning Condition: $W \subseteq V_\omega$.

Eve wins a play π if $\pi \in W$.
Games

Two Players:

- Eve
- Adam

Arena: finite graph $G = (V, E)$, with $V = V_\circ \cup V_\square$.

Initial vertex: $v_0 \in V$.

Winning Condition: $W \subseteq V_\omega$. Eve wins a play π if $\pi \in W$.
Games

Two Players: Eve ✑ Adam

Arena: finite graph $G = (V, E)$, with $V = V_0 \cup V_1$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V^\omega$
Two Players:

Arena: finite graph $G = (V, E)$, with $V = V_0 \cup V_1$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V^\omega$

Winning Condition: $W \subseteq V^\omega$.
Games

Two Players: Eve, Adam

Arena: finite graph $G = (V, E)$, with $V = V_\circ \cup V_\square$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V^\omega$

Winning Condition: $W \subseteq V^\omega$. Eve wins a play π if $\pi \in W$.
ω-regular games

Winning condition W: an ω-regular language.

$$W = (a^* ba^* c)^\omega$$
ω-regular games

Winning condition W: an ω-regular language.

$W = (a^* ba^* c)^\omega$

Particular case: Parity games

W is a parity condition: each vertex has a color in \mathbb{N}, the maximal color appearing infinitely often must be even.

Büchi=Parity $[1, 2]$ \hspace{1cm} CoBüchi=Parity $[0, 1]$.
\(\omega \)-regular games

Winning condition \(W \): an \(\omega \)-regular language.

\[
W = (a^* ba^* c)^\omega
\]

Particular case: Parity games

\(W \) is a parity condition: each vertex has a color in \(\mathbb{N} \), the maximal color appearing infinitely often must be even.

\begin{align*}
\text{Büchi} = \text{Parity } [1, 2] & \quad \text{CoBüchi} = \text{Parity } [0, 1].
\end{align*}

Theorem (Positional Determinacy [Emerson, Jutla ’91])

In a parity game, Eve or Adam has a **positional** winning strategy.
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?
Solving an \(\omega \)-regular game

Input: \(G \) game with \(\omega \)-regular winning condition \(W \subseteq V^\omega \).

Question: Who wins \(G \)? How?

Solution:

1. Build Det Parity automaton \(A_{\text{Det}} \) for \(W \),
2. Solve the parity game \(G' = A_{\text{Det}} \circ G \).

Theorem

\(G' \) has same winner as \(G \).

\(\sigma_{\text{pos}} \) in \(G' \) gives \(\sigma \) in \(G \) with memory \(A_{\text{Det}} \).

\(\rightarrow \) \(\omega \)-regular games are finite-memory determined.

Application: Church Synthesis

Automatically build a program from a specification \(L \iff W \).
Solving an \(\omega \)-regular game

Input: \(G \) game with \(\omega \)-regular winning condition \(W \subseteq V^\omega \).

Question: Who wins \(G \)? How?

Solution:

1. Build Det Parity automaton \(A_{\text{Det}} \) for \(W \),
2. Solve the parity game \(G' = A_{\text{Det}} \circ G \).

Theorem

\(G' \) has same winner as \(G \).

\(\sigma_{\text{pos}} \) in \(G' \) gives \(\sigma \) in \(G \) with memory \(A_{\text{Det}} \).

\(\rightarrow \ \omega \)-regular games are finite-memory determined.

Application: Church Synthesis

Automatically build a program from a specification \(L \)

\(\Leftrightarrow \) Solving a game with winning condition \(L \).
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution:
1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = A_{Det} \circ G$.

Theorem
G' has same winner as G.
σ_{pos} in G' gives σ in G with memory A_{Det}.
\rightarrow ω-regular games are finite-memory determined.

Application: Church Synthesis
Automatically build a program from a specification L
\iff Solving a game with winning condition L.

Problem: Determinization is expensive. Maybe too strong?
Good-for-Games Automata

Deterministic

Non-deterministic

Unambiguous

Good-for-Games

\(\sigma : A^* \rightarrow Q \)
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:

Adam plays letters:

Eve: resolves non-deterministic choices for transitions

$w \in L \Rightarrow$ Run accepting.

$A \text{ GFG} \iff$ Eve wins the Letter game on $\mathcal{A} \iff$ there is a strategy $\sigma_{GFG} : \mathcal{A}^* \rightarrow Q$ accepting all words of $L(\mathcal{A})$.

Not a parity game! Only ω-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow \text{Run accepting.}$

A GFG \iff Eve wins the Letter game on $\mathcal{A} \iff$ there is a strategy σ_{GFG}: $\mathcal{A}^* \to Q$ accepting all words of $L(\mathcal{A})$.

