The theory of regular cost functions, from finite words to infinite trees.

Denis Kuperberg

University of Warsaw, Poland

Séminaire de l'ENS Lyon 22-05-2014

1/33

Introduction

- Some natural problems are undecidable.
- For some problems, decidability is open.
- Finite Automata: Formalism with a lot of decidable properties.

• Automata theory:

Toolbox to decide many problems arising naturally. Verification of systems can be done automatically. Theoretical and practical advantages.

Problem:

Decidability is still open for some automata-related problems.

Descriptions of a language

Language recognized : $L_{ab} = \{ words \text{ containing } ab \}.$

Descriptions of a language

Language recognized : $L_{ab} = \{ \text{words containing } ab \}$. Other ways than automata to specify L_{ab} :

- Regular expression : A* abA*,
- Logical sentence (MSO) : $\exists x \exists y \ a(x) \land b(y) \land (y = Sx)$.
- Finite monoid : $M = \{1, a, b, c, ba, 0\}, P = \{0\}$ ab = 0, aa = ca = a, bb = bc = b, cc = ac = cb = c

Regular Languages

Regular Languages

Historical motivation

Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids.

Historical motivation

Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids.

Finite Power Problem: Given L, is there n such that $(L + \varepsilon)^n = L^*$?

There is no known algebraic characterization, other technics are needed to show decidability.

Distance Automata

 \mathcal{A}_1 : number of *a*

Unbounded: There are words with arbitrarily large value.

Deciding **Boundedness** for distance automata \Rightarrow solving finite power problem.

Theorem (Hashiguchi 82, Kirsten 05)

Boundedness is decidable for distance automata.

7/33

Problems solved using counters

• Finite Power (finite words) [Simon '78, Hashiguchi '79] Is there *n* such that $(L + \varepsilon)^n = L^*$?

• Fixed Point Iteration (finite words)

[Blumensath+Otto+Weyer '09]

Can we bound the number of fixpoint iterations in a MSO formula ?

• Star-Height (finite words/trees)

[Hashiguchi '88, Kirsten '05, Colcombet+Löding '08] Given n, is there an expression for L, with at most n nesting of Kleene stars?

• Parity Rank (infinite trees)

[reduction in Colcombet+Löding '08, decidability open, deterministic input Niwinski+Walukiewicz '05] Given i < j, is there a parity automaton for L using ranks $\{i, i + 1, \dots, j\}$?

3 Formalisms on finite words

Cost functions on infinite words and trees

Theory of Regular Cost Functions

Aim: General framework for previous constructions.

- Generalize from languages $L : \mathbb{A}^* \to \{0, 1\}$ to functions $f : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$
- Accordingly generalize automata, logics, semigroups, in order to obtain a theory of regular cost functions, which behaves as well as possible.
- Obtain decidability results thanks to this new theory.

Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}

+ finite set of counters

(initialized to 0, values range over \mathbb{N})

+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics: $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{N} \cup \{\infty\}$

Cost automata over words

Nondeterministic finite-state automaton \mathcal{A} + finite set of counters (initialized to 0, values range over \mathbb{N}) + counter operations on transitions (increment I, reset R, check C, no change ε) Semantics: $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{N} \cup \{\infty\}$ $val_B(\rho) := \max$ checked counter value during run ρ $\llbracket \mathcal{A} \rrbracket_B(u) := \min\{val_B(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u\}$

Example

 $\llbracket \mathcal{A} \rrbracket_{B}(u) = \min \text{ length of block of } a's \text{ surrounded by } b's \text{ in } u$ $a,b:\varepsilon \qquad a:\mathbb{IC} \qquad a,b:\varepsilon$ $b:\varepsilon \qquad b:\varepsilon \qquad b:\varepsilon \qquad b:\varepsilon$

Cost automata over words

Nondeterministic finite-state automaton \mathcal{A} + finite set of counters (initialized to 0, values range over \mathbb{N}) + counter operations on transitions (increment I, reset R, check C, no change ε) Semantics: $\llbracket \mathcal{A} \rrbracket : \Sigma^* \to \mathbb{N} \cup \{\infty\}$ $val_{\mathcal{S}}(\rho) := \min$ checked counter value during run ρ $\llbracket \mathcal{A} \rrbracket_{\mathcal{S}}(u) := \max\{val_{\mathcal{S}}(\rho) : \rho \text{ is an accepting run of } \mathcal{A} \text{ on } u\}$

