Positive first-order logic on words

Denis Kuperberg

CNRS, LIP, ENS Lyon

IRIF séminaire automates
30 avril 2021
Monotone languages

Ordered alphabet: Finite alphabet A with partial order \leq_A.

Example of powerset alphabet: $A = 2^P$, Order \leq_A is inclusion.

Definition (monotone languages)
$L \subseteq A^*$ is monotone if \forall words u, v and letters a, b, $uav \in L$ and $a \leq_A b \Rightarrow ubv \in L$.

Example
On $A = \{a, b\}$ with $a \leq_A b$:
$\rightarrow A^*bA^*$ is monotone.
\rightarrow Its complement a^* is not monotone.
Monotone languages

Ordered alphabet: Finite alphabet A with partial order \leq_A.

Example of powerset alphabet: $A = 2^P$, Order \leq_A is inclusion.
Monotone languages

Ordered alphabet: Finite alphabet \(A \) with partial order \(\leq_A \).

Example of powerset alphabet: \(A = 2^P \), Order \(\leq_A \) is inclusion

Definition (monotone languages)

\(L \subseteq A^* \) is monotone if \(\forall \) words \(u, v \) and letters \(a, b \),

\[uav \in L \text{ and } a \leq_A b \implies ubv \in L. \]
Monotone languages

Ordered alphabet: Finite alphabet A with partial order \leq_A.

Example of powerset alphabet:
$A = 2^P$, Order \leq_A is inclusion

Definition (monotone languages)
$L \subseteq A^*$ is monotone if \forall words u, v and letters a, b,

$$uav \in L \text{ and } a \leq_A b \implies ubv \in L.$$

Example
On $A = \{a, b\}$ with $a \leq_A b$:

- $A^* b A^*$ is monotone.
- Its complement a^* is not monotone.
Positive first-order logic

How to syntactically define monotone languages?
Positive first-order logic

How to syntactically define monotone languages?

Definition (FO$^+$)
\[\varphi, \psi := a^\uparrow(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi\]

- No negation: all predicates appear positively.
- Atomic predicate \(a^\uparrow(x)\) with \(a \in A\): \(a \leq_A \text{label}(x)\).
Positive first-order logic

How to syntactically define monotone languages?

Definition (FO⁺)

\[\varphi, \psi := \mathbf{a}^\uparrow(x) | x \leq y | x < y | \varphi \lor \psi | \varphi \land \psi | \exists x. \varphi | \forall x. \varphi \]

- **No negation**: all predicates appear positively.
- **Atomic predicate** \(a^\uparrow(x) \) with \(a \in A \): \(a \leq_A \text{label}(x) \).

Example

On alphabet \(A = \{a, b\} \) with \(a \leq_A b \).

- \(\exists x. \mathbf{b}^\uparrow(x) \) recognizes \(A^* b A^* \).
- \(\forall x. \mathbf{a}^\uparrow(x) \) recognizes the full \(A^* \). *(not only \(a^* \)*)
Positive first-order logic

How to syntactically define monotone languages?

Definition (FO⁺)

\[\varphi, \psi := a^\uparrow(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi \]

- **No negation**: all predicates appear positively.
- **Atomic predicate** \(a^\uparrow(x) \) with \(a \in A \): \(a \leq_A \text{label}(x) \).

Example

On alphabet \(A = \{ a, b \} \) with \(a \leq_A b \).

- \(\exists x. b^\uparrow(x) \) recognizes \(A^* b A^* \).
- \(\forall x. a^\uparrow(x) \) recognizes the full \(A^* \). *(not only \(a^* \))*

Fact: \(L \) definable in \(\text{FO}^+ \) \(\Rightarrow \) \(L \) monotone and \(\text{FO}-\text{definable} \).
Positive first-order logic

How to syntactically define monotone languages?

Definition (FO+)
\[\varphi, \psi := a^\uparrow(x) \mid x \leq y \mid x < y \mid \varphi \lor \psi \mid \varphi \land \psi \mid \exists x. \varphi \mid \forall x. \varphi \]

▶ No negation: all predicates appear positively.
▶ Atomic predicate \(a^\uparrow(x) \) with \(a \in A: a \leq_A \text{label}(x) \).

Example
On alphabet \(A = \{ a, b \} \) with \(a \leq_A b \).
▶ \(\exists x. b^\uparrow(x) \) recognizes \(A^* b A^* \).
▶ \(\forall x. a^\uparrow(x) \) recognizes the full \(A^* \). (not only \(a^* \))

Fact: \(L \) definable in \(\text{FO}^+ \) \(\Rightarrow \) \(L \) monotone and \(\text{FO} \)-definable.