Not a parity game! Only ω-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \(A \):
- **Adam** plays letters: \(a \)
- **Eve**: resolves non-deterministic choices for transitions

\[w \in L \Rightarrow \text{Run accepting.} \]

A GFG \(\Leftrightarrow \) Eve wins the Letter game on \(A \) \(\Leftrightarrow \) there is a strategy \(\sigma \) GFG:

\[A^* \rightarrow Q \text{ accepting all words of } L(A). \]

Not a parity game! Only \(\omega \)-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of A:
Adam plays letters: $a \ a$

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:
Adam plays letters: a, a

Eve: resolves non-deterministic choices for transitions

$A \text{ GFG} \iff \text{Eve wins the Letter game on } A \iff \text{there is a strategy } \sigma_{\text{GFG}}: A^* \to Q \text{ accepting all words of } L(A)$.

Not a parity game! Only ω-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: a, a, b

Eve: resolves non-deterministic choices for transitions

![Diagram of a nondeterministic automaton with transitions labeled a, b, and c.]
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:

Adam plays letters: a a b

Eve: resolves non-deterministic choices for transitions

Not a parity game! Only ω-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \(A \):
- **Adam** plays letters: \(a \ a \ b \ c \)
- **Eve**: resolves non-deterministic choices for transitions

\[
\text{Eve wins if: } w \in L \Rightarrow \text{Run accepting.}
\]

A GFG \(\iff \) Eve wins the Letter game on \(A \) \(\iff \) there is a strategy \(\sigma_{GFG} : A^* \to Q \) accepting all words of \(L(A) \).

Not a parity game! Only \(\omega \)-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of A:

Adam plays letters: $a \ a \ b \ c$

Eve: resolves non-deterministic choices for transitions

![Diagram](image)
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of A:
Adam plays letters: \(a \ a \ b \ c \ c \)
Eve: resolves non-deterministic choices for transitions

Not a parity game! Only \(\omega \)-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:
Adam plays letters: $a\ a\ b\ c\ c$
Eve: resolves non-deterministic choices for transitions

\mathcal{A} is GFG \iff Eve wins the Letter game on $\mathcal{A} \iff$ there is a strategy $\sigma_{\text{GFG}} : \mathcal{A}^\omega \rightarrow Q$ accepting all words of $\mathcal{L}(\mathcal{A})$.

Not a parity game! Only ω-regular.
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of \mathcal{A}:
Adam plays letters: $a\ a\ b\ c\ c\ \ldots\ =\ w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.
Definition of GFG via a game

\(\mathcal{A} \) ND automaton on finite or infinite words.

Letter game of \(\mathcal{A} \):

Adam plays letters: \(a \ a \ b \ c \ c \ldots = w \)

Eve: resolves non-deterministic choices for transitions

\[
\begin{align*}
& a, b, c \\
& a \quad a \\
& b, c \\
& b \\
& c \\
& a, b, c
\end{align*}
\]

Eve wins if: \(w \in L \Rightarrow \text{Run accepting.} \)

\(\mathcal{A} \) GFG \iff Eve wins the Letter game on \(\mathcal{A} \)

\iff there is a strategy \(\sigma_{\text{GFG}} : \mathcal{A}^* \rightarrow Q \) accepting all words of \(L(\mathcal{A}) \).
Definition of GFG via a game

A ND automaton on finite or infinite words.

Letter game of A:
Adam plays letters: $a\ a\ b\ c\ c\ \ldots\ =\ w$
Eve: resolves non-deterministic choices for transitions

A GFG \iff Eve wins the Letter game on A
\iff there is a strategy $\sigma_{GFG}: A^* \rightarrow Q$ accepting all words of $L(A)$.

Not a parity game! Only ω-regular.
Why “Good-for-games”?

Theorem (Henzinger, Piterman ’06)

Let \mathcal{A} a parity GFG automaton, and G game with winning condition $L(\mathcal{A})$.

Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive \mathcal{A} according to σ_{GFG}.
Why “Good-for-games”?

Theorem (Henzinger, Piterman ’06)

Let A a parity GFG automaton, and G game with winning condition $L(A)$.

Then $A \circ G$ (where Eve controls A) is a parity game with same winner as G.

Proof: Eve can drive A according to σ_{GFG}.

\rightarrow We can use GFG instead of determinism to solve games.
Why “Good-for-games”?

Theorem (Henzinger, Piterman ’06)

Let \mathcal{A} a parity GFG automaton, and G game with winning condition $L(\mathcal{A})$.

Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive \mathcal{A} according to σ_{GFG}.

→ We can use GFG instead of determinism to solve games. GFG automata can be defined as those enjoying this property.
Why “Good-for-games”?

Theorem (Henzinger, Piterman ’06)

Let \mathcal{A} a parity GFG automaton, and G game with winning condition $L(\mathcal{A})$.

Then $\mathcal{A} \circ G$ (where Eve controls \mathcal{A}) is a parity game with same winner as G.

Proof: Eve can drive \mathcal{A} according to σ_{GFG}.

\rightarrow We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary

Church synthesis is in PTIME if the input is a GFG automaton.
Why “Good-for-games”?

Theorem (Henzinger, Piterman ’06)

Let \(\mathcal{A} \) a parity GFG automaton, and \(G \) game with winning condition \(L(\mathcal{A}) \).

Then \(\mathcal{A} \circ G \) (where Eve controls \(\mathcal{A} \)) is a parity game with same winner as \(G \).