Example

 $\llbracket A \rrbracket_S(u) = \min$ length of block of *a*'s surrounded by *b*'s in *u*

Boundedness relation

 $``\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket ": undecidable [Krob '94]$

Boundedness relation

$$``\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket ": undecidable [Krob '94]$$

$$\label{eq:constraint} \begin{split} ``[\![\mathcal{A}]\!] &\approx [\![\mathcal{B}]\!]'' : \mbox{ decidable on words} \\ & [\mbox{Colcombet '09, following Bojánczyk+Colcombet '06]} \\ & \mbox{ for all subsets } U, [\![\mathcal{A}]\!](U) \mbox{ bounded iff } [\![\mathcal{B}]\!](U) \mbox{ bounded} \end{split}$$

12/33

Boundedness relation

$$``\llbracket \mathcal{A} \rrbracket = \llbracket \mathcal{B} \rrbracket ": undecidable [Krob '94]$$

$$\label{eq:constraint} \begin{split} ``[\![\mathcal{A}]\!] &\approx [\![\mathcal{B}]\!]'': \mbox{ decidable on words} \\ & [\mbox{Colcombet '09, following Bojánczyk+Colcombet '06}] \\ & \mbox{ for all subsets } U, [\![\mathcal{A}]\!](U) \mbox{ bounded iff } [\![\mathcal{B}]\!](U) \mbox{ bounded} \end{split}$$

ヘロト ヘロト ヘヨト ヘヨト

3

13/33

Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$. But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^* . Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$. But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^* .

Theorem (Colcombet '09, following Hashiguchi, Leung, Simon, Kirsten, Bojańczyk+Colcombet)

Cost automata \Leftrightarrow Cost logics \Leftrightarrow Stabilisation monoids. For some suitable models of Cost Logics and Stabilisation Monoids, extending the classical ones. Boundedness decidable (easy in S-automata and stabilisation monoids)

All these equivalences are only valid up to \approx . It provides a toolbox to decide boundedness problems.

Languages as cost functions

A language L is represented by its characteristic function

$$\chi_L(u) = \begin{cases} 0 & \text{if } u \in L \\ \infty & \text{if } u \notin L \end{cases}$$

If \mathcal{A} is a classical automaton for L, then $\llbracket \mathcal{A} \rrbracket_B = \chi_L$ and $\llbracket \mathcal{A} \rrbracket_S = \chi_{\overline{L}}$. Switching between B and S is the generalization of language complementation.

Cost function theory strictly extends language theory.

All theorems on cost functions are in particular true for languages.

Research program: Studying cost function theory, and generalise known theorems from languages to cost functions.

4 Cost functions on infinite words and trees

Classical Logics on Finite Words

• Linear Temporal Logic (LTL) over A*:

$$\begin{split} \varphi &:= a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \\ \varphi \varphi \varphi \varphi \varphi \varphi \varphi \varphi \psi \\ \varphi \mathbf{U}\psi &: a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} \end{split}$$

Future operators **G** (Always) and **F** (Eventually). Example: To describe L_{ab} , we can write $F(a \land Xb)$.

Classical Logics on Finite Words

• Linear Temporal Logic (LTL) over A*:

$$\begin{split} \varphi &:= a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \\ \varphi \varphi \varphi \varphi \varphi \varphi \varphi \varphi \psi \\ \varphi \mathbf{U}\psi &: a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} \end{split}$$

Future operators **G** (Always) and **F** (Eventually). Example: To describe L_{ab} , we can write $\mathbf{F}(a \wedge \mathbf{X}b)$.

• First-Order Logic (FO): we quantify over positions in the word.

$$\varphi := \mathbf{a}(\mathbf{x}) \mid \mathbf{x} \leq \mathbf{y} \mid \neg \varphi \mid \varphi \lor \psi \mid \exists \mathbf{x} \varphi$$

Classical Logics on Finite Words

• Linear Temporal Logic (LTL) over A*:

$$\begin{split} \varphi &:= a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \\ \varphi \varphi \varphi \varphi \varphi \varphi \varphi \varphi \psi \\ \varphi \mathbf{U}\psi &: a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10} \end{split}$$

Future operators **G** (Always) and **F** (Eventually). Example: To describe L_{ab} , we can write $\mathbf{F}(a \wedge \mathbf{X}b)$.

