
Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

The theory of regular cost functions,
from finite words to infinite trees.

Denis Kuperberg

University of Warsaw, Poland

Séminaire de l’ENS Lyon
22-05-2014

1 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Introduction

Some natural problems are undecidable.

For some problems, decidability is open.

Finite Automata: Formalism with a lot of decidable
properties.

Automata theory:
Toolbox to decide many problems arising naturally.
Verification of systems can be done automatically.
Theoretical and practical advantages.
Problem:
Decidability is still open for some automata-related problems.

2 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

1 Automata theory

2 Regular Cost Functions

3 Formalisms on finite words

4 Cost functions on infinite words and trees

3 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Descriptions of a language

q0 q1 q2

a
b, c

c

a

b

a, b, c

Language recognized : Lab = {words containing ab}.

Other ways than automata to specify Lab :
Regular expression : A∗abA∗,
Logical sentence (MSO) : ∃x ∃y a(x) ∧ b(y) ∧ (y = Sx).
Finite monoid : M = {1, a, b, c, ba, 0}, P = {0}
ab = 0, aa = ca = a, bb = bc = b, cc = ac = cb = c

4 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Descriptions of a language

q0 q1 q2

a
b, c

c

a

b

a, b, c

Language recognized : Lab = {words containing ab}.
Other ways than automata to specify Lab :

Regular expression : A∗abA∗,
Logical sentence (MSO) : ∃x ∃y a(x) ∧ b(y) ∧ (y = Sx).
Finite monoid : M = {1, a, b, c, ba, 0}, P = {0}
ab = 0, aa = ca = a, bb = bc = b, cc = ac = cb = c

4 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Regular Languages

All these formalisms are effectively equivalent.

anbn

(aa)∗

Expressions
MSO

Monoids
Automata

Regular Languages

5 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Regular Languages

All these formalisms are effectively equivalent.

anbn

(aa)∗

Lab

Expressions
MSO

Monoids
Automata

Star-free Expressions
FO

Aperiodic Monoids
Counter-free Automata

Regular Languages

Star-free Languages

5 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Historical motivation

Given a class of languages C, is there an algorithm which given an
automaton for L, decides whether L ∈ C ?

Theorem (Schützenberger 1965)
It is decidable whether a regular language is star-free, thanks to
the equivalence with aperiodic monoids.

Finite Power Problem: Given L, is there n such that
(L + ε)n = L∗ ?

There is no known algebraic characterization,
other technics are needed to show decidability.

6 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Historical motivation

Given a class of languages C, is there an algorithm which given an
automaton for L, decides whether L ∈ C ?

Theorem (Schützenberger 1965)
It is decidable whether a regular language is star-free, thanks to
the equivalence with aperiodic monoids.

Finite Power Problem: Given L, is there n such that
(L + ε)n = L∗ ?

There is no known algebraic characterization,
other technics are needed to show decidability.

6 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Distance Automata

A1: number of a

a :+1

b A2: smallest block of a

b

a, b a :+1

b

a, b

Unbounded: There are words with arbitrarily large value.

Deciding Boundedness for distance automata ⇒ solving finite
power problem.

Theorem (Hashiguchi 82, Kirsten 05)
Boundedness is decidable for distance automata.

7 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Problems solved using counters

Finite Power (finite words) [Simon ’78, Hashiguchi ’79]
Is there n such that (L + ε)n = L∗?
Fixed Point Iteration (finite words)
[Blumensath+Otto+Weyer ’09]
Can we bound the number of fixpoint iterations in a MSO
formula ?
Star-Height (finite words/trees)
[Hashiguchi ’88, Kirsten ’05, Colcombet+Löding ’08]
Given n, is there an expression for L, with at most n nesting
of Kleene stars?
Parity Rank (infinite trees)
[reduction in Colcombet+Löding ’08, decidability open,
deterministic input Niwinski+Walukiewicz ’05]
Given i < j , is there a parity automaton for L using ranks
{i , i + 1, . . . , j}?