Proof: Eve can drive \(\mathcal{A} \) according to \(\sigma_{\text{GFG}} \).

→ We can use GFG instead of determinism to solve games.

GFG automata can be defined as those enjoying this property.

Corollary

Church synthesis is in PTime if the input is a GFG automaton.

Remark: Synthesis is \(\text{ExpTime-complete} \) for nondet specification, and \(2\text{ExpTime-complete} \) for LTL specification.
Good-for-Trees

A automaton on infinite words $\leftrightarrow A_T$ automaton on infinite trees

If $p \xrightarrow{a} q_1$ and $p \xrightarrow{a} q_2$ in A, then put in A_T:

\[
p \xrightarrow{a} q_1 \quad q_2
\]
Good-for-Trees

A automaton on infinite words $\mapsto A_T$ automaton on infinite trees

If $p \xrightarrow{a} q_1$ and $p \xrightarrow{a} q_2$ in A, then put in A_T:

```
  p
 /\   /
\  / \  /
 q1 q2
```

Definition

A is Good-for-Trees (GFT) if

$$L(A_T) = \{ t \mid \text{all branches of } t \text{ are in } L(A) \}$$
Good-for-Trees

A automaton on infinite words $\mapsto A_T$ automaton on infinite trees

If $p \xrightarrow{a} q_1$ and $p \xrightarrow{a} q_2$ in A, then put in A_T:

Definition

A is Good-for-Trees (GFT) if

$$L(A_T) = \{ t \mid \text{all branches of } t \text{ are in } L(A) \}$$

Theorem (Boker, K., Kupferman, Skrzypczak '13)

If rank of the trees \geq size of the alphabet, then

$$\text{GFG} = \text{GFT}$$
Good-for-Trees

\(\mathcal{A} \) automaton on infinite words \(\mapsto \mathcal{A}_T \) automaton on infinite trees

If \(p \xrightarrow{a} q_1 \) and \(p \xrightarrow{a} q_2 \) in \(\mathcal{A} \), then put in \(\mathcal{A}_T \):

\[
\begin{array}{c}
p \xrightarrow{a} \\
\quad \downarrow \\
q_1 \quad q_2
\end{array}
\]

Definition

\(\mathcal{A} \) is **Good-for-Trees** (GFT) if

\[
L(\mathcal{A}_T) = \{ t \mid \text{all branches of } t \text{ are in } L(\mathcal{A}) \}
\]

Theorem (Boker, K., Kupferman, Skrzypczak '13)

If rank of the trees \(\geq \) size of the alphabet, then

\[\text{GFG} = \text{GFT} \]

Hypothesis is necessary!
Fact

Every deterministic automaton is GFG.
Fact

Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

\[L = (a + b)(a + b) \]
Fact

Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

\[L = (a + b)(a + b) \]

Definition

Determinizable by Pruning (DBP):

Determinizable by removing some transitions.
Link with determinism

Fact
Every deterministic automaton is GFG.

Some (unamb.) non-GFG automaton:

\[L = (a + b)(a + b) \]

Definition
Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact
DBP = “GFG with a positional strategy”.
\[\rightarrow \text{Every DBP automaton is GFG.} \]
Some GFG automata

Theorem

On finite words, $\text{DBP} = \text{GFG}$.

Proof: σ_{GFG}: always go to state accepting the maximal language.
Some **GFG** automata

Theorem

*On finite words, $\text{DBP} = \text{GFG}$.***

Proof: σ_{GFG}: always go to state accepting the maximal language.

Theorem ([Boker, K., Kupferman, Skrzypczak ’13])

*On infinite words, $\text{DBP} \subsetneq \text{GFG}$.***

A **GFG** coBüchi automaton for $((xa + xb)^*[(xa)^\omega + (xb)^\omega])$.
Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether $L(A) \subseteq L(B)$ in \textbf{PTime}.

\textbf{Proof:} Simulation game.
Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)

*If A is nondet and B is GFG, we can decide whether $L(A) \subseteq L(B)$ in PTime.***

Proof: Simulation game.

Theorem (Easy Union, Intersection)

If A and B are GFG, then their union and intersection using cartesian product are GFG.
Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)
If A is nondet and B is GFG, we can decide whether $L(A) \subseteq L(B)$ in PTime.

Proof: Simulation game.

Theorem (Easy Union, Intersection)
If A and B are GFG, then their union and intersection using cartesian product are GFG.

Theorem (Hard complementation)
If A is GFG for L and B is GFG for \overline{L}, then we can build in PTime a deterministic automaton for L based on $A \times B$.
Algorithmic properties of GFG automata

Theorem (Easy inclusion checking)

If A is nondet and B is GFG, we can decide whether $L(A) \subseteq L(B)$ in PTime.

Proof: Simulation game.

Theorem (Easy Union, Intersection)

If A and B are GFG, then their union and intersection using cartesian product are GFG.

Theorem (Hard complementation)

If A is GFG for L and B is GFG for \overline{L}, then we can build in PTime a deterministic automaton for L based on $A \times B$.

Proof: Pos. Strategy in Letter game of $U = A \times B$ accepting all words.
How much memory is needed in the GFG strategy?