• First-Order Logic (FO): we quantify over positions in the word.

$$\varphi := \mathbf{a}(\mathbf{x}) \mid \mathbf{x} \leq \mathbf{y} \mid \neg \varphi \mid \varphi \lor \psi \mid \exists \mathbf{x} \varphi$$

• MSO: FO with quantification on sets, noted X, Y.

• CLTL over \mathbb{A}^* :

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \mid \varphi \mathbf{U}^{\leq N}\psi$$

Negations pushed to the leaves, to guarantee monotonicity.

• CLTL over \mathbb{A}^* :

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \mid \varphi \mathbf{U}^{\leq N}\psi$$

Negations pushed to the leaves, to guarantee monotonicity.

φU^{≤N}ψ means that ψ is true in the future, and φ is false at most N times in the mean time.

 $\varphi \mathbf{U}^{\leq N} \psi: \qquad \begin{array}{c} \varphi \ \varphi \times \varphi \ \varphi \times \varphi \ \varphi \ \psi \\ \mathsf{a}_0 \ \mathsf{a}_1 \ \mathsf{a}_2 \ \mathsf{a}_3 \ \mathsf{a}_4 \ \mathsf{a}_5 \ \mathsf{a}_6 \ \mathsf{a}_7 \ \mathsf{a}_8 \ \mathsf{a}_9 \mathsf{a}_{10} \end{array}$

• CLTL over \mathbb{A}^* :

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \mid \varphi \mathbf{U}^{\leq N}\psi$$

Negations pushed to the leaves, to guarantee monotonicity.

 φU^{≤N}ψ means that ψ is true in the future, and φ is false at most N times in the mean time.

 $\varphi \mathbf{U}^{\leq N} \psi: \qquad \begin{array}{c} \varphi \ \varphi \times \varphi \ \varphi \times \varphi \ \varphi \ \psi \\ \mathsf{a}_0 \ \mathsf{a}_1 \ \mathsf{a}_2 \ \mathsf{a}_3 \ \mathsf{a}_4 \ \mathsf{a}_5 \ \mathsf{a}_6 \ \mathsf{a}_7 \ \mathsf{a}_8 \ \mathsf{a}_9 \mathsf{a}_{10} \end{array}$

• "Error variable" N is unique, shared by all occurences of $\mathbf{U}^{\leq N}$.

• CLTL over \mathbb{A}^* :

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid \mathbf{X}\varphi \mid \varphi \mathbf{U}\psi \mid \varphi \mathbf{U}^{\leq N}\psi$$

Negations pushed to the leaves, to guarantee monotonicity.

 φU^{≤N}ψ means that ψ is true in the future, and φ is false at most N times in the mean time.

$$\varphi \mathbf{U}^{\leq N} \psi: \qquad \begin{array}{c} \varphi \ \varphi \times \varphi \ \varphi \times \varphi \ \varphi \ \psi \\ \mathsf{a}_0 \ \mathsf{a}_1 \ \mathsf{a}_2 \ \mathsf{a}_3 \ \mathsf{a}_4 \ \mathsf{a}_5 \ \mathsf{a}_6 \ \mathsf{a}_7 \ \mathsf{a}_8 \ \mathsf{a}_9 \mathsf{a}_{10} \end{array}$$

- "Error variable" N is unique, shared by all occurences of $\mathbf{U}^{\leq N}$.
- $\mathbf{G}^{\leq N}\varphi$: φ is false at most N times in the future $(\varphi \mathbf{U}^{\leq N}\Omega)$.

Generalisation : Cost FO and Cost MSO

• CFO over \mathbb{A}^* :

 $\varphi := \mathbf{a}(\mathbf{x}) \mid \mathbf{x} = \mathbf{y} \mid \mathbf{x} < \mathbf{y} \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists \mathbf{x} \varphi \mid \forall \mathbf{x} \varphi \mid \forall^{\leq \mathsf{N}} \mathbf{x} \varphi$

Negations pushed to the leaves, to guarantee monotonicity.

