The theory of regular cost functions.

Denis Kuperberg
PhD under supervision of Thomas Colcombet

Hebrew University of Jerusalem

ERC Workshop on Quantitative Formal Methods
Jerusalem, 10-05-2013
Introduction

- **Church-Turing 1936:**
 Which problems can be answered by an algorithm?
 It has yield the notion of decidability.
Introduction

- **Church-Turing 1936:**
 Which problems can be answered by an algorithm?
 It has yielded the notion of decidability.

- Some natural problems are *undecidable.*
Introduction

- **Church-Turing 1936:**
 Which problems can be answered by an algorithm?
 It has yield the notion of decidability.

- Some natural problems are **undecidable**.

- For some problems, decidability is open.
Introduction

- **Church-Turing 1936:** Which problems can be answered by an algorithm? It has yield the notion of decidability.

- Some natural problems are **undecidable**.

- For some problems, decidability is open.

- **Finite Automata:** Formalism with a lot of **decidable** properties.
Introduction

- **Church-Turing 1936:**
 Which problems can be answered by an algorithm? It has yield the notion of decidability.

- Some natural problems are **undecidable**.

- For some problems, decidability is open.

- **Finite Automata:** Formalism with a lot of **decidable** properties.

- **Automata theory:**
 Toolbox to decide many problems arising naturally. Verification of systems can be done automatically. Theoretical and practical advantages.
Introduction

- **Church-Turing 1936:**
 Which problems can be answered by an algorithm?
 It has yield the notion of decidability.

- Some natural problems are **undecidable**.

- For some problems, decidability is open.

- **Finite Automata:** Formalism with a lot of **decidable** properties.

- **Automata theory:**
 Toolbox to decide many problems arising naturally.
 Verification of systems can be done automatically.
 Theoretical and practical advantages.

- **Problem:**
 Decidability is still open for some automata-related problems.
1. Automata theory

2. Regular Cost Functions

3. Contributions of the thesis

4. Zoom: Aperiodic Cost Functions
Descriptions of a language

Language recognized: \(L_{ab} = \{ \text{words containing } ab \} \).

Other ways than automata to specify \(L_{ab} \):

- Regular expression: \(\mathbb{A}^*ab\mathbb{A}^* \),
Descriptions of a language

Language recognized: \(L_{ab} = \{ \text{words containing } ab \} \).

Other ways than automata to specify \(L_{ab} \):

- Regular expression: \(A^* ab A^* \),
- Logical sentence (MSO): \(\exists x \ \exists y \ a(x) \land b(y) \land (y = Sx) \).
Descriptions of a language

Language recognized: \(L_{ab} = \{ \text{words containing } ab \} \).

Other ways than automata to specify \(L_{ab} \):

- Regular expression: \(A^* ab A^* \),
- Logical sentence (MSO): \(\exists x \ \exists y \ a(x) \land b(y) \land (y = Sx) \).
- Finite monoid: \(M = \{ 1, a, b, c, ba, 0 \}, \ P = \{ 0 \} \)
 \(ab = 0, \ aa = ca = a, \ bb = bc = b, \ cc = ac = cb = c \)
All these formalisms are effectively equivalent.
All these formalisms are effectively equivalent.
Historical motivation

Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids.
Historical motivation

Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids.

Finite Power Problem: Given L, is there n such that

$$(L + \varepsilon)^n = L^* ?$$

There is no known algebraic characterization, other technics are needed to show decidability.
Distance Automata

- **A_1: number of a**

- **A_2: smallest block of a**

Unbounded: There are words with arbitrarily large value.

Deciding **Boundedness for distance automata \Rightarrow solving finite power problem.**

Theorem (Hashiguchi 82, Kirsten 05)

Boundedness is decidable for distance automata.
Problems solved using counters

- **Finite Power** (finite words) [Simon '78, Hashiguchi '79]
 Is there \(n \) such that \((L + \varepsilon)^n = L^*\)?

- **Fixed Point Iteration** (finite words)
 [Blumensath+Otto+Weyer '09]
 Can we bound the number of fixpoint iterations in a MSO formula?

- **Star-Height** (finite words/trees)
 [Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]
 Given \(n \), is there an expression for \(L \), with at most \(n \) nesting of Kleene stars?

- **Parity Rank** (infinite trees)
 [reduction in Colcombet+Löding '08, decidability open, deterministic input Niwinski+Walukiewicz '05]
 Given \(i < j \), is there a parity automaton for \(L \) using ranks \(\{ i, i+1, \ldots, j \} \)?
1. Automata theory

2. Regular Cost Functions

3. Contributions of the thesis

4. Zoom: Aperiodic Cost Functions
Theory of Regular Cost Functions

Aim: General framework for previous constructions.