Lemma

If A is GFG and D is a det. automaton for $L(A)$, then there is a strategy σ_{GFG} with memory D.

Proof: Solve the letter game the classical way.
How much memory is needed in the GFG strategy?

Lemma
If A is GFG and D is a det. automaton for $L(A)$, then there is a strategy σ_{GFG} with memory D.

Proof: Solve the letter game the classical way.

Fact
If A is GFG with σ_{GFG} of memory M, then $D = A \times M$ is a det. automaton for $L(A)$.

Important Remark: GFG automata can be used in algorithms without knowing σ_{GFG}. The strategy σ_{GFG} “hides” the determinism.
How much memory is needed in the GFG strategy?

Lemma
If A is GFG and D is a det. automaton for $L(A)$, then there is a strategy σ_{GFG} with memory D.

Proof: Solve the letter game the classical way.

Fact
If A is GFG with σ_{GFG} of memory M, then $D = A \times M$ is a det. automaton for $L(A)$.

Conclusion:
Size of memory in $\sigma_{GFG} \approx$ size of equivalent det. automaton.
How much memory is needed in the GFG strategy?

Lemma
If A is GFG and D is a det. automaton for $L(A)$, then there is a strategy σ_{GFG} with memory D.

Proof: Solve the letter game the classical way.

Fact
If A is GFG with σ_{GFG} of memory M, then $D = A \times M$ is a det. automaton for $L(A)$.

Conclusion:
Size of memory in $\sigma_{GFG} \approx$ size of equivalent det. automaton

Corollary
Det and GFG are equi-expressive for any acceptance condition.
How much memory is needed in the GFG strategy?

Lemma

If A is GFG and D is a det. automaton for $L(A)$, then there is a strategy σ_{GFG} with memory D.

Proof: Solve the letter game the classical way.

Fact

If A is GFG with σ_{GFG} of memory M, then $D = A \times M$ is a det. automaton for $L(A)$.

Conclusion:
Size of memory in $\sigma_{GFG} \approx$ size of equivalent det. automaton.

Corollary

Det and GFG are equi-expressive for any acceptance condition.

Important Remark:
GFG automata can be used in algorithms without knowing σ_{GFG}. The strategy $\sigma_{GFG} \text{ "hides" the determinism.}
State-blow-up for determinization

Finite words:
\(\text{GFG} = \text{DBP} \), Determinization in \(\text{PTime} \) [Löding].
State-blow-up for determinization

Finite words:
\(\text{GFG} = \text{DBP} \), Determinization in \(\text{PTime} \) [Löding].

\text{Büchi} (Parity \([1, 2]\)):
- Simple exponential determinization: powerset not Safra.
- Determinization: \(O(n^2) \) states and \(\text{NP} \) [K., Skrzypczak ’15].
- Conjecture \(O(n) \) states and in \(\text{PTime} \).
State-blow-up for determinization

Finite words:
\(\text{GFG} = \text{DBP} \), Determinization in \(\text{PTIME} \) [Löding].

\(\text{Büchi} \) (Parity \([1, 2]\)):
- Simple exponential determinization: powerset not Safra.
- Determinization: \(O(n^2) \) states and \(\text{NP} \) [K., Skrzypczak ’15].
- Conjecture \(O(n) \) states and in \(\text{PTIME} \).

\(\text{CoBüchi} \) (Parity \([0, 1]\)):
\(\text{GFG} \) automata can be exponentially more succinct than deterministic ones [K., Skrzypczak ’15]
Exponential succinctness

To define L_n, letters $\{a, b, \#\}$ act on $\{0, 1, \ldots, n - 1\}$:

$$a : + 1 \mod n \quad b : 0 \leftrightarrow 1 \quad \# : \text{“cuts” 0}$$
Exponential succinctness

To define L_n, letters $\{a, b, \#\}$ act on $\{0, 1, \ldots, n-1\}$:

- $a : \quad +1 \mod n$
- $b : \quad 0 \leftrightarrow 1$
- $\# : \text{"cuts" } 0$

Graph(w):

<table>
<thead>
<tr>
<th>w</th>
<th>a</th>
<th>b</th>
<th>$#$</th>
<th>a</th>
<th>$#$</th>
<th>a</th>
<th>b</th>
<th>$#$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

$L_n = \{w \mid \text{Graph}(w) \text{ contains an } \infty \text{ path}\}.$
Exponential succinctness

To define L_n, letters $\{a, b, \#\}$ act on $\{0, 1, \ldots, n - 1\}$:

\[a : +1 \mod n \quad b : 0 \leftrightarrow 1 \quad \# : \text{“cuts” 0} \]

Graph(w):

\[
\begin{align*}
0 & \quad a & b & \# & a & \# & a & b & \# & \ldots \\
1 & \quad & \ldots \\
2 & \quad & \ldots \\
3 & \quad & \ldots \\
\end{align*}
\]

$L_n = \{w \mid \text{Graph}(w) \text{ contains an } \infty \text{ path}\}$.