8 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

1 Automata theory

2 Regular Cost Functions

3 Formalisms on finite words

4 Cost functions on infinite words and trees

9 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Theory of Regular Cost Functions

Aim: General framework for previous constructions.

Generalize from languages L : A∗ → {0, 1}
to functions f : A∗ → N ∪ {∞}

Accordingly generalize automata, logics, semigroups, in order
to obtain a theory of regular cost functions, which behaves as
well as possible.
Obtain decidability results thanks to this new theory.

10 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)

Semantics: [[A]] : Σ∗ → N ∪ {∞}

11 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)
Semantics: [[A]] : Σ∗ → N ∪ {∞}

valB(ρ) := max checked counter value during run ρ
[[A]]B(u) := min{valB(ρ) : ρ is an accepting run of A on u}

Example
[[A]]B(u) = min length of block of a’s surrounded by b’s in u

a,b:ε

�� b:ε //

a:IC

�� b:ε //

a,b:ε

��

OO

11 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost automata over words

Nondeterministic finite-state automaton A
+ finite set of counters

(initialized to 0, values range over N)
+ counter operations on transitions

(increment I, reset R, check C, no change ε)
Semantics: [[A]] : Σ∗ → N ∪ {∞}

valS(ρ) := min checked counter value during run ρ
[[A]]S(u) := max{valS(ρ) : ρ is an accepting run of A on u}

Example
[[A]]S(u) = min length of block of a’s surrounded by b’s in u

a:ε

�� b:ε //

a:I

��

b:CR
EEOO

11 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

12 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

[[A]] ≈ [[B]]
12 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Boundedness relation

“[[A]] = [[B]]”: undecidable [Krob ’94]

“[[A]] ≈ [[B]]”: decidable on words
[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, [[A]](U) bounded iff [[B]](U) bounded

[[A]] 6≈ [[B]]
12 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Therefore we always identify two functions if they are bounded on
the same sets.
Example
For any function f , we have f ≈ 2f ≈ exp(f ).
But (u 7→ |u|a) 6≈ (u 7→ |u|b), as witnessed by the set a∗.

Theorem (Colcombet ’09, following Hashiguchi, Leung,
Simon, Kirsten, Bojańczyk+Colcombet)
Cost automata ⇔ Cost logics ⇔ Stabilisation monoids.
For some suitable models of Cost Logics and Stabilisation
Monoids, extending the classical ones.
Boundedness decidable (easy in S-automata and stabilisation
monoids)

All these equivalences are only valid up to ≈.
It provides a toolbox to decide boundedness problems.

13 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Therefore we always identify two functions if they are bounded on
the same sets.
Example
For any function f , we have f ≈ 2f ≈ exp(f ).
But (u 7→ |u|a) 6≈ (u 7→ |u|b), as witnessed by the set a∗.

Theorem (Colcombet ’09, following Hashiguchi, Leung,
Simon, Kirsten, Bojańczyk+Colcombet)
Cost automata ⇔ Cost logics ⇔ Stabilisation monoids.
For some suitable models of Cost Logics and Stabilisation
Monoids, extending the classical ones.
Boundedness decidable (easy in S-automata and stabilisation
monoids)

All these equivalences are only valid up to ≈.
It provides a toolbox to decide boundedness problems.

13 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Languages as cost functions

A language L is represented by its characteristic function

χL(u) =

{
0 if u ∈ L
∞ if u /∈ L

If A is a classical automaton for L, then [[A]]B = χL and
[[A]]S = χL. Switching between B and S is the generalization of
language complementation.

Cost function theory strictly extends language theory.

All theorems on cost functions are in particular true for languages.

Research program: Studying cost function theory, and generalise
known theorems from languages to cost functions.