- As before, N unique free variable.
- $\forall^{\leq N} x \varphi(x)$ means φ is false on at most N positions.
- CMSO extends CFO by allowing quantification over sets.

Semantics of Cost Logics

From formula to cost function:

Formula $\varphi \longrightarrow \text{cost function } \llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$, defined by

 $\llbracket \varphi \rrbracket(u) = \inf \{ n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value} \}$

Example with the alphabet $\{a, b\}$

• number_a = $\llbracket \mathbf{G}^{\leq N} b \rrbracket = \llbracket \forall^{\leq N} x \ b(x) \rrbracket$.

Semantics of Cost Logics

From formula to cost function:

Formula $\varphi \longrightarrow \text{cost function } \llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$, defined by

 $\llbracket \varphi \rrbracket(u) = \inf \{ n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value} \}$

Example with the alphabet $\{a, b\}$

• number_a = $\llbracket \mathbf{G}^{\leq N} b \rrbracket = \llbracket \forall^{\leq N} x \ b(x) \rrbracket$.

• maxblock_a=
$$\llbracket \mathbf{G}(\perp \mathbf{U}^{\leq N}(b \lor \Omega)) \rrbracket$$

= $\llbracket \forall X \operatorname{block}_{a}(X) \Rightarrow (\forall^{\leq N}x.x \notin X) \rrbracket$
where $\operatorname{block}_{a}(X) = \forall x \in X, y \in X, z.x \leq z \leq y \Rightarrow (z \in X \land a(z)).$

Semantics of Cost Logics

From formula to cost function:

Formula $\varphi \longrightarrow \text{cost function } \llbracket \varphi \rrbracket : \mathbb{A}^* \to \mathbb{N} \cup \{\infty\}$, defined by

 $\llbracket \varphi \rrbracket(u) = \inf \{ n \in \mathbb{N} : \varphi \text{ is true over } u \text{ with } n \text{ as error value} \}$

Example with the alphabet $\{a, b\}$

- number_a = $\llbracket \mathbf{G}^{\leq N} b \rrbracket = \llbracket \forall^{\leq N} x \ b(x) \rrbracket$.
- maxblock_a= $\llbracket \mathbf{G}(\perp \mathbf{U}^{\leq N}(b \lor \Omega)) \rrbracket$ = $\llbracket \forall X \operatorname{block}_{a}(X) \Rightarrow (\forall^{\leq N}x.x \notin X) \rrbracket$ where $\operatorname{block}_{a}(X) = \forall x \in X, y \in X, z.x \leq z \leq y \Rightarrow (z \in X \land a(z)).$

• If φ is a classical formula for *L*, then $\llbracket \varphi \rrbracket = \chi_L$.

• Aim: Generalise monoids to a quantitative setting.

- Aim: Generalise monoids to a quantitative setting.
- Stabilisation # means "repeat many times" the element.

- Aim: Generalise monoids to a quantitative setting.
- Stabilisation # means "repeat many times" the element.
- if we "count" *a*, then $a^{\sharp} \neq a$, otherwise $a^{\sharp} = a$.

- Aim: Generalise monoids to a quantitative setting.
- Stabilisation # means "repeat many times" the element.
- if we "count" a, then $a^{\sharp} \neq a$, otherwise $a^{\sharp} = a$.

Example: Stabilisation Monoid for number_a $M = \{b, a, 0\}, P = \{a, b\},$ b: "no a", a: "a little number of a", 0: "a lot of a".

Cayley graph

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

21/33

Aperiodic Monoids

Definition: A [stabilisation] monoid M is aperiodic if for all $x \in M$ there is $n \in \mathbb{N}$ such that $x^n = x^{n+1}$.

Aperiodic Monoids

Definition: A [stabilisation] monoid M is aperiodic if for all $x \in M$ there is $n \in \mathbb{N}$ such that $x^n = x^{n+1}$.

Theorem (McNaughton-Papert, Schützenberger, Kamp)

Aperiodic Monoids \Leftrightarrow FO \Leftrightarrow LTL \Leftrightarrow Star-free Expressions.

We want to generalise this theorem to cost functions. The problems are:

- No complementation \Rightarrow No Star-free expressions.
- Deterministic automata are strictly weaker.
- Heavy formalisms (semantics of stabilisation monoids).
- New quantitative behaviours.
- Original proofs already hard.

