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Introduction

Some natural problems are undecidable.

For some problems, decidability is open.

Finite Automata: Formalism with a lot of decidable
properties.

Automata theory:
Toolbox to decide many problems arising naturally.
Verification of systems can be done automatically.
Theoretical and practical advantages.
Problem:
Decidability is still open for some automata-related problems.
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Descriptions of a language

q0 q1 q2

a
b, c

c

a

b

a, b, c

Language recognized : Lab = {words containing ab}.

Other ways than automata to specify Lab :
Regular expression : A∗abA∗,
Logical sentence (MSO) : ∃x ∃y a(x) ∧ b(y) ∧ (y = Sx).
Finite monoid : M = {1, a, b, c, ba, 0}, P = {0}
ab = 0, aa = ca = a, bb = bc = b, cc = ac = cb = c
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Regular Languages

All these formalisms are effectively equivalent.

anbn

(aa)∗

Expressions
MSO

Monoids
Automata

Regular Languages
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Regular Languages

All these formalisms are effectively equivalent.

anbn

(aa)∗

Lab

Expressions
MSO

Monoids
Automata

Star-free Expressions
FO

Aperiodic Monoids
Counter-free Automata

Regular Languages

Star-free Languages
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Historical motivation

Given a class of languages C, is there an algorithm which given an
automaton for L, decides whether L ∈ C ?

Theorem (Schützenberger 1965)
It is decidable whether a regular language is star-free, thanks to
the equivalence with aperiodic monoids.

Finite Power Problem: Given L, is there n such that
(L + ε)n = L∗ ?

There is no known algebraic characterization,
other technics are needed to show decidability.
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Distance Automata

A1: number of a

a :+1

b A2: smallest block of a

b

a, b a :+1

b

a, b

Unbounded: There are words with arbitrarily large value.

Deciding Boundedness for distance automata ⇒ solving finite
power problem.

Theorem (Hashiguchi 82, Kirsten 05)
Boundedness is decidable for distance automata.
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Problems solved using counters

Finite Power (finite words) [Simon ’78, Hashiguchi ’79]
Is there n such that (L + ε)n = L∗?
Fixed Point Iteration (finite words)
[Blumensath+Otto+Weyer ’09]
Can we bound the number of fixpoint iterations in a MSO
formula ?
Star-Height (finite words/trees)
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]
Given n, is there an expression for L, with at most n nesting
of Kleene stars?
Parity Rank (infinite trees)
[reduction in Colcombet+Löding ’08, decidability open,
deterministic input Niwinski+Walukiewicz ’05]
Given i < j , is there a parity automaton for L using ranks
{i , i + 1, . . . , j}?
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Theory of Regular Cost Functions

Aim: General framework for previous constructions.

Generalize from languages L : A∗ → {0, 1}
to functions f : A∗ → N ∪ {∞}

Accordingly generalize automata, logics, semigroups, in order
to obtain a theory of regular cost functions, which behaves as
well as possible.
Obtain decidability results thanks to this new theory.
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Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics: [[A]] : Σ∗ → N ∪ {∞}
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Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)
Semantics: [[A]] : Σ∗ → N ∪ {∞}

valB(ρ) := max checked counter value during run ρ
[[A]]B(u) := min{valB(ρ) : ρ is an accepting run of A on u}

Example
[[A]]B(u) = min length of block of a’s surrounded by b’s in u

a,b:ε

�� b:ε //

a:IC

�� b:ε //

a,b:ε

��

OO
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Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded
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Therefore we always identify two functions if they are bounded on
the same sets.
Example
For any function f , we have f ≈ 2f ≈ exp(f ).
But (u 7→ |u|a) 6≈ (u 7→ |u|b), as witnessed by the set a∗.

Theorem (Colcombet ’09, following Hashiguchi, Leung,
Simon, Kirsten, Bojańczyk+Colcombet)
Cost automata ⇔ Cost logics ⇔ Stabilisation monoids.
For some suitable models of Cost Logics and Stabilisation
Monoids, extending the classical ones.
Boundedness decidable (easy in S-automata and stabilisation
monoids)

All these equivalences are only valid up to ≈.
It provides a toolbox to decide boundedness problems.
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Languages as cost functions

A language L is represented by its characteristic function

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

If A is a classical automaton for L, then [[A]]B = χL and
[[A]]S = χL. Switching between B and S is the generalization of
language complementation.

