Is your automaton good for playing games?

Marc Bagnol, Denis Kuperberg

CNRS, LIP, ENS Lyon

Highlights 2018, Berlin
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution:

1. Build Deterministic Parity automaton A^{Det} for W,
2. Solve the parity game $G' = G \circ A^{\text{Det}}$.

Theorem $G \circ A^{\text{Det}}$ has the same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $G \circ A$ has the same winner as G, for any game G with winning condition $L(A)$.
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution: Turn G into a game with more states but simpler acceptance condition.

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = G \circ A_{\text{Det}}$.

Theorem

$G \circ A_{\text{Det}}$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $G \circ A$ has same winner as G, for any game G with winning condition $L(A)$.

Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution: Turn G into a game with more states but simpler acceptance condition.

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = G \circ A_{Det}$.

Theorem

$G \circ A_{Det}$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution: Turn G into a game with more states but simpler acceptance condition.

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = G \circ A_{Det}$.

Theorem

$G \circ A_{Det}$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $G \circ A$ has same winner as G, for any game G with winning condition $L(A)$.
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:
Adam plays letters:

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a GFG game:
Adam plays letters: a
Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a GFG game:

Adam plays letters: $a \ a$

Eve: resolves non-deterministic choices for transitions
A Parity automaton, we associate to it a **GFG game**:

Adam plays letters: \(a\ a\ b\)

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:

Adam plays letters: \(a\ a\ b\ c\)

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a GFG game:
Adam plays letters: $a \ a \ b \ c \ c$
Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:
Adam plays letters: $a \ a \ b \ c \ c \ldots = \ w$

Eve: resolves non-deterministic choices for transitions

Eve wins if: $w \in L \Rightarrow \text{Run accepting.}$
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:

Adam plays letters: \(a \ a \ b \ c \ c \ldots = w \)

Eve: resolves non-deterministic choices for transitions

\[
\begin{array}{c}
\text{a, b, c} \\
\text{a} \\
\text{b, c} \\
\text{b} \\
\text{c} \\
\text{a, b, c}
\end{array}
\]

Eve wins if: \(w \in L \Rightarrow \text{Run accepting.} \)

\(A \text{ GFG} \iff \text{Eve wins the GFG game on } A. \)
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Solve the GFG game?
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Solve the GFG game?
Acceptance condition of the form $u \in L \Rightarrow \text{run accepting}$
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Solve the GFG game?
Acceptance condition of the form “$u \in L \Rightarrow \text{run accepting}$”

Upper bound: EXPTIME
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Solve the GFG game?
Acceptance condition of the form “$u \in L \Rightarrow \text{run accepting}”

Upper bound: EXPTIME

Theorem (Löding)
The GFGness problem is in P for reachability/safety automata.

Theorem (K., Skrzypczak 2015)
The GFGness problem is in P for coBüchi automata.

Parity Games \equiv GFGness for universal Parity automata.
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Solve the GFG game?
Acceptance condition of the form “$u \in L \implies$ run accepting”

Upper bound: EXPTIME

Theorem (Löding)
The GFGness problem is in P for reachability/safety automata.

Theorem (K., Skrzypczak 2015)
The GFGness problem is in P for coBüchi automata.
Parity Games \equiv GFGness for universal Parity automata.

This talk:
Theorem (Bagnol, K. (unpublished))
The GFGness problem is in P for Büchi automata.
Abstracting the GFG game

The game G_2:
Adam plays letters:
Eve: moves one token Adam: moves two tokens

Eve wins if:
1. or 2. accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

Adam plays letters: a

Eve: moves one token Adam: moves two tokens

Eve wins if:

1. or

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
- **Adam** plays letters: a
- **Eve**: moves one token **Adam**: moves two tokens

Eve wins if:
1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
- **Adam** plays letters: a, a
- **Eve**: moves one token
- **Adam**: moves two tokens

Eve wins if:
1. or 2. accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

Adam plays letters: $a \ a$

Eve: moves one token Adam: moves two tokens

Eve wins if:

1. or

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
- Adam plays letters: $a \ a \ b$
- Eve: moves one token
 Adam: moves two tokens

Eve wins if:
1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

Adam plays letters: $a \ a \ b$

Eve: moves one token Adam: moves two tokens

Goal: Show that Eve wins G_2 ⇔ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
Adam plays letters: a a b c
Eve: moves one token Adam: moves two tokens

Eve wins if:
1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
Adam plays letters: $a \ a \ b \ c$
Eve: moves one token Adam: moves two tokens

Eve wins if:
1 or 2 accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
Adam plays letters: $a \ a \ b \ c \ \ldots \ = \ w$
Eve: moves one token Adam: moves two tokens

Eve wins if: \blacksquare