Lemma: Any Det Parity automaton for L_n needs $\frac{2^n}{n+1}$ states.
Small CoBüchi GFG for L_n

Graph(w):

```
0
1
2
3
```

w: a b ♯ a ♯ a b ♯ ...
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet ’09]
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet '09]

HD vs GFG (in quantitative automata) [Boker, Lehtinen]
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet ’09]

HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

▶ σ_{Eve} and σ_{Adam}

▶ exponential succinctness versus GFG and versus Det

▶ notion of half-GFG (open problems !)
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
 ▶ σ_{Eve} and σ_{Adam}
 ▶ exponential succinctness versus GFG and versus Det
 ▶ notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]
 ▶ Strictly between DPDA and PDA
 ▶ Exponential ($<\text{DPDA}$) and doubly exponential ($>\text{PDA}$) gaps
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet '09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- σ_{Eve} and σ_{Adam}
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(ω-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential ($<$DPDA) and doubly exponential ($>$PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding '08, Skrzypczak '21]
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]
- σ_{Eve} and σ_{Adam}
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(\(\omega\)-)**Pushdown automata** [Guha, Jecker, Lehtinen, Zimmermann]
- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]

I/O-Aware GFG [Faran, Kupferman ’20]
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet '09]

HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- \(\sigma_{\text{Eve}} \) and \(\sigma_{\text{Adam}} \)
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(\(\omega \)-)**Pushdown automata** [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]

I/O-Aware GFG [Faran, Kupferman ’20]

(max, +) **automata** [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
More general frameworks

Co-invention: History-deterministic for cost functions [Colcombet ’09]
HD vs GFG (in quantitative automata) [Boker, Lehtinen]

Alternating automata [Boker, Colcombet, K., Lehtinen, Skrzypczak]

- σ_{Eve} and σ_{Adam}
- exponential succinctness versus GFG and versus Det
- notion of half-GFG (open problems !)

(\(\omega\)-)Pushdown automata [Guha, Jecker, Lehtinen, Zimmermann]

- Strictly between DPDA and PDA
- Exponential (<DPDA) and doubly exponential (>PDA) gaps

Infinite trees: Guidable aut. [Colcombet+Löding ’08, Skrzypczak ’21]

I/O-Aware GFG [Faran, Kupferman ’20]
(max, +) automata [Filiot, Jecker, Lhote, Pérez, Raskin ’17]
Discounted Sum, LimInf, LimSup [Boker, Lehtinen]
Building GFG automata

Some efforts:

- Incremental powerset construction [K', Majumdar '18]
- Fragment of CoBüchi languages [losti, K. '19]
- Minimization of GFG CoBüchi automata in PTime [Abu Radi, Kupferman '20]

Det CoBüchi \mapsto Minimal GFG coBüchi
Building GFG automata

Some efforts:

- Incremental powerset construction [K', Majumdar '18]
- Fragment of CoBüchi languages [Iosti, K. '19]
- Minimization of GFG CoBüchi automata in PTIME [Abu Radi, Kupferman '20]

Det CoBüchi \rightarrow Minimal GFG coBüchi

Less ambitious goal: recognizing GFG automata.
Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?
Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])

*We can solve the Letter game in ExpTime.***
Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])

We can solve the Letter game in \(\text{ExpTime} \).

Proof:

- Compute a deterministic parity automaton for $L(A)$,
- Use it to transform the Letter game into a parity game G' of exponential size,
- Solve G'.

Recognizing GFG automata

GFGness problem: input A a ND automaton, is it GFG?

Theorem ([Henzinger, Piterman ’06])

We can solve the Letter game in ExpTime.

Proof:

- Compute a deterministic parity automaton for $L(A)$,
- Use it to transform the Letter game into a parity game G' of exponential size,
- Solve G'.

So GFGness is decidable, but can we do better than ExpTime?
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTime for finite words automata.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTime} \) for finite words automata.

The game \(G_1 \):
Adam plays letters:

Eve: moves one token \(\bigcirc \), Adam: moves one token \(\blacksquare \)

The game \(G_1 \) is a safety game, solvable in polynomial time.

\[a, b, c \]
\[a \]
\[b \]
\[c \]
Theorem (Löding)

The GFGness problem is in PTime for finite words automata.

The game G_1:
- **Adam** plays letters: a
- **Eve** moves one token \bullet, **Adam** moves one token \blacksquare

Eve wins if at all times: $\text{accepting} \Rightarrow \text{accepting}$.

Theorem: Eve wins $G_1 \iff A$ is GFG.

G_1 is a safety game, solvable in polynomial time.

Pos. Strategy \mapsto Det. Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \textsc{PTime} for finite words automata.

The game G_1:
Adam plays letters: a
Eve: moves one token \blacklozenge, Adam: moves one token \blacksquare

Eve wins if at all times: $\text{accepting} \Rightarrow \text{accepting}$.

Theorem: Eve wins $G_1 \iff A$ is GFG.

G_1 is a safety game, solvable in polynomial time.

Pos. Strategy \mapsto Det. Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)
The GFGness problem is in PTime for finite words automata.

The game G_1:
Adam plays letters: a
Eve: moves one token \bullet, Adam: moves one token \blacksquare

G_1 is a safety game, solvable in polynomial time.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \textbf{PTime} for finite words automata.