T. Colcombet: Is the converse true?
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO$^+$-definable.

Alphabet $A = \{a, b, c, (a)_b, (b)_c, (c)_a\}$, with $i, j \leq_A (i)$.
A counter-example language

Our first result

There is L monotone, FO-definable but not FO^+-definable.

Alphabet $A = \{a, b, c, (a)_b, (b)_c, (c)_a\}$, with $i, j \leq_A (i)$. Language $L = (a^\uparrow b^\uparrow c^\uparrow)^*$.

Lemma L is FO-definable.

Proof: Verify that $a^\uparrow b^\uparrow c^\uparrow$ is counter-free. I.e. no word induces a non-trivial cycle.

To prove L is not FO^+-definable: Ehrenfeucht-Fraïssé games.
A counter-example language

Our first result

There is \(L \) monotone, FO-definable but not FO\(^+\)-definable.

Alphabet \(A = \{a, b, c, (a)_b, (b)_c, (c)_a\} \), with \(i, j \leq_A (i) \).

Language \(L = (a\uparrow b\uparrow c\uparrow)^* \).

Lemma

\(L \) is FO-definable.

Proof: Verify that \(a\uparrow b\uparrow c\uparrow \) is counter-free.

I.e. no word induces a non-trivial cycle.
A counter-example language

Our first result

There is \(L \) monotone, FO-definable but not FO\(^+\)-definable.

Alphabet \(A = \{a, b, c, (\frac{a}{b}), (\frac{b}{c}), (\frac{c}{a})\} \), with \(i, j \leq_A \binom{i}{j} \).

Language \(L = (a^\uparrow b^\uparrow c^\uparrow)^* \).

Lemma

\(L \) is FO-definable.

Proof: Verify that \(a^\uparrow b^\uparrow c^\uparrow \) is counter-free.

I.e. no word induces a non-trivial cycle.

To prove \(L \) is not FO\(^+\)-definable: Ehrenfeucht-Fraïssé games.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words \(u, v \). At each round \(i \):

- **Spoiler** places token \(i \) in \(u \) or \(v \).
- **Duplicator** must answer token \(i \) in the other word such that
 - the letter on token \(i \) is the same in \(u \) and \(v \).
 - the tokens are in the same order in \(u \) and \(v \).

Let us note \(u \equiv_n v \) if Duplicator can survive \(n \) rounds on \(u, v \).

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

\(L \) not FO-definable \iff \forall n, \exists u \in L, v \notin L \ s.t. u \equiv_n v. \)

Example

Proving \((aa)^*\) is not FO-definable:

\(u = a^2k \in (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a \)

\(v = a^{2k+1} \notin (aa)^*: \quad a \ a \ a \ a \ a \ a \ a \ a \ a \)
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)

Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if **Duplicator** can survive n rounds on u, v.

Theorem (Ehrenfeucht, Fraïssé, 1950-1961)

L not FO-definable \iff For all n, there are $u \in L, v \not\in L$ s.t. $u \equiv_n v$.

Example

Proving $(aa)^*$ is not FO-definable:

- $u = a2^{k} \in (aa)^*$:
 - $a \ a \ a \ a \ a \ a \ a $.
- $v = a2^{k}+1 \not\in (aa)^*$:
 - $a \ a \ a \ a \ a \ a \ a $.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:

- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if Duplicator can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable \iff For all n, there are $u \in L$, $v \not\in L$ s.t. $u \equiv_n v$.
Ehrenfeucht-Fraïssé games for FO

Definition (EF games)
Played on two words u, v. At each round i:
- **Spoiler** places token i in u or v.
- **Duplicator** must answer token i in the other word such that
 - the letter on token i is the same in u and v.
 - the tokens are in the same order in u and v.

Let us note $u \equiv_n v$ if **Duplicator** can survive n rounds on u, v.

Theorem (Ehrenfeucht,Fraïssé, 1950-1961)
L not FO-definable \iff For all n, there are $u \in L$, $v \notin L$ s.t. $u \equiv_n v$.

Example
Proving $(aa)^*$ is not FO-definable:

\[
\begin{align*}
 u &= a^{2k} & \in (aa)^*: & a \ a \ a \ a \ a \ a \ a \ a \\
 v &= a^{2k+1} & \notin (aa)^*: & a \ a \ a \ a \ a \ a \ a \ a \ a
\end{align*}
\]
Proving $\text{FO}^+-\text{undefinability}$

Definition (EF$^+$ games)

New rule: we only ask letters in u to be \leq_A-smaller than corresponding ones in v.

We write $u \leq_n v$ if Duplicator can survive n rounds.