Aperiodic cost functions

Theorem (K. STACS 2011)

Aperiodic stabilisation monoid \Leftrightarrow CLTL \Leftrightarrow CFO.

Proof Ideas:

- Generalisation of Myhill-Nerode \Rightarrow Syntactic object.
- Induction on $(|M|, |\mathbb{A}|)$.
- Extend functions to sequences of words.
- Use bounded approximations.
- Extend CLTL with Past operators, show Separability.

Cost Functions on finite words

Decidability of membership and effectiveness of translations [K+Colcombet+Lombardy ICALP '10, K. STACS '11]. Generalization of Myhill-Nerode Equivalence [K. STACS '11]. Boundedness of CLTL is PSPACE-complete [K. LMCS].

- 2 Regular Cost Functions
- **3** Formalisms on finite words

Generalisation of input structures

Input structures:

- Finite words: accba
- Infinite words: abaabaccbaba...
- Finite trees

Generalisation of input structures

Different kinds of results:

- Generalisation of language notions and theorems,
- Study of classes specific to cost functions,
- Reduction of classical decision problems to boundedness problems.

Formalism on infinite words

Nondeterministic B/S-automata with Büchi condition: infinitely many accepting states must be seen in an accepting run. Example: B-Büchi automaton:

Formalism on infinite words

Nondeterministic B/S-automata with Büchi condition: infinitely many accepting states must be seen in an accepting run. Example: B-Büchi automaton:

Computes $f(u) = \begin{cases} 0 & \text{if } |u|_a = \infty \\ |u|_a & \text{otherwise} \end{cases}$

- Weak alternating *B*-automata: semantic is a game between two players, Min and Max.
- Cost MSO/FO/LTL as before.
- Weak Cost MSO: quantification is restricted to finite sets.

Can we lift results from classical theory to cost function theory?

26 / 33

Picture on infinite words

Decidability of membership and effectiveness of translations Boundedness decidable [K+Vanden Boom ICALP '12].

Cost functions on finite trees

The theory of cost functions on finite trees is developed in [Colcombet+Löding LICS '10].

- cost automata can be defined on finite trees.
- Nondeterministic/alternating B/S variants are all equivalent.
- Equivalent to Cost MSO on finite trees.
- For all above formalisms, boundedness is decidable.
- Application to the star-height problem on finite trees.

Cost functions on infinite trees

Example of cost function on infinite trees:

$$f(t) = \begin{cases} \infty & \text{if } |\pi|_a = \infty \text{ on some branch } \pi \text{ of } t \\ \min_{\pi \text{ branch of } t} |\pi|_b & \text{otherwise} \end{cases}$$

- Parity acceptance condition: ranks [*i*, *j*], automaton accepts if on every branch, the maximal infinitely occuring rank is even.
- Boundedness of *B*-coBüchi ([0, 1]-parity) is decidable [CKV+Löding CSL '13].
- Decidability of boundedness of *B*-Büchi ([1,2]-parity) is open...
- Decidability of boundedness for B-Parity \Rightarrow Solution to the classical Mostowski index problem.
- Can we make some progress?

Languages on infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)

L recognizable by an alternating weak automaton \Leftrightarrow *L* recognizable by WMSO \Leftrightarrow there are Büchi automata \mathcal{U} and \mathcal{U}' such that $L = L(\mathcal{U}) = \overline{L(\mathcal{U}')}$.

Picture on infinite trees

31/33

Conclusion

Achievements:

- Robust quantitative extension of regular language theory.
- Embeds proof using different kind of automata with counters.
- Rich quantitative behaviours occur.
- New proofs on regular languages and reductions obtained.
- In particular: progress on deciding whether a language is weak.

Conclusion

Achievements:

- Robust quantitative extension of regular language theory.
- Embeds proof using different kind of automata with counters.
- Rich quantitative behaviours occur.
- New proofs on regular languages and reductions obtained.
- In particular: progress on deciding whether a language is weak.

Current challenges and related works:

- Main open problem: decide boundedness on infinite trees. Application to language theory.
- Link with other formalisms, as MSO+U of Bojańczyk.
- Decide properties of cost automata, like optimal number of counters.
- Fine study of approximations (Daviaud)
- Alternative formalisms: IST, profinite words

A B A B