14 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

1 Automata theory

2 Regular Cost Functions

3 Formalisms on finite words

4 Cost functions on infinite words and trees

15 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Classical Logics on Finite Words

Linear Temporal Logic (LTL) over A∗:
ϕ := a | Ω | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

ϕUψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

Future operators G (Always) and F (Eventually).
Example: To describe Lab, we can write F(a ∧ Xb).

First-Order Logic (FO): we quantify over positions in the word.

ϕ := a(x) | x ≤ y | ¬ϕ | ϕ ∨ ψ | ∃xϕ

MSO: FO with quantification on sets, noted X ,Y .

16 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Classical Logics on Finite Words

Linear Temporal Logic (LTL) over A∗:
ϕ := a | Ω | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

ϕUψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

Future operators G (Always) and F (Eventually).
Example: To describe Lab, we can write F(a ∧ Xb).
First-Order Logic (FO): we quantify over positions in the word.

ϕ := a(x) | x ≤ y | ¬ϕ | ϕ ∨ ψ | ∃xϕ

MSO: FO with quantification on sets, noted X ,Y .

16 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Classical Logics on Finite Words

Linear Temporal Logic (LTL) over A∗:
ϕ := a | Ω | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

ϕUψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ψ

Future operators G (Always) and F (Eventually).
Example: To describe Lab, we can write F(a ∧ Xb).
First-Order Logic (FO): we quantify over positions in the word.

ϕ := a(x) | x ≤ y | ¬ϕ | ϕ ∨ ψ | ∃xϕ

MSO: FO with quantification on sets, noted X ,Y .

16 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation: cost LTL

CLTL over A∗:

ϕ := a | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Negations pushed to the leaves, to guarantee monotonicity.

ϕU≤Nψ means that ψ is true in the future, and ϕ is false at
most N times in the mean time.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8
ϕ ϕ ϕ ϕ ϕ ϕ× × ψ

“Error variable” N is unique, shared by all occurences of U≤N .
G≤Nϕ: ϕ is false at most N times in the future (ϕU≤NΩ).

17 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation: cost LTL

CLTL over A∗:

ϕ := a | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Negations pushed to the leaves, to guarantee monotonicity.
ϕU≤Nψ means that ψ is true in the future, and ϕ is false at
most N times in the mean time.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8
ϕ ϕ ϕ ϕ ϕ ϕ× × ψ

“Error variable” N is unique, shared by all occurences of U≤N .
G≤Nϕ: ϕ is false at most N times in the future (ϕU≤NΩ).

17 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation: cost LTL

CLTL over A∗:

ϕ := a | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Negations pushed to the leaves, to guarantee monotonicity.
ϕU≤Nψ means that ψ is true in the future, and ϕ is false at
most N times in the mean time.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8
ϕ ϕ ϕ ϕ ϕ ϕ× × ψ

“Error variable” N is unique, shared by all occurences of U≤N .

G≤Nϕ: ϕ is false at most N times in the future (ϕU≤NΩ).

17 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation: cost LTL

CLTL over A∗:

ϕ := a | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Negations pushed to the leaves, to guarantee monotonicity.
ϕU≤Nψ means that ψ is true in the future, and ϕ is false at
most N times in the mean time.

ϕU≤Nψ: a0 a1 a2 a3 a4 a5 a6 a7 a9a10a8
ϕ ϕ ϕ ϕ ϕ ϕ× × ψ

“Error variable” N is unique, shared by all occurences of U≤N .
G≤Nϕ: ϕ is false at most N times in the future (ϕU≤NΩ).

17 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation : Cost FO and Cost MSO

CFO over A∗:

ϕ := a(x) | x = y | x < y | ϕ∧ϕ | ϕ∨ϕ | ∃xϕ | ∀xϕ | ∀≤Nxϕ

Negations pushed to the leaves, to guarantee monotonicity.
As before, N unique free variable.
∀≤Nxϕ(x) means ϕ is false on at most N positions.
CMSO extends CFO by allowing quantification over sets.