- Generalize from languages $L : \mathbb{A}^* \rightarrow \{0, 1\}$ to functions $f : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\}$
- Accordingly generalize automata, logics, semigroups, in order to obtain a theory of regular cost functions, which behaves as well as possible.
- Obtain decidability results thanks to this new theory.
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics: $[\mathcal{A}] : \Sigma^* \rightarrow \mathbb{N} \cup \{\infty\}$
Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics: $[A] : \Sigma^* \rightarrow \mathbb{N} \cup \{\infty\}$

$\text{val}_B(\rho) := \max$ checked counter value during run ρ

$[A]_B(u) := \min \{\text{val}_B(\rho) : \rho \text{ is an accepting run of } A \text{ on } u\}$

Example

$[A]_B(u) = \min$ length of block of a’s surrounded by b’s in u

\begin{tikzpicture}
 \node[state] (q0) at (0,0) {$a,b: \varepsilon$};
 \node[state] (q1) at (2,0) {$a: \text{IC}$};
 \node[state] (q2) at (4,0) {$a,b: \varepsilon$};
 \node[state] (q3) at (0,-2) {$b: \varepsilon$};
 \node[state] (q4) at (2,-2) {$b: \varepsilon$};
 \node[state] (q5) at (4,-2) {$b: \varepsilon$};

 \draw (q0) edge [loop above] node {$a,b: \varepsilon$} (q0);
 \draw (q0) edge [loop below] node {$b: \varepsilon$} (q0);
 \draw (q0) edge node {$a, b: \varepsilon$} (q1);
 \draw (q1) edge [loop above] node {$a: \text{IC}$} (q1);
 \draw (q1) edge node [above] {$a, b: \varepsilon$} (q2);
 \draw (q2) edge [loop above] node {$a,b: \varepsilon$} (q2);
 \draw (q2) edge node [below] {$b: \varepsilon$} (q3);
 \draw (q3) edge [loop above] node {$b: \varepsilon$} (q3);
 \draw (q3) edge node [below] {$b: \varepsilon$} (q4);
 \draw (q4) edge [loop above] node {$b: \varepsilon$} (q4);
 \draw (q4) edge node [below] {$b: \varepsilon$} (q5);
 \draw (q5) edge [loop above] node {$b: \varepsilon$} (q5);
\end{tikzpicture}
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics: $[\mathcal{A}] : \Sigma^* \rightarrow \mathbb{N} \cup \{\infty\}$

$\text{val}_S(\rho) := \min \text{ checked counter value during run } \rho$

$[\mathcal{A}]_S(u) := \max\{\text{val}_S(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u\}$

Example

$[\mathcal{A}]_S(u) = \min \text{ length of block of } a\text{'s surrounded by } b\text{'s in } u$

\[
\begin{array}{c}
\mathcal{A} = \begin{array}{c}
\text{a:}\varepsilon \\
\text{b:}\varepsilon \\
\text{a:}I \\
\text{b:}CR
\end{array}
\end{array}
\]
Boundedness relation

“$[A]_B = [B]_B$”: undecidable [Krob ’94]
Boundedness relation

“$[A]_B = [B]_B$”: undecidable [Krob ’94]

“$[A]_B \approx [B]_B$”: decidable on words
[Colcombet ’09, following Bojánctyk+Colcombet ’06]
for all subsets U, $[A](U)$ bounded iff $[B](U)$ bounded
Boundedness relation

“$[A]_B = [B]_B$”: undecidable [Krob ’94]

“$[A]_B \approx [B]_B$”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, $[A](U)$ bounded iff $[B](U)$ bounded

\[[A] \not\approx [B] \]
Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$.

But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^*.
Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$.

But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^*.

Theorem (Colcombet ’09, following Hashiguchi, Leung, Simon, Kirsten, Bojańczyk+Colcombet)

Cost automata \iff Cost logics \iff Stabilisation monoids.

For some suitable models of Cost Logics and Stabilisation Monoids, extending the classical ones.

Boundedness decidable.

All these equivalences are only valid up to \approx.

It provides a toolbox to decide boundedness problems.
Languages as cost functions

A language L is represented by its characteristic function

$$\chi_L(u) = \begin{cases} 0 & \text{if } u \in L \\ \infty & \text{if } u \notin L \end{cases}$$

If A is a classical automaton for L, then $[,A]_B = \chi_L$ and $[,A]_S = \chi_L$. Switching between B and S is the generalization of language complementation.

Cost function theory strictly extends language theory.

All theorems on cost functions are in particular true for languages.

Goal of the thesis: Studying cost function theory, and generalise known theorems from languages to cost functions.
1 Automata theory

2 Regular Cost Functions

3 Contributions of the thesis

4 Zoom: Aperiodic Cost Functions
Contributions of the thesis

Input structures:

Finite words: accba

Infinite words: abaabaccbaba...