The game G_1:

Adam plays letters: a a

Eve: moves one token \bigcirc, Adam: moves one token \blacksquare

\begin{center}
\begin{tikzpicture}[node distance={15mm}, thick, main/.style = {draw, circle}, initial text={}]

 \node[main, initial, initial where=left] (1) {a, b, c};
 \node[main] (2) [right of=1] {a};
 \node[main] (3) [right of=2] {b};
 \node[main, accepting] (4) [right of=3] {a, b, c};

 \path[->]
 (1) edge [loop above] node {a} (1)
 (1) edge node {a} (2)
 (2) edge node {b} (3)
 (3) edge [loop above] node {c} (3)
 \end{tikzpicture}
\end{center}

\begin{center}
Eve wins if at all times: $\text{accepting} \Rightarrow \text{accepting}$.
\end{center}

Theorem: Eve wins G_1 \iff Adam is GFG.

G_1 is a safety game, solvable in polynomial time.

Pos. Strategy \mapsto Det. Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTIME} \) for finite words automata.

The game \(G_1 \):

Adam plays letters: \(a \quad a \)

Eve: moves one token \(\bullet \), **Adam**: moves one token \(\blacksquare \)

\[a, b, c \]

\[a, b, c \]
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTime} \) for finite words automata.

The game \(G_1 \): Adam plays letters: \(a \ a \)

Eve: moves one token \(\circ \), Adam: moves one token \(\square \)

Eve wins if at all times: accepting \(\Rightarrow \) accepting.

Theorem: Eve wins \(G_1 \) \(\iff \) \(A \) is GFG.

\(G_1 \) is a safety game, solvable in polynomial time.

Pos. Strategy \(\mapsto \) Det. Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTIME} \) for finite words automata.

The game \(G_1 \):
Adam plays letters: \(a \ a \ b \)

Eve: moves one token \(\bigcirc \), Adam: moves one token \(\square \)

\[\begin{array}{c}
a, b, c \\
a, b, c \\
a, b, c \\
\end{array}\]

\[\begin{array}{c}
a \\
a \\
b \\
\end{array}\]

\[\begin{array}{c}
b, c \\
b, c \\
c \\
\end{array}\]
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTime} \) for finite words automata.

The game \(G_1 \):

Adam plays letters: \(a \ a \ b \)

Eve: moves one token \(\bigcirc \), Adam: moves one token \(\blacksquare \)

Eve wins if at all times: \(\text{accepting} \implies \text{accepting} \).

Theorem: Eve wins \(G_1 \) \iff A is GFG.

\(G_1 \) is a safety game, solvable in polynomial time.

Pos. Strategy \(\mapsto \) Det. Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTime} \) for finite words automata.

The game \(G_1 \):

Adam plays letters: \(a \ a \ b \)

Eve: moves one token \(\bullet \), Adam: moves one token \(\blacksquare \)

\(G_1 \) is a safety game, solvable in polynomial time.

Eve wins if at all times:

\[\text{accepting} \Rightarrow \text{accepting}. \]

Theorem: Eve wins \(G_1 \) \(\Leftrightarrow \) Adam is \(\text{GFG} \).
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in \(\text{PTime} \) for finite words automata.

The game \(G_1 \):

Adam plays letters: \(a \ a \ b \ c \)

Eve: moves one token

Adam: moves one token

\[G_1 \text{ is a safety game, solvable in polynomial time.} \]

\[\text{Pos. Strategy} \mapsto \text{Det. Automaton.} \]
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTime for finite words automata.

The game G_1:
- Adam plays letters: a, b, c
- Eve: moves one token \bigcirc, Adam: moves one token \blacksquare

Eve wins if at all times:

$\text{accepting} \Rightarrow \text{accepting}$.

Theorem: Eve wins G_1 \iff A is GFG.

G_1 is a safety game, solvable in polynomial time.

Positive Strategy \mapsto Deterministic Automaton.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTime for finite words automata.

The game G_1:
- **Adam** plays letters: a a b c
- **Eve**: moves one token \bigcirc, **Adam**: moves one token \blacksquare

G_1 is a safety game, solvable in polynomial time.

$\text{Pos. Strategy} \mapsto \text{Det. Automaton}$
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1:

Adam plays letters: $a \ a \ b \ c \ldots = w$

Eve: moves one token \bigcirc, Adam: moves one token \blacksquare

Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.
Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1:
Adam plays letters: $a \ a \ b \ c \ldots = w$
Eve: moves one token \bullet, Adam: moves one token \blacksquare

Eve wins if at all times: \blacksquare accepting \Rightarrow \bullet accepting.

Theorem: Eve wins $G_1 \iff \mathcal{A}$ is GFG.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1:

Adam plays letters: $a\ a\ b\ c\ \ldots\ =\ w$

Eve moves one token \bullet, Adam moves one token \blacksquare

Eve wins if at all times: \blacksquare accepting \Rightarrow \bullet accepting.

Theorem: Eve wins $G_1 \iff A$ is GFG.