18 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Semantics of Cost Logics

From formula to cost function:
Formula ϕ −→ cost function [[ϕ]] : A∗ → N ∪ {∞}, defined by

[[ϕ]](u) = inf{n ∈ N : ϕ is true over u with n as error value}

Example with the alphabet {a, b}

numbera = [[G≤Nb]] = [[∀≤Nx b(x)]].

maxblocka= [[G(⊥U≤N(b ∨ Ω))]]
= [[∀X blocka(X )⇒ (∀≤Nx .x /∈ X )]]

where blocka(X ) = ∀x ∈ X , y ∈ X , z .x ≤ z ≤ y ⇒ (z ∈ X ∧ a(z)).
If ϕ is a classical formula for L, then [[ϕ]] = χL.

19 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Semantics of Cost Logics

From formula to cost function:
Formula ϕ −→ cost function [[ϕ]] : A∗ → N ∪ {∞}, defined by

[[ϕ]](u) = inf{n ∈ N : ϕ is true over u with n as error value}

Example with the alphabet {a, b}

numbera = [[G≤Nb]] = [[∀≤Nx b(x)]].
maxblocka= [[G(⊥U≤N(b ∨ Ω))]]

= [[∀X blocka(X )⇒ (∀≤Nx .x /∈ X )]]
where blocka(X ) = ∀x ∈ X , y ∈ X , z .x ≤ z ≤ y ⇒ (z ∈ X ∧ a(z)).

If ϕ is a classical formula for L, then [[ϕ]] = χL.

19 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Semantics of Cost Logics

From formula to cost function:
Formula ϕ −→ cost function [[ϕ]] : A∗ → N ∪ {∞}, defined by

[[ϕ]](u) = inf{n ∈ N : ϕ is true over u with n as error value}

Example with the alphabet {a, b}

numbera = [[G≤Nb]] = [[∀≤Nx b(x)]].
maxblocka= [[G(⊥U≤N(b ∨ Ω))]]

= [[∀X blocka(X )⇒ (∀≤Nx .x /∈ X )]]
where blocka(X ) = ∀x ∈ X , y ∈ X , z .x ≤ z ≤ y ⇒ (z ∈ X ∧ a(z)).
If ϕ is a classical formula for L, then [[ϕ]] = χL.

19 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Stabilisation monoids

Aim: Generalise monoids to a quantitative setting.

Stabilisation ] means “repeat many times” the element.
if we “count” a, then a] 6= a, otherwise a] = a.

Example: Stabilisation Monoid for numbera
M = {b, a, 0}, P = {a, b},
b: “no a”, a: “a little number of a”, 0: “a lot of a”.

b a

Cayley graph

0

]

b

a

a, b

] ]

a, b

20 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Stabilisation monoids

Aim: Generalise monoids to a quantitative setting.
Stabilisation ] means “repeat many times” the element.

if we “count” a, then a] 6= a, otherwise a] = a.
Example: Stabilisation Monoid for numbera
M = {b, a, 0}, P = {a, b},
b: “no a”, a: “a little number of a”, 0: “a lot of a”.

b a

Cayley graph

0

]

b

a

a, b

] ]

a, b

20 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Stabilisation monoids

Aim: Generalise monoids to a quantitative setting.
Stabilisation ] means “repeat many times” the element.
if we “count” a, then a] 6= a, otherwise a] = a.

Example: Stabilisation Monoid for numbera
M = {b, a, 0}, P = {a, b},
b: “no a”, a: “a little number of a”, 0: “a lot of a”.

b a

Cayley graph

0

]

b

a

a, b

] ]

a, b

20 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Stabilisation monoids

Aim: Generalise monoids to a quantitative setting.
Stabilisation ] means “repeat many times” the element.
if we “count” a, then a] 6= a, otherwise a] = a.

Example: Stabilisation Monoid for numbera
M = {b, a, 0}, P = {a, b},
b: “no a”, a: “a little number of a”, 0: “a lot of a”.

b a

Cayley graph

0

]

b

a

a, b

] ]

a, b

20 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Aperiodic Monoids

Definition: A [stabilisation] monoid M is aperiodic if for all x ∈ M
there is n ∈ N such that xn = xn+1.