Application: Proving L is not $\text{FO}^+-\text{definable}$

$u \in L$: $a\ b\ c\ a\ b\ c\ a\ b\ c$

$v \notin L$: $(a\ b)\ (b\ c)\ (c\ a)\ (a\ b)\ (b\ c)\ (c\ a)\ (a\ b)$
Proving FO^+-undefinability

Definition (EF$^+$ games)

New rule: we only ask letters in u to be \leq_A-smaller than corresponding ones in v.

We write $u \leq_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF$^+$ games)

L not FO^+-definable $\iff \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \leq_n v$.

[Stolboushkin 1995 + this work]
Proving $\text{FO}^+\text{-undefinability}$

Definition (EF$^+$ games)

New rule: we only ask letters in u to be \leq_A-smaller than corresponding ones in v.

We write $u \preceq_n v$ if Duplicator can survive n rounds.

Theorem (Correctness of EF$^+$ games)

L not FO^+-definable $\iff \forall n$, there are $u \in L$, $v \notin L$ s.t. $u \preceq_n v$.

[Stolboushkin 1995+this work]

Application: Proving L is not FO^+-definable

$u \in L : \ a \ b \ c \ a \ b \ c \ a \ b \ c$

$v \notin L : \ (a) \ (b) \ (c) \ (a) \ (b) \ (c) \ (a) \ (b) \ (c)$
Background: Lyndon’s theorem

Zoom out: FO on arbitrary structures.

Theorem (Lyndon 1959)

FO-definable and monotone \iff *FO*+-definable.

φ preserved by surjective morphisms \iff equivalent to a positive formula.
Background: Lyndon’s theorem

Zoom out: FO on arbitrary structures.

Theorem (Lyndon 1959)

FO-definable and monotone ⇔ *FO⁰⁺-definable.*

ϕ preserved by surjective morphisms ⇔ equivalent to a positive formula.

Theorem

Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probabilities, number theory, topology, very hard
- [Stolboushkin 1995]
 EF⁺ games on grids, involved
Background: Lyndon’s theorem

Zoom out: FO on arbitrary structures.

Theorem (Lyndon 1959)

FO-definable and monotone ⇔ FO⁺-definable.

ϕ preserved by surjective morphisms ⇔ equivalent to a positive formula.

Theorem

Lyndon’s theorem fails on finite structures:

- [Ajtai, Gurevich 1987]
 lattices, probabilities, number theory, topology, very hard

- [Stolboushkin 1995]
 EF⁺ games on grids, involved

- [This work]
 EF⁺ games on words, easy
Can we decide FO^+-definability?

Theorem

Given a regular L on an ordered alphabet, we can decide

- whether L is monotone (e.g. automata inclusion)
- whether L is FO-definable [*Schützenberger, McNaughton, Papert*]

Can we decide whether L is FO^+-definable?
Can we decide FO^+-definability?

Theorem

Given a regular L on an ordered alphabet, we can decide

- *whether L is monotone (e.g. automata inclusion)*
- *whether L is FO-definable* [Schützenberger, McNaughton, Papert]

Can we decide whether L is FO^+-definable?

Our second result

FO^+-definability is undecidable for regular languages.
Can we decide \(\mathbf{FO}^+ \)-definability?

Theorem

Given a regular \(L \) on an ordered alphabet, we can decide

- whether \(L \) is monotone (e.g. automata inclusion)
- whether \(L \) is \(\mathbf{FO} \)-definable \([\text{Schützenberger, McNaughton, Papert}]\)

Can we decide whether \(L \) is \(\mathbf{FO}^+ \)-definable?

Our second result

\(\mathbf{FO}^+ \)-definability is undecidable for regular languages.

Reduction from *Turing Machine Mortality*:

A deterministic TM \(M \) is *mortal* if there a uniform bound \(n \) on the runs of \(M \) from any configuration.

Undecidable \([\text{Hooper 1966}]\).
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \FO^+\text{-definable.}$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:
Inspired from $(a^{↑}b^{↑}c^{↑})^*$, but:

- $a, b, c \rightsquigarrow$ Words from C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle:

 $$C_1 \leftarrow C_2 \rightarrow C_3$$

- $(a^b, c^c, a^a) \rightsquigarrow (u_1^{u_1}, u_2^{u_2})$, exists iff $u_1 \xrightarrow{M} u_2$.

$u \in L \not\Rightarrow u \text{ encodes a run of } M$.

Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is FO}^+\text{-definable.}$$

Building L:

Inspired from $(a^\uparrow b^\uparrow c^\uparrow)^*$, but:

- $a, b, c \sim \text{ Words from } C_1, C_2, C_3 \text{ encoding configs of } M$.

- All transitions of M follow the cycle:

 $C_1 \sim C_2 \sim C_3$.

