Explorable Automata

Emile Hazard, Denis Kuperberg

and Marc Bagnol, Udi Boker, Orna Kupferman, Karoliina Lehtinen, Anirban Majumdar, Michał Skrzypczak, Milla Valnet,...

Delta ANR Meeting, Marseille, 30 May 2022

Good-for-Games Automata

Good-for-Games Automata

Motivations

- Solve Church Synthesis more efficiently
- Intermediate model between Det. and Nondet.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters:

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

```
Letter game of \mathcal{A}:
```

Adam plays letters: a a

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of \mathcal{A} :

Adam plays letters: a a b c c

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$ Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

 ${\cal A}$ ND automaton on finite or infinite words.

Letter game of A: Adam plays letters: $a \ a \ b \ c \ c \ \dots \ = w$ Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

 $\mathcal{A} \ \mathrm{GFG} \Leftrightarrow \mathsf{Eve}$ wins the Letter game on \mathcal{A} \Leftrightarrow there is a strategy $\sigma_{\mathrm{GFG}} : \mathcal{A}^* \to \mathcal{Q}$ accepting all words of $\mathcal{L}(\mathcal{A})$.

Fact

Every deterministic automaton is GFG.

Fact

Every deterministic automaton is GFG.

Some non- $\ensuremath{\operatorname{GFG}}$ automaton:

$$L = (a+b)(a+b)$$

Fact

Every deterministic automaton is GFG.

Some non-GFG automaton:

$$L = (a+b)(a+b)$$

Definition

Nondet automaton A is **Determinizable by Pruning** (DBP): Determinizable by removing some transitions.

Fact

Every deterministic automaton is GFG.

Some non-GFG automaton:

$$L = (a+b)(a+b)$$

Definition

Nondet automaton A is **Determinizable by Pruning** (DBP): Determinizable by removing some transitions.

Fact DBP = "GFG with a positional strategy". \rightarrow Every DBP automaton is GFG.

Some GFG automata

Theorem

On finite words, DBP = GFG.

Some GFG automata

Theorem *On finite words,* DBP = GFG*.*

Theorem ([Boker, K., Kupferman, Skrzypczak '13]) On infinite words, $DBP \subsetneq GFG$.

A GFG coBüchi automaton for $(xa + xb)^*[(xa)^{\omega} + (xb)^{\omega}]$.

Some GFG automata

Theorem On finite words, DBP = GFG.

Theorem ([Boker, K., Kupferman, Skrzypczak '13]) On infinite words, DBP \subsetneq GFG.

A GFG coBüchi automaton for $(xa + xb)^*[(xa)^{\omega} + (xb)^{\omega}]$.

State-blowup to determinize can be Exponential [K., Skrzypczak '15].

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_s \mathcal{A}$: Each round:

- Adam chooses $q \stackrel{a}{\rightarrow} q'$ in ${\mathcal B}$
- Eve has to replicate $p \stackrel{a}{\rightarrow} p'$ in \mathcal{A}

Eve wins if $\mathcal{B} \text{ accepts} \Longrightarrow \mathcal{A} \text{ accepts}$

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_s \mathcal{A}$: Each round:

- Adam chooses $q \stackrel{a}{\rightarrow} q'$ in ${\mathcal B}$
- $\blacktriangleright \ \ \, {\rm Eve \ has \ to \ replicate \ } p \xrightarrow{a} p' \ \, {\rm in \ } {\cal A}$

Eve wins if $\mathcal{B} \text{ accepts} \Longrightarrow \mathcal{A} \text{ accepts}$

Example:

 $\mathcal{B} \leq_{s} \mathcal{A}$ but $\mathcal{A} \not\leq_{s} \mathcal{B}$

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_s \mathcal{A}$: Each round:

- Adam chooses $q \stackrel{a}{\rightarrow} q'$ in ${\mathcal B}$
- $\blacktriangleright \ \ \, {\rm Eve \ has \ to \ replicate \ } p \xrightarrow{a} p' \ \, {\rm in \ } {\cal A}$

Eve wins if $\mathcal{B} \text{ accepts} \Longrightarrow \mathcal{A} \text{ accepts}$

 $\mathcal{B} \leq_{s} \mathcal{A}$ but $\mathcal{A} \not\leq_{s} \mathcal{B}$

Lemma: If \mathcal{A} GFG, then $\mathcal{B} \leq_s \mathcal{A}$ is equivalent to $L(\mathcal{B}) \subseteq L(\mathcal{A})$

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

► On finite words: PTIME [Löding]

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

► On finite words: PTIME [Löding]

On infinite words: Open problem !

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

► On finite words: PTIME [Löding]

On infinite words: Open problem !

▶ Upper bound: EXPTIME [Henzinger, Piterman '06]

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

- ► On finite words: PTIME [Löding]
- ► On infinite words: Open problem !
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

- ► On finite words: PTIME [Löding]
- On infinite words: Open problem !
 - Upper bound: EXPTIME [Henzinger, Piterman '06]
 - PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

What about building GFG automata ?

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

► On finite words: PTIME [Löding]

On infinite words: Open problem !

- Upper bound: EXPTIME [Henzinger, Piterman '06]
- PTIME algorithm conjectured to be correct [Bagnol, K. '18]
 Proved correct for Büchi and CoBüchi conditions.

What about building GFG automata ?

To tackle these questions, we generalize the notion of GFG...

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

GFG

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

A safety NFA of width ?

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of A: Smallest k s.t. Eve wins the k-width game (at most |Q|).