G_1 is a safety game, solvable in polynomial time.
Abstracting the Letter game: finite words

Theorem (Löding)

The GFGness problem is in PTIME for finite words automata.

The game G_1:
- **Adam** plays letters: $a \ a \ b \ c \ldots = w$
- **Eve**: moves one token \bigcirc, **Adam**: moves one token \blacksquare
- Eve wins if at all times: \blacksquare accepting $\Rightarrow \bigcirc$ accepting.

Theorem: Eve wins $G_1 \iff \mathcal{A}$ is GFG.

G_1 is a safety game, solvable in polynomial time.
On infinite words

Fact

G_1 does not characterize GFG Büchi (resp. CoBüchi) automata.

not GFG: $\left((a + b)^* a^{\omega} \right)$

\[a, b \quad a \]

\[\xrightarrow{a} 1 \quad \xrightarrow{a} 2 \]
On infinite words

Fact

\(G_1 \) does not characterize GFG Büchi (resp. CoBüchi) automata.

\[
\begin{align*}
\text{not GFG:} &\quad \xymatrix{1 \ar[r]^a & 2 \ar@/_1pc/[l]^{-b} \ar@/_1pc/[l]^{-a}} \quad (a + b)^* a^\omega \\
\end{align*}
\]

But Eve wins \(G_1 \): follow Adam’s token one step behind.
On infinite words

Fact

G_1 does not characterize GFG Büchi (resp. CoBüchi) automata.

But Eve wins G_1: follow Adam’s token one step behind.

We need a better abstraction of the Letter game.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters:

Eve: moves one token \bigcirc, Adam: moves two tokens $\text{1}, \text{2}$

a, b, c

The G_2 Conjecture

For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a

Eve: moves one token ○, Adam: moves two tokens 1, 2

Eve wins if in the long run: $\text{accepts} \Rightarrow \text{accepts}$.

The G_2 Conjecture

For all automata A, Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a

Eve: moves one token \circ, Adam: moves two tokens $\boxed{1, 2}$

a, b, c

The G_2 Conjecture

For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a

Eve: moves one token \(),\quad Adam: moves two tokens \(1, 2\)

$\begin{align*}
a, b, c & \quad \quad \quad \quad a
\quad b, c & \quad \quad \quad \quad b
\quad c & \quad \quad \quad \quad c
\end{align*}$
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ a$

Eve: moves one token \bullet, Adam: moves two tokens 1, 2

a, b, c, a, b, c, a, b, c
Abstracting the Letter game: infinite words

The game \(G_2 \):

Adam plays letters: \(a \ a \)

Eve: moves one token \(\bullet \), Adam: moves two tokens \(\textcolor{red}{1}, \textcolor{red}{2} \)

\(a, b, c \)

\(a \)

\(b, c \)

\(b \)

\(c \)

\(a, b, c \)

Eve wins if in the long run:

\(\textcolor{red}{1}, \textcolor{red}{2} \) accepts

The \(G_2 \) Conjecture

For all automata \(A \) : Eve wins \(G_2 \) \iff \(A \) is GFG.

Solving \(G_2 \) is polynomial \implies \text{Efficient algorithm for GFGness.}
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ a$

Eve: moves one token \bullet, Adam: moves two tokens $1, 2$

Eve wins if in the long run: 1 or 2 accepts \Rightarrow accepts.

The G_2 Conjecture

For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a a b

Eve: moves one token \bigcirc, Adam: moves two tokens \blacksquare, \blacksquare

For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a a b

Eve: moves one token \bullet, Adam: moves two tokens $\{1, 2\}$

Eve wins if in the long run: \Rightarrow accepts.

The G_2 Conjecture
For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a a b

Eve: moves one token \circ, Adam: moves two tokens $\text{1}, \text{2}$

G_2 Conjecture

For all automata A: Eve wins G_2 $\iff A$ is GFG.

Solving G_2 is polynomial \implies Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a a b c

Eve: moves one token \bigcirc, Adam: moves two tokens $\begin{array}{c} 1 \\ 2 \end{array}$

Eve wins if in the long run:

For all automata A: Eve wins G_2 \iff A is GFG.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: a a b c
Eve: moves one token \circ, Adam: moves two tokens $\mathbf{1}$, $\mathbf{2}$

Eve wins if in the long run:

\[\Rightarrow \text{accepts}. \]

The G_2 Conjecture
For all automata A: Eve wins $G_2 \iff A$ is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ b \ c$

Eve: moves one token \blacklozenge, Adam: moves two tokens $\blacksquare, \blacksquare$

Adam wins if in the long run:

1 or 2 accepts \Rightarrow accepts.

The G_2 Conjecture

For all automata A: Eve wins G_2 \iff A is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ a \ b \ c \ldots = w$

Eve: moves one token \bullet, Adam: moves two tokens \square, \blacksquare

Eve wins if in the long run: \square or \blacksquare accepts $\Rightarrow \bullet$ accepts.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ a \ b \ c \ldots = w$

Eve: moves one token \bullet, Adam: moves two tokens \square_1, \square_2

Eve wins if in the long run: \square_1 or \square_2 accepts $\Rightarrow \bullet$ accepts.