Cost function theory strictly extends language theory.

All theorems on cost functions are in particular true for languages.

Research program: Studying cost function theory, and generalise
known theorems from languages to cost functions.
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Classical Logics on Finite Words

Linear Temporal Logic (LTL) over A∗:
ϕ := a | Ω | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

ϕUψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

Future operators G (Always) and F (Eventually).
Example: To describe Lab, we can write F(a ∧ Xb).

First-Order Logic (FO): we quantify over positions in the word.

ϕ := a(x) | x ≤ y | ¬ϕ | ϕ ∨ ψ | ∃xϕ

MSO: FO with quantification on sets, noted X ,Y .
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Generalisation: cost LTL

CLTL over A∗:

ϕ := a | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Negations pushed to the leaves, to guarantee monotonicity.

ϕU≤Nψ means that ψ is true in the future, and ϕ is false at
most N times in the mean time.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8
ϕ ϕ ϕ ϕ ϕ ϕ× × ψ

“Error variable” N is unique, shared by all occurences of U≤N .
G≤Nϕ: ϕ is false at most N times in the future (ϕU≤NΩ).
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Generalisation : Cost FO and Cost MSO

CFO over A∗:

ϕ := a(x) | x = y | x < y | ϕ∧ϕ | ϕ∨ϕ | ∃xϕ | ∀xϕ | ∀≤Nxϕ

Negations pushed to the leaves, to guarantee monotonicity.
As before, N unique free variable.
∀≤Nxϕ(x) means ϕ is false on at most N positions.
CMSO extends CFO by allowing quantification over sets.
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Semantics of Cost Logics

From formula to cost function:
Formula ϕ −→ cost function [[ϕ]] : A∗ → N ∪ {∞}, defined by

[[ϕ]](u) = inf{n ∈ N : ϕ is true over u with n as error value}

Example with the alphabet {a, b}

numbera = [[G≤Nb]] = [[∀≤Nx b(x)]].

maxblocka= [[G(⊥U≤N(b ∨ Ω))]]
= [[∀X blocka(X )⇒ (∀≤Nx .x /∈ X )]]

where blocka(X ) = ∀x ∈ X , y ∈ X , z .x ≤ z ≤ y ⇒ (z ∈ X ∧ a(z)).
If ϕ is a classical formula for L, then [[ϕ]] = χL.
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Stabilisation monoids

Aim: Generalise monoids to a quantitative setting.

Stabilisation ] means “repeat many times” the element.
if we “count” a, then a] 6= a, otherwise a] = a.

Example: Stabilisation Monoid for numbera
M = {b, a, 0}, P = {a, b},
b: “no a”, a: “a little number of a”, 0: “a lot of a”.

b a

Cayley graph

0

]

b

a

a, b

] ]

a, b
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Aperiodic Monoids

Definition: A [stabilisation] monoid M is aperiodic if for all x ∈ M
there is n ∈ N such that xn = xn+1.

Theorem (McNaughton-Papert, Schützenberger, Kamp)
Aperiodic Monoids ⇔ FO ⇔ LTL ⇔ Star-free Expressions.

We want to generalise this theorem to cost functions.
The problems are:

No complementation ⇒ No Star-free expressions.
Deterministic automata are strictly weaker.
Heavy formalisms (semantics of stabilisation monoids).
New quantitative behaviours.
Original proofs already hard.
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Aperiodic cost functions

Theorem (K. STACS 2011)
Aperiodic stabilisation monoid ⇔ CLTL ⇔ CFO.

Proof Ideas:
Generalisation of Myhill-Nerode ⇒ Syntactic object.
Induction on (|M|, |A|).
Extend functions to sequences of words.
Use bounded approximations.
Extend CLTL with Past operators, show Separability.
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Cost Functions on finite words

Prompt-LTL
minblocka

Aperiodic
CFO
CLTL

numbera

Temporal automata
Temporal semigroup

Uniform
maxevenblocka

Cost automata
CMSOeven− numbera

Decidability of membership and effectiveness of translations
[K+Colcombet+Lombardy ICALP ’10, K. STACS ’11].

