Explorable Automata

Emile Hazard, Denis Kuperberg

and Marc Bagnol, Udi Boker, Orna Kupferman, Karoliina Lehtinen, Anirban Majumdar, Michał Skrzypczak, Milla Valnet,...

Delta ANR Meeting, Marseille, 30 May 2022

Good-for-Games Automata

Deterministic

Good-for-Games

Good-for-Games Automata

Motivations

- Solve Church Synthesis more efficiently
- Intermediate model between Det. and Nondet.

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters:
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: a a
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b c$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \quad a b c$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \operatorname{b} c c$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \operatorname{b} c c$
Eve: resolves non-deterministic choices for transitions

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \begin{array}{lllll}a & b & c & c & \ldots\end{array}=w$
Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.

Definition of GFG via a game

\mathcal{A} ND automaton on finite or infinite words.
Letter game of \mathcal{A} :
Adam plays letters: $a \begin{array}{lllll}a & b & c & c & \ldots\end{array}=w$
Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow$ Run accepting.
\mathcal{A} GFG \Leftrightarrow Eve wins the Letter game on \mathcal{A}
\Leftrightarrow there is a strategy $\sigma_{\mathrm{GFG}}: A^{*} \rightarrow Q$ accepting all words of $L(\mathcal{A})$.

First facts

Fact

Every deterministic automaton is GFG.

First facts

Fact

Every deterministic automaton is GFG.

Some non-GFG automaton:

$$
L=(a+b)(a+b)
$$

First facts

Fact

Every deterministic automaton is GFG.

Some non-GFG automaton:

$$
L=(a+b)(a+b)
$$

Definition

Nondet automaton \mathcal{A} is Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

First facts

Fact

Every deterministic automaton is GFG.

Some non-GFG automaton:

$$
L=(a+b)(a+b)
$$

Definition

Nondet automaton \mathcal{A} is Determinizable by Pruning (DBP):
Determinizable by removing some transitions.

Fact

$\mathrm{DBP}=$ "GFG with a positional strategy".
\rightarrow Every DBP automaton is GFG.

Some GFG automata

Theorem
On finite words, $\mathrm{DBP}=\mathrm{GFG}$.

Some GFG automata

Theorem
On finite words, $\mathrm{DBP}=\mathrm{GFG}$.
Theorem ([Boker, K., Kupferman, Skrzypczak '13])
On infinite words, DBP $\subsetneq G F G$.

A GFG coBüchi automaton for $(x a+x b)^{*}\left[(x a)^{\omega}+(x b)^{\omega}\right]$.

Some GFG automata

Theorem
On finite words, $\mathrm{DBP}=\mathrm{GFG}$.
Theorem ([Boker, K., Kupferman, Skrzypczak '13])
On infinite words, DBP $\subsetneq G F G$.

A GFG coBüchi automaton for $(x a+x b)^{*}\left[(x a)^{\omega}+(x b)^{\omega}\right]$.
State-blowup to determinize can be Exponential [K., Skrzypczak '15].

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_{s} \mathcal{A}$: Each round:

- Adam chooses $q \xrightarrow{a} q^{\prime}$ in \mathcal{B}
- Eve has to replicate $p \xrightarrow{a} p^{\prime}$ in \mathcal{A}

Eve wins if \mathcal{B} accepts $\Longrightarrow \mathcal{A}$ accepts

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_{s} \mathcal{A}$: Each round:

- Adam chooses $q \xrightarrow{a} q^{\prime}$ in \mathcal{B}
- Eve has to replicate $p \xrightarrow{a} p^{\prime}$ in \mathcal{A}

Eve wins if \mathcal{B} accepts $\Longrightarrow \mathcal{A}$ accepts
Example:

Application: Inclusion testing

Simulation game $\mathcal{B} \leq_{s} \mathcal{A}$: Each round:

- Adam chooses $q \xrightarrow{a} q^{\prime}$ in \mathcal{B}
- Eve has to replicate $p \xrightarrow{a} p^{\prime}$ in \mathcal{A}

Eve wins if \mathcal{B} accepts $\Longrightarrow \mathcal{A}$ accepts
Example:

Lemma: If \mathcal{A} GFG, then $\mathcal{B} \leq_{s} \mathcal{A}$ is equivalent to $L(\mathcal{B}) \subseteq L(\mathcal{A})$

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A} Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]
- On infinite words: Open problem !