Infinite trees: a

b

b

b

Infinite trees: a

b

b

b

a

a

a

Different kinds of results:

Generalisation of language notions and theorems,
Study of classes specific to cost functions,
Reduction of classical decision problems to boundedness problems.
Contributions of the thesis

Input structures:

Finite words: $accba$

Infinite words: $abaabaccbaba \ldots$

Infinite trees:

Different kinds of results:

- Generalisation of language notions and theorems,
- Study of classes specific to cost functions,
- Reduction of classical decision problems to boundedness problems.
Cost Functions on finite words

Decidability of membership and effectiveness of translations
[Colcombet+K.+Lombardy ICALP '10, K. STACS '11].
Generalization of Myhill-Nerode Equivalence [K. STACS '11].
Boundedness of CLTL is PSPACE-complete [Submitted to LMCS].
Cost Functions on infinite words

Regular Functions

- CMSO
- WCMSO

Aperiodic Functions

- Very-Weak Automata
- CFO
- CLTL

Decidability of membership and effectiveness of translations

[K. + Vanden Boom, ICALP '12].
Languages on infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)

L recognizable by an alternating weak automaton $⇔$
L recognizable by WMSO $⇔$ there are Büchi automata U and U' such that $L = L(U) = L(U')$.
Cost functions on infinite trees

Decidability of boundedness for Quasi-Weak automata.\cite{K.+Vanden Boom, FSTTCS '11}.
If \mathcal{A} is a Büchi automaton, it is decidable whether $L(\mathcal{A})$ is weak \cite{submitted to CSL '13}.
Logic for the Quasi-Weak class.
1 Automata theory

2 Regular Cost Functions

3 Contributions of the thesis

4 Zoom: Aperiodic Cost Functions
Cost Functions on finite words

- Cost automata
- CMSO
- Aperiodic
- CFO
- CLTL
- Temporal automata
- Temporal semigroup
- Uniform

even \(- \) number\(_a\)

Prompt-LTL

minblock\(_a\)

number\(_a\)

maxevenblock\(_a\)
Logics on Finite Words

- First-Order Logic (FO): we quantify over positions in the word.

\[\varphi ::= a(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x \varphi \]
Logics on Finite Words

- **First-Order Logic (FO):** we quantify over positions in the word.
 \[\varphi ::= a(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x \varphi \]

- **MSO:** FO with quantification on sets, noted \(X, Y \).
Logics on Finite Words

- **First-Order Logic (FO):** we quantify over positions in the word.

 \[\varphi := a(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x \varphi \]

- **MSO:** FO with quantification on sets, noted \(X, Y \).

- **Linear Temporal Logic (LTL) over \(\mathbb{A}^* \):**

 \[\varphi := a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid X \varphi \mid \varphi U \psi \]

 \[\varphi U \psi : \quad a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} \]

 Future operators **G** (Always) and **F** (Eventually).

Example: To describe \(L_{ab} \), we can write \(F(a \land Xb) \).
Generalisation: cost LTL

- **CLTL** over \mathbb{A}^*:

 $$\varphi ::= a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U^{\leq N}\psi$$

 Negations pushed to the leaves.
Generalisation: cost LTL

- **CLTL** over A^*:

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U^\leq N \psi$$

Negations pushed to the leaves.

- $\varphi U^\leq N \psi$ means that ψ is true in the future, and φ is false at most N times in the mean time.

$$\varphi U^\leq N \psi: \quad \varphi \varphi \times \varphi \varphi \times \varphi \varphi \psi$$
$$\quad a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}$$
Generalisation: cost LTL

- **CLTL** over A^*:

 $$\phi ::= a \mid \Omega \mid \phi \land \psi \mid \phi \lor \psi \mid X\phi \mid \phi U\psi \mid \phi U^{\leq N} \psi$$

 Negations pushed to the leaves.

- $\phi U^{\leq N} \psi$ means that ψ is true in the future, and ϕ is false at most N times in the mean time.

 $$\phi U^{\leq N} \psi: \quad \phi \quad \times \quad \phi \quad \times \quad \phi \quad \times \quad \phi \quad \times \psi \quad a_0 \quad a_1 \quad a_2 \quad a_3 \quad a_4 \quad a_5 \quad a_6 \quad a_7 \quad a_8 \quad a_9 a_{10}$$

- “Error variable” N is unique, shared by all occurrences of $U^{\leq N}$.
Generalisation: cost LTL

- **CLTL** over \mathbb{A}^*:

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U\leq N\psi$$

Negations pushed to the leaves.