Generalization of Myhill-Nerode Equivalence [K. STACS ’11].
Boundedness of CLTL is PSPACE-complete [K. LMCS].
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Generalisation of input structures

Input structures:
Finite words: accba
Infinite words: abaabaccbaba . . .
Finite trees

Infinite trees: a
a

b c
a

c b
b

b
c c

a
b a

c

. . .

Different kinds of results:
Generalisation of language notions and theorems,
Study of classes specific to cost functions,
Reduction of classical decision problems to boundedness
problems.

25 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation of input structures

Input structures:
Finite words: accba Prompt-LTL

minblocka

Aperiodic
CFO
CLTL

numbera

Temporal automata
Temporal semigroup

Uniform

maxevenblocka

Cost automata
CMSOeven− numbera

Infinite words: abaabaccbaba . . .
CMSO B/S-Büchi automata
WCMSO Weak B-automata

Very-Weak Automata
CFO CLTL

Regular Functions

Aperiodic Functions

Finite trees

Infinite trees: a
a

b c
a

c b
b

b
c c

a
b a

c

. . .
Weak B-automata

WCMSO

B-Büchi S-Büchi

Quasi-Weak

Different kinds of results:
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Study of classes specific to cost functions,
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Formalism on infinite words
Nondeterministic B/S-automata with Büchi condition: infinitely
many accepting states must be seen in an accepting run.
Example: B-Büchi automaton:

a :IC,b
a, b

a :IC,b b
a

a

b

Computes f (u) =

{
0 if |u|a =∞
|u|a otherwise

Weak alternating B-automata: semantic is a game between
two players, Min and Max.
Cost MSO/FO/LTL as before.
Weak Cost MSO: quantification is restricted to finite sets.

Can we lift results from classical theory to cost function theory?

26 / 33
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Picture on infinite words

CMSO B/S-Büchi automata
WCMSO Weak B-automata

Very-Weak Automata
CFO CLTL

Regular Functions

Aperiodic Functions

Decidability of membership and effectiveness of translations
Boundedness decidable [K+Vanden Boom ICALP ’12].
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Cost functions on finite trees

The theory of cost functions on finite trees is developed in
[Colcombet+Löding LICS ’10].

cost automata can be defined on finite trees.
Nondeterministic/alternating B/S variants are all equivalent.
Equivalent to Cost MSO on finite trees.
For all above formalisms, boundedness is decidable.
Application to the star-height problem on finite trees.
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Cost functions on infinite trees

Example of cost function on infinite trees:

f (t) =

{
∞ if |π|a =∞ on some branch π of t
minπ branch of t |π|b otherwise

Parity acceptance condition: ranks [i , j], automaton accepts if
on every branch, the maximal infinitely occuring rank is even.
Boundedness of B-coBüchi ([0, 1]-parity) is decidable
[CKV+Löding CSL ’13].
Decidability of boundedness of B-Büchi ([1, 2]-parity) is
open...
Decidability of boundedness for B-Parity ⇒ Solution to the
classical Mostowski index problem.
Can we make some progress?
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Languages on infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)
L recognizable by an alternating weak automaton ⇔
L recognizable by WMSO ⇔ there are Büchi automata U and U ′
such that L = L(U) = L(U ′).

Weak automata
Weak MSOBüchi Büchi

Reg
MSO
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Picture on infinite trees

Weak B-automata
WCMSO

B-Büchi S-Büchi

Quasi-Weak

Boundedness decidable for Quasi-Weak automata.
[KV FSTTCS ’11].

If A is a Büchi automaton, it is decidable whether L(A) is weak
[CKVL CSL ’13].

Logic and µ-calculus for the Quasi-Weak class
[CKV+Blumensath+Parys CSL-LICS ’14].
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Conclusion

Achievements:
Robust quantitative extension of regular language theory.
Embeds proof using different kind of automata with counters.
Rich quantitative behaviours occur.
New proofs on regular languages and reductions obtained.
In particular: progress on deciding whether a language is weak.

Current challenges and related works:
Main open problem: decide boundedness on infinite trees.
Application to language theory.
Link with other formalisms, as MSO+U of Bojańczyk.
Decide properties of cost automata, like optimal number of
counters.
Fine study of approximations (Daviaud)
Alternative formalisms: IST, profinite words
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Thank you !
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