Theorem (McNaughton-Papert, Schützenberger, Kamp)
Aperiodic Monoids ⇔ FO ⇔ LTL ⇔ Star-free Expressions.

We want to generalise this theorem to cost functions.
The problems are:

No complementation ⇒ No Star-free expressions.
Deterministic automata are strictly weaker.
Heavy formalisms (semantics of stabilisation monoids).
New quantitative behaviours.
Original proofs already hard.

21 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Aperiodic Monoids

Definition: A [stabilisation] monoid M is aperiodic if for all x ∈ M
there is n ∈ N such that xn = xn+1.

Theorem (McNaughton-Papert, Schützenberger, Kamp)
Aperiodic Monoids ⇔ FO ⇔ LTL ⇔ Star-free Expressions.

We want to generalise this theorem to cost functions.
The problems are:

No complementation ⇒ No Star-free expressions.
Deterministic automata are strictly weaker.
Heavy formalisms (semantics of stabilisation monoids).
New quantitative behaviours.
Original proofs already hard.

21 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Aperiodic cost functions

Theorem (K. STACS 2011)
Aperiodic stabilisation monoid ⇔ CLTL ⇔ CFO.

Proof Ideas:
Generalisation of Myhill-Nerode ⇒ Syntactic object.
Induction on (|M|, |A|).
Extend functions to sequences of words.
Use bounded approximations.
Extend CLTL with Past operators, show Separability.

22 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost Functions on finite words

Prompt-LTL
minblocka

Aperiodic
CFO
CLTL

numbera

Temporal automata
Temporal semigroup

Uniform
maxevenblocka

Cost automata
CMSOeven− numbera

Decidability of membership and effectiveness of translations
[K+Colcombet+Lombardy ICALP ’10, K. STACS ’11].

Generalization of Myhill-Nerode Equivalence [K. STACS ’11].
Boundedness of CLTL is PSPACE-complete [K. LMCS].

23 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

1 Automata theory

2 Regular Cost Functions

3 Formalisms on finite words

4 Cost functions on infinite words and trees

24 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation of input structures

Input structures:
Finite words: accba
Infinite words: abaabaccbaba . . .
Finite trees

Infinite trees: a
a

b c
a

c b
b

b
c c

a
b a

c

. . .

Different kinds of results:
Generalisation of language notions and theorems,
Study of classes specific to cost functions,
Reduction of classical decision problems to boundedness
problems.

25 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Generalisation of input structures

Input structures:
Finite words: accba Prompt-LTL

minblocka

Aperiodic
CFO
CLTL

numbera

Temporal automata
Temporal semigroup

Uniform

maxevenblocka

Cost automata
CMSOeven− numbera

Infinite words: abaabaccbaba . . .
CMSO B/S-Büchi automata
WCMSO Weak B-automata

Very-Weak Automata
CFO CLTL

Regular Functions

Aperiodic Functions

Finite trees

Infinite trees: a
a

b c
a

c b
b

b
c c

a
b a

c

. . .
Weak B-automata

WCMSO

B-Büchi S-Büchi

Quasi-Weak

Different kinds of results:
Generalisation of language notions and theorems,
Study of classes specific to cost functions,
Reduction of classical decision problems to boundedness
problems.

25 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Formalism on infinite words
Nondeterministic B/S-automata with Büchi condition: infinitely
many accepting states must be seen in an accepting run.
Example: B-Büchi automaton:

a :IC,b
a, b

a :IC,b b
a

a

b

Computes f (u) =

{
0 if |u|a =∞
|u|a otherwise

Weak alternating B-automata: semantic is a game between
two players, Min and Max.
Cost MSO/FO/LTL as before.
Weak Cost MSO: quantification is restricted to finite sets.

Can we lift results from classical theory to cost function theory?