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman '06]

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman '06]
- PTime algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman '06]
- PTime algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

What about building GFG automata ?

Recognizing GFG automata

Complexity of the GFGness problem: Input: A nondeterministic automaton \mathcal{A}
Output: Is \mathcal{A} GFG ?

- On finite words: PTime [Löding]
- On infinite words: Open problem !
- Upper bound: ExpTime [Henzinger, Piterman '06]
- PTime algorithm conjectured to be correct [Bagnol, K. '18] Proved correct for Büchi and CoBüchi conditions.

What about building GFG automata ?

To tackle these questions, we generalize the notion of GFG...

Allowing more runs

Idea: Allow to build several runs, at least one accepting.

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of \mathcal{A} : Smallest k s.t. Eve wins the k-width game (at most $|Q|$).

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of \mathcal{A} : Smallest k s.t. Eve wins the k-width game (at most $|Q|)$.

A safety NFA of width ?

Width of an automaton

k-width game on \mathcal{A} :

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ her run-DAG contains an accepting run.

Width of \mathcal{A} : Smallest k s.t. Eve wins the k-width game (at most $|Q|)$.

A safety NFA of width 2

k-Determinization

Powerset

2-Determinization \mathcal{A}_{2}

k-Determinization

Powerset

2-Determinization \mathcal{A}_{2}

+ generalization to Breakpoint, Safra: $\left|\mathcal{A}_{k}\right| \approx|\mathcal{A}|^{k}$

k-Determinization

Powerset

2-Determinization \mathcal{A}_{2}

+ generalization to Breakpoint, Safra: $\left|\mathcal{A}_{k}\right| \approx|\mathcal{A}|^{k}$
Facts: [K.,Majumdar]
- $\operatorname{width}(\mathcal{A}) \leq k \quad \Longleftrightarrow \quad \mathcal{A}_{k}$ is GFG.
- $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O\left(n^{\text {widtt }(\mathcal{A})}\right)$ via a simulation game.

k-Determinization

+ generalization to Breakpoint, Safra: $\left|\mathcal{A}_{k}\right| \approx|\mathcal{A}|^{k}$
Facts: [K.,Majumdar]
- $\operatorname{width}(\mathcal{A}) \leq k \quad \Longleftrightarrow \quad \mathcal{A}_{k}$ is GFG.
- $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O\left(n^{\text {widtt }(\mathcal{A})}\right)$ via a simulation game.

Application: Building a GFG aut. from \mathcal{A}
Start from $\mathcal{B}=\mathcal{A}$ and $k=1$;
while \mathcal{B} is not $G F G$ do

$$
k:=k+1 ;
$$

$$
B:=\mathcal{A}_{k} ;
$$

end

k-Determinization

Powerset

2-Determinization \mathcal{A}_{2}

+ generalization to Breakpoint, Safra: $\left|\mathcal{A}_{k}\right| \approx|\mathcal{A}|^{k}$

Facts: [K.,Majumdar]
$>\operatorname{width}(\mathcal{A}) \leq k \quad \Longleftrightarrow \mathcal{A}_{k}$ is GFG.

- $\mathcal{B} \subseteq \mathcal{A}$ can be tested in $\approx O\left(n^{\text {width }(\mathcal{A})}\right)$ via a simulation game.

Application: Building a GFG aut. from \mathcal{A}
Start from $\mathcal{B}=\mathcal{A}$ and $k=1$;
while \mathcal{B} is not $G F G$ do

$$
k:=k+1 ;
$$

$$
B:=\mathcal{A}_{k} ;
$$

end

Computing the width

Can we compute $k=\operatorname{width}(\mathcal{A})$ to build \mathcal{A}_{k} directly ?
Theorem [K, Majumdar]
Computing the width of an NFA is ExpTime-complete. Even deciding whether it is $\leq|Q| / 2$.

Computing the width

Can we compute $k=\operatorname{width}(\mathcal{A})$ to build \mathcal{A}_{k} directly ?