The G_2 Conjecture

For all automata A: Eve wins $G_2 \iff A$ is GFG.
Abstracting the Letter game: infinite words

The game G_2:

Adam plays letters: $a \ a \ b \ c \ldots = w$

Eve: moves one token \bigcirc, Adam: moves two tokens 1, 2

A, B, C

Eve wins if in the long run: 1 or 2 accepts \Rightarrow \bigcirc accepts.

The G_2 Conjecture

For all automata A: Eve wins $G_2 \iff A$ is GFG.

Solving G_2 is polynomial \Rightarrow Efficient algorithm for GFGness.
Why G_2 is powerful: The game G_k

Game G_k: k tokens □. Some i accepts \Rightarrow ● must accept.
Why G_2 is powerful: The game G_k

Game G_k: k tokens. Some i accepts \Rightarrow \circ must accept.

Lemma

Eve wins G_2 \iff Eve wins G_k for all $k \geq 2$.
Why G_2 is powerful: The game G_k

Game G_k: k tokens. Some i accepts \Rightarrow \circ must accept.

Lemma
Eve wins G_2 \iff Eve wins G_k for all $k \geq 2$.

Proof sketch: $G_2 \Rightarrow G_3$

- play a virtual token \circ against 1 and 2.
- play G_2 strategy against \circ and 3.

Proof sketch diagram:
Explorable automata

Definition \((k\text{-Letter game})\)
\(k\)-letter game: Letter game where Eve moves \(k\) tokens instead of one. She wins if \(w \in L \Rightarrow \text{at least one token follows an accepting run.} \)

Definition
\(A\) is \(k\text{-GFG}\) if Eve wins the \(k\)-Letter game.
\(A\) is \textbf{Explorable} if it is \(k\text{-GFG}\) for some \(k\).
Explorable automata

Definition (k-Letter game)

k-letter game: Letter game where Eve moves k tokens instead of one. She wins if $w \in L \Rightarrow$ at least one token follows an accepting run.

Definition

A is k-GFG if Eve wins the k-Letter game. A is **Explorable** if it is k-GFG for some k.

Theorem (Unpublished)

If A is explorable: Eve wins $G_2 \iff A$ is GFG.
What is known about the G_2 conjecture

G_2 characterizes GFGness on

- Explorable parity automata [Unpublished]
- LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
- Büchi automata [Bagnol, K. ’18]
- CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]

→ GFGness is in $P\text{TIME}$ for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only known to be in $P\text{TIME}$.
What is known about the G_2 conjecture

G_2 characterizes GFGness on

- Explorable parity automata [Unpublished]
- LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
- Büchi automata [Bagnol, K. '18]
- CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]

→ GFGness is in $P\text{Time}$ for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only known to be in ExpTime.
What is known about the G_2 conjecture

G_2 characterizes GFGness on

- Explorable parity automata [Unpublished]
- LimSup, LimInf automata [Boker, Lehtinen, on Arxiv]
- Büchi automata [Bagnol, K. ’18]
- CoBüchi automata [Boker, K., Lehtinen, Skrzypcak, on Arxiv]

→ GFGness is in PTime for these automata.

For now, even with 3 parity ranks, the GFGNess problem is only known to be in ExpTime.

Theorem ([Boker, K., Lehtinen, Skrzypcak, on Arxiv])

If the G_2 conjecture is true on non-deterministic automata, it is true on alternating automata.
Main proof sketch for $G_2 \Rightarrow GFG$ on Büchi

Assume for contradiction:

- Eve wins G_2, so Eve wins G_k with strategy σ_k, for a big k.
- Adam wins the Letter game with finite-memory strategy τ_{GFG}.

Idea for a strategy against τ_{GFG} in the Letter game:

- Move k virtual tokens uniformly
- Play σ_k against these k tokens

Trick:
- Word from τ_{GFG} ⇒ one Büchi for some M steps.
- \Rightarrow wins agains τ_{GFG}, contradiction.
Main proof sketch for $G_2 \Rightarrow GFG$ on Büchi

Assume for contradiction:

- Eve wins G_2, so Eve wins G_k with strategy σ_k, for a big k.
- Adam wins the Letter game with finite-memory strategy τ_{GFG}.

Idea for a strategy against τ_{GFG} in the Letter game:

- move k virtual tokens uniformly
- play σ_k against these k tokens

Trick: Word from $\tau_{GFG} \Rightarrow$ one Büchi for some ● every M steps.

⇝ ● wins against τ_{GFG}, contradiction.
G_2 for CoBüchi
Current and future work

- Studying GFG models in many frameworks.
 - Expressivity
 - Succinctness
 - Complexity
- Practical applications, experimental evaluations.
- Understanding k-GFG and Explorable automata.
- Prove or disprove the G_2 conjecture for parity automata.
- ...
Current and future work

- Studying **GFG** models in many frameworks.
 - Expressivity
 - Succinctness
 - Complexity
- Practical applications, experimental evaluations.
- Understanding k-**GFG** and Explorable automata.
- Prove or disprove the G_2 conjecture for parity automata.
- ...