26 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Formalism on infinite words
Nondeterministic B/S-automata with Büchi condition: infinitely
many accepting states must be seen in an accepting run.
Example: B-Büchi automaton:

a :IC,b
a, b

a :IC,b b
a

a

b

Computes f (u) =

{
0 if |u|a =∞
|u|a otherwise

Weak alternating B-automata: semantic is a game between
two players, Min and Max.
Cost MSO/FO/LTL as before.
Weak Cost MSO: quantification is restricted to finite sets.

Can we lift results from classical theory to cost function theory? 26 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Picture on infinite words

CMSO B/S-Büchi automata
WCMSO Weak B-automata

Very-Weak Automata
CFO CLTL

Regular Functions

Aperiodic Functions

Decidability of membership and effectiveness of translations
Boundedness decidable [K+Vanden Boom ICALP ’12].

27 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost functions on finite trees

The theory of cost functions on finite trees is developed in
[Colcombet+Löding LICS ’10].

cost automata can be defined on finite trees.
Nondeterministic/alternating B/S variants are all equivalent.
Equivalent to Cost MSO on finite trees.
For all above formalisms, boundedness is decidable.
Application to the star-height problem on finite trees.

28 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Cost functions on infinite trees

Example of cost function on infinite trees:

f (t) =

{
∞ if |π|a =∞ on some branch π of t
minπ branch of t |π|b otherwise

Parity acceptance condition: ranks [i , j], automaton accepts if
on every branch, the maximal infinitely occuring rank is even.
Boundedness of B-coBüchi ([0, 1]-parity) is decidable
[CKV+Löding CSL ’13].
Decidability of boundedness of B-Büchi ([1, 2]-parity) is
open...
Decidability of boundedness for B-Parity ⇒ Solution to the
classical Mostowski index problem.
Can we make some progress?

29 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Languages on infinite trees

Theorem (Rabin 1970, Kupferman + Vardi 1999)
L recognizable by an alternating weak automaton ⇔
L recognizable by WMSO ⇔ there are Büchi automata U and U ′
such that L = L(U) = L(U ′).

Weak automata
Weak MSOBüchi Büchi

Reg
MSO

30 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Picture on infinite trees

Weak B-automata
WCMSO

B-Büchi S-Büchi

Quasi-Weak

Boundedness decidable for Quasi-Weak automata.
[KV FSTTCS ’11].

If A is a Büchi automaton, it is decidable whether L(A) is weak
[CKVL CSL ’13].

Logic and µ-calculus for the Quasi-Weak class
[CKV+Blumensath+Parys CSL-LICS ’14].

31 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Conclusion

Achievements:
Robust quantitative extension of regular language theory.
Embeds proof using different kind of automata with counters.
Rich quantitative behaviours occur.
New proofs on regular languages and reductions obtained.
In particular: progress on deciding whether a language is weak.

Current challenges and related works:
Main open problem: decide boundedness on infinite trees.
Application to language theory.
Link with other formalisms, as MSO+U of Bojańczyk.
Decide properties of cost automata, like optimal number of
counters.
Fine study of approximations (Daviaud)
Alternative formalisms: IST, profinite words

32 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Conclusion

Achievements:
Robust quantitative extension of regular language theory.
Embeds proof using different kind of automata with counters.
Rich quantitative behaviours occur.
New proofs on regular languages and reductions obtained.
In particular: progress on deciding whether a language is weak.

Current challenges and related works:
Main open problem: decide boundedness on infinite trees.
Application to language theory.
Link with other formalisms, as MSO+U of Bojańczyk.
Decide properties of cost automata, like optimal number of
counters.
Fine study of approximations (Daviaud)
Alternative formalisms: IST, profinite words

32 / 33



Automata theory Regular Cost Functions Formalisms on finite words Cost functions on infinite words and trees

Thank you !

33 / 33


	Automata theory
	Regular Cost Functions
	Formalisms on finite words
	Cost functions on infinite words and trees