Theorem [K, Majumdar]

Computing the width of an NFA is ExpTime-complete. Even deciding whether it is $\leq|Q| / 2$.

Reduction via a SAT game, introduced by [Robson] to show ExpTime-completeness of popular games:

(Japanese rules)

Explorable Automata

We now bound the number of runs.
k-explorability game:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.

Explorable Automata

We now bound the number of runs.
k-explorability game:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.

Explorable Automata

We now bound the number of runs.
k-explorability game:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

Explorable Automata

We now bound the number of runs.
k-explorability game:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

A ?-explorable safety NFA

Explorable Automata

We now bound the number of runs.
k-explorability game:

Eve wins if $w \in L(\mathcal{A}) \Rightarrow$ at least one token follows an accepting run.
\mathcal{A} is k-explorable if Eve wins the k-explorability game.
\mathcal{A} is explorable if it is k-explorable for some k.

A non-explorable safety NFA

First results

Theorem: Deciding $|Q| / 2$-explorability is still ExpTimE-complete.

First results

Theorem: Deciding $|Q| / 2$-explorability is still ExpTimE-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTime for explorable automata.

First results

Theorem: Deciding $|Q| / 2$-explorability is still ExpTimE-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently?

First results

Theorem: Deciding $|Q| / 2$-explorability is still ExpTimE-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently?
If better than ExpTimE: improve on general GFGness !

First results

Theorem: Deciding $|Q| / 2$-explorability is still ExpTimE-complete.

Motivating Theorem [Hazard, K.]

The GFGness problem is in PTime for explorable automata.

Can we decide explorability ? If yes, how efficiently ?
If better than ExpTimE: improve on general GFGness !
How many tokens might be needed in explorable automata ?

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA, Goal of Adam: bring all tokens to a sink state.

Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?
Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- The PCP is ExpTime-complete
- Doubly exponentially many tokens might be needed.

A related paper

Similar questions in [Betrand et al 2019: Controlling a population]
k-population game: Arena like k-explorability game on NFA,
Goal of Adam: bring all tokens to a sink state.
Population Control Problem (PCP): $\exists k$ s.t. Eve wins ?
Results in [Bertrand, Dewaskar, Genest, Gimbert, Godbole]:

- The PCP is ExpTime-complete
- Doubly exponentially many tokens might be needed.

Our goal: Generalize to Explorability, but

- Game harder to solve: the input word has to be in $L(\mathcal{A})$
- Must deal with acceptance conditions on infinite words.

Results

Theorems [Hazard, K.]
Explorability Problem is ExpTime-complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

Only up to Büchi condition for now...

Results

Theorems [Hazard, K.]

Explorability Problem is ExpTimE-complete for NFA, Büchi. Doubly exponentially many tokens might be needed.

Only up to Büchi condition for now...

NFA needing exponentially many tokens.

ω-explorability

What happens if we allow a countable infinity of tokens ?

ω-explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω-explorable

not ω-explorable

ω-explorability

What happens if we allow a countable infinity of tokens ?

not explorable but ω-explorable

not ω-explorable

Intuition:

Non-explorable: Environment can kill a run chosen by System Non- ω-explorable: Environment can kill a run of its choice

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Theorem [Hazard, K.]
ω-explorability is ExpTime-complete for safety, coBüchi.

Results on ω-explorability

Facts:

- any NFA is ω-explorable,
- any automaton \mathcal{A} with $L(\mathcal{A})$ countable is ω-explorable.
- any Reachability automaton is ω-explorable,

Theorem [Hazard, K.]
ω-explorability is ExpTime-complete for safety, coBüchi.

Only up to coBüchi for now... Duality with explorability problem.

Current and future work

- Complexity of (ω)-explorability for parity conditions ?
- Complexity of k-explorability with k in binary?
- Studying GFG and explorable models in other frameworks.
- Practical applications, experimental evaluations.
- PTime GFGness for parity automata.

Current and future work

- Complexity of (ω)-explorability for parity conditions ?
- Complexity of k-explorability with k in binary?
- Studying GFG and explorable models in other frameworks.
- Practical applications, experimental evaluations.
- PTime GFGness for parity automata.

Thanks for your attention!