- $(a^\uparrow, b^\uparrow, c^\uparrow) \sim (u_1^\uparrow, u_2^\uparrow)$, exists iff $u_1 \xrightarrow{M} u_2$.

We choose

$$L := (C_1^\uparrow \cdot C_2^\uparrow \cdot C_3^\uparrow)^*$$
Undecidability proof sketch

Given a TM M, we build a regular language L such that

$$M \text{ mortal } \iff L \text{ is } \text{FO}^+\text{-definable.}$$

Building L:

Inspired from $(a^\uparrow b^\uparrow c^\uparrow)^*$, but:

- $a, b, c \rightsquigarrow$ Words from C_1, C_2, C_3 encoding configs of M.

- All transitions of M follow the cycle:
 \begin{tikzcd}
 C_1 & C_2 & C_3 \\
 & \leftarrow & \\
 \\
\end{tikzcd}

- $(a^\downarrow, b^\downarrow, c^\downarrow) \rightsquigarrow (u_1^\downarrow, u_2^\downarrow)$, exists iff $u_1^M \rightarrow u_2$.

We choose

$$L := (C_1^\uparrow \cdot C_2^\uparrow \cdot C_3^\uparrow)^*$$

$u \in L \nRightarrow u$ encodes a run of M.

\[\text{\textbf{Warning}}\quad u \in L \nRightarrow u \text{ encodes a run of } M.\]
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$u \in L : \ u_1 \ u_2 \ u_3 \ \ldots \ \ u_{n-1} \ u_n$$
$$v \notin L : \ (u_1 \ u_2) \ (u_2 \ u_3) \ (u_3 \ u_4) \ \ldots \ (u_{n-1} \ u_n)$$

$\rightarrow L$ is not FO^+-definable.
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in :

\[
\begin{align*}
&u \in L: \quad u_1 \ u_2 \ u_3 \ \ldots \ \ u_{n-1} \ u_n \\
&v \not\in L: \quad (u_1 \ u_2) \ (u_2 \ u_3) \ (u_3 \ u_4) \ \ldots \ (u_{n-1} \ u_n) \\
\rightarrow & \ L \text{ is not FO}^+\text{-definable.}
\end{align*}
\]

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$u \in L : \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n$$
$$v \notin L : \quad \left(\frac{u_1}{u_2}\right) \left(\frac{u_2}{u_3}\right) \left(\frac{u_3}{u_4}\right) \ldots \left(\frac{u_{n-1}}{u_n}\right)$$

$\rightarrow L$ is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).
Play Spoiler in the abstracted game (here $n = 5$):

$$u : \quad 2 \quad 3 \quad 2 \quad 4 \quad 3 \quad 5 \quad 4 \quad 3 \quad 4 \quad 4$$
$$v : \quad \left(\frac{2}{1}\right) \left(\frac{3}{2}\right) \left(\frac{2}{1}\right) \left(\frac{4}{3}\right) \left(\frac{3}{2}\right) \left(\frac{5}{4}\right) \left(\frac{4}{3}\right) \left(\frac{5}{4}\right) \left(\frac{5}{4}\right)$$

Spoiler always wins in $2n$ rounds $\rightarrow L$ is FO^+-definable.
The reduction

If M not mortal:
Let u_1, u_2, \ldots, u_n a long run of M, and play Duplicator in:

$$u \in L : \quad u_1 \quad u_2 \quad u_3 \quad \ldots \quad u_{n-1} \quad u_n$$
$$v \notin L : \quad (u_1 \ u_2) \quad (u_2 \ u_3) \quad (u_3 \ u_4) \quad \ldots \quad (u_{n-1} \ u_n)$$

$\rightarrow L$ is not FO^+-definable.

If M mortal with bound n:
Abstract u_i by the length of the run of M starting in it (at most n).
Play Spoiler in the abstracted game (here $n = 5$):

$$u : \quad 2 \quad 3 \quad 2 \quad 4 \quad 3 \quad 5 \quad 4 \quad 3 \quad 4 \quad 4$$
$$v : \quad (2 \quad \ 3) \quad (2 \quad \ 1) \quad (4 \quad \ 3) \quad (3 \quad \ 2) \quad (5 \quad \ 4) \quad (4 \quad \ 3) \quad (5 \quad \ 4)$$

Spoiler always wins in $2n$ rounds $\rightarrow L$ is FO^+-definable.
Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
- regular cost functions,
- logics on linear orders,
- ...

Slogan:
Variants of FO not closed under complement will often display this behaviour.
Ongoing work

With Thomas Colcombet:
Exploring the consequences of this in other frameworks:
- regular cost functions,
- logics on linear orders,
- ...

Slogan:
Variants of FO not closed under complement will often display this behaviour.

Thanks for your attention!