A safety NFA of width 2

k-**Determinization**

Powerset

k-**Determinization**

k-Determinization $(q_0) \xrightarrow{a} (q_1)$ $(q_0) \xrightarrow{a} (q_2)$ (q_2) (q_3) Powerset (q_3) $(q_3$

Facts: [K.,Majumdar]

- width $(\mathcal{A}) \leq k \iff \mathcal{A}_k$ is GFG.
- ▶ $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O(n^{\text{width}(\mathcal{A})})$ via a simulation game.

k-Determinization $(q_0) \xrightarrow{a} (q_1)$ $(q_0) \xrightarrow{a} (q_2)$ (q_2) (q_3) Powerset 2-Determinization \mathcal{A}_2 + generalization to Breakpoint, Safra: $|\mathcal{A}_k| \approx |\mathcal{A}|^k$

Facts: [K.,Majumdar]

• width
$$(\mathcal{A}) \leq k \iff \mathcal{A}_k$$
 is GFG.

▶ $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O(n^{\text{width}(\mathcal{A})})$ via a simulation game.

Application: Building a GFG aut. from ${\cal A}$

Start from $\mathcal{B} = \mathcal{A}$ and k = 1; while \mathcal{B} is not GFG do k := k + 1; $B := \mathcal{A}_k$; end

k-Determinization $(q_0) \xrightarrow{a} (q_1)$ $(q_0) \xrightarrow{a} (q_2)$ (q_2) (q_3) Powerset 2-Determinization \mathcal{A}_2 + generalization to Breakpoint, Safra: $|\mathcal{A}_k| \approx |\mathcal{A}|^k$

Facts: [K.,Majumdar]

• width
$$(\mathcal{A}) \leq k \iff \mathcal{A}_k$$
 is GFG.

▶ $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O(n^{\text{width}(\mathcal{A})})$ via a simulation game.

Application: Building a GFG aut. from ${\mathcal A}$

Start from $\mathcal{B} = \mathcal{A}$ and k = 1; while \mathcal{B} is not GFG **do**

$$k := k + 1;$$
$$B := \mathcal{A}_k;$$

end

We need to test GFGness !

Computing the width

Can we compute k = width(A) to build A_k directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is ExpTIME-complete. Even deciding whether it is $\leq |Q|/2$.

Computing the width

Can we compute k = width(A) to build A_k directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is ExpTIME-complete. Even deciding whether it is $\leq |Q|/2$.

Reduction via a SAT game, introduced by [Robson] to show ExpTIME-completeness of popular games:

(Japanese rules)

We now bound the number of runs. *k*-**explorability game**:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

We now bound the number of runs. *k*-**explorability game**:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game.

We now bound the number of runs. *k*-**explorability game**:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

We now bound the number of runs. *k*-**explorability game**:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

We now bound the number of runs. *k*-**explorability game**:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

 \mathcal{A} is *k*-explorable if Eve wins the *k*-explorability game. \mathcal{A} is explorable if it is *k*-explorable for some *k*.

Theorem: Deciding |Q|/2-explorability is still EXPTIME-complete.

Theorem: Deciding |Q|/2-explorability is still EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Theorem: Deciding |Q|/2-explorability is still EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

Theorem: Deciding |Q|/2-explorability is still EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in $\ensuremath{\mathrm{PTIME}}$ for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

If better than $\mathrm{ExpTime:}$ improve on general GFGness !

Theorem: Deciding |Q|/2-explorability is still EXPTIME-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTIME for explorable automata.

Can we decide explorability ? If yes, how efficiently ?

If better than EXPTIME: improve on general GFGness !

How many tokens might be needed in explorable automata ?

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is EXPTIME-complete
- Doubly exponentially many tokens might be needed.

Similar questions in [Betrand et al 2019: Controlling a population]

k-**population game**: Arena like *k*-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k \text{ s.t. Eve wins } ?$

Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- ► The PCP is ExpTIME-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- Game harder to solve: the input word has to be in L(A)
- Must deal with acceptance conditions on infinite words.

Results

Theorems [Hazard, K.]

 $\label{eq:Explorability Problem is $\mathrm{ExpTime-complete}$ for NFA, Büchi.$ Doubly exponentially many tokens might be needed.$$

Only up to Büchi condition for now...

Results

Theorems [Hazard, K.]

 $\label{eq:Explorability Problem is $ExpTime-complete for NFA, Büchi.$ Doubly exponentially many tokens might be needed.$$

Only up to Büchi condition for now...

NFA needing exponentially many tokens.

$\omega\text{-explorability}$

What happens if we allow a countable infinity of tokens ?

ω -explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω -explorable

ω -explorability

What happens if we allow a countable infinity of tokens ?

Intuition:

Non-explorable: Environment can kill a run **chosen by System Non**- ω -**explorable**: Environment can kill a run **of its choice**

Results on ω -explorability

Facts:

- > any NFA is ω -explorable,
- ▶ any automaton A with L(A) countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Results on ω -explorability

Facts:

- > any NFA is ω -explorable,
- ▶ any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Theorem [Hazard, K.]

 $\omega\text{-explorability}$ is $\mathrm{Exp}\mathrm{Time}\text{-complete}$ for safety, coBüchi.

Results on ω -explorability

Facts:

- > any NFA is ω -explorable,
- ▶ any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω -explorable.
- > any Reachability automaton is ω -explorable,

Theorem [Hazard, K.]

 ω -explorability is EXPTIME-complete for safety, coBüchi.

Only up to coBüchi for now... Duality with explorability problem.

Current and future work

- Complexity of (ω)-explorability for parity conditions ?
- Complexity of k-explorability with k in binary?
- Studying GFG and explorable models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME GFGness for parity automata.

Current and future work

...

- Complexity of (ω)-explorability for parity conditions ?
- Complexity of k-explorability with k in binary?
- Studying GFG and explorable models in other frameworks.
- Practical applications, experimental evaluations.
- ▶ PTIME GFGness for parity automata.

Thanks for your attention!