- $\varphi U\leq N\psi$ means that ψ is true in the future, and φ is false at most N times in the mean time.

$$\varphi U\leq N\psi: \quad \varphi \varphi \times \varphi \varphi \times \varphi \varphi \psi$$

$$a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}$$

- “Error variable” N is unique, shared by all occurrences of $U\leq N$.
- $G\leq N\varphi$: φ is false at most N times in the future ($\varphi U\leq N\Omega$).
Generalisation: Cost FO and Cost MSO

- **CFO** over \mathbb{A}^*:

 $$\varphi ::= a(x) \mid x = y \mid x < y \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi \mid \forall \leq N x \varphi$$

 Negations pushed to the leaves.

- As before, N unique free variable.

- $\forall \leq N x \varphi(x)$ means φ is false on at most N positions.

- **CMSO** extends CFO by allowing quantification over sets.
From formula to cost function:
Formula $\varphi \rightarrow$ cost function $\llbracket \varphi \rrbracket : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\}$, defined by

$$\llbracket \varphi \rrbracket (u) = \inf\{n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value}\}$$

Example with the alphabet $\{a, b\}$

- $\text{number}_a = \llbracket G \leq^N b \rrbracket = \llbracket \forall \leq^N x \ b(x) \rrbracket$.
Semantics of Cost Logics

From formula to cost function:
Formula \(\varphi \) \(\rightarrow \) cost function \([\varphi] : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\}\), defined by

\[
[\varphi](u) = \inf \{ n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value} \}
\]

Example with the alphabet \{a, b\}

- number\(_a\) = \([G \leq N b] = [\forall \leq N x \ b(x)]\).

- maxblock\(_a\) = \([G (\bot \ U \leq N (b \lor \Omega))] = [\forall X \ \text{block}\(_a\)(X) \Rightarrow (\forall \leq N x \ x \notin X)]\).
Semantics of Cost Logics

From formula to cost function:
Formula $\varphi \rightarrow$ cost function $[[\varphi]] : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\}$, defined by

$$[[\varphi]](u) = \inf \{ n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value} \}$$

Example with the alphabet $\{a, b\}$

- **number\(_a\) = $[[G^{\leq N}b]] = [[[\forall^{\leq N}x \ b(x)]]].$**
- **maxblock\(_a\) = $[[G(\bot U^{\leq N}(b \vee \Omega))]$**
 $$= [[[\forall X \ block\(_a\)(X) \Rightarrow (\forall^{\leq N}x \ x \notin X)]]].$$
- If φ is a classical formula for L, then $[[\varphi]] = \chi_L.$
Stabilisation monoids

- **Aim:** Generalise monoids to a quantitative setting.
Stabilisation monoids

- **Aim**: Generalise monoids to a quantitative setting.
- Stabilisation $\#$ means “repeat many times” the element.
Stabilisation monoids

- **Aim:** Generalise monoids to a quantitative setting.
- Stabilisation $\#$ means “repeat many times” the element.
- if we “count” a, then $a^\# \neq a$, otherwise $a^\# = a$.
Stabilisation monoids

- **Aim:** Generalise monoids to a quantitative setting.
- Stabilisation $\#$ means “repeat many times” the element.
- If we “count” a, then $a^\# \neq a$, otherwise $a^\# = a$.

Example: Stabilisation Monoid for number a

$M = \{ b, a, \bot \}, \ P = \{ a, b \},$

b: “no a”, a: “a little number of a”, \bot: “a lot of a”.

Cayley graph
Definition: A [stabilisation] monoid M is **aperiodic** if for all $x \in M$ there is $n \in \mathbb{N}$ such that $x^n = x^{n+1}$.
Aperiodic Monoids

Definition: A [stabilisation] monoid M is **aperiodic** if for all $x \in M$ there is $n \in \mathbb{N}$ such that $x^n = x^{n+1}$.

Theorem (McNaughton-Papert, Schützenberger, Kamp)

Aperiodic Monoids \Leftrightarrow FO \Leftrightarrow LTL \Leftrightarrow Star-free Expressions.

We want to generalise this theorem to cost functions. The problems are:

- No complementation \Rightarrow No Star-free expressions.
- Deterministic automata are strictly weaker.
- Heavy formalisms (semantics of stabilisation monoids).
- New quantitative behaviours.
- Original proofs already hard.
Aperiodic cost functions

Theorem (K. STACS 2011)

\[\text{Aperiodic stabilisation monoid} \iff \text{CLTL} \iff \text{CFO.} \]

Proof Ideas:

- Generalisation of Myhill-Nerode \(\Rightarrow \) Syntactic object.
- Induction on \(|M|, |A|\).
- Extend functions to sequences of words.
- Use bounded approximations.
- Extend CLTL with Past operators, show Separability.
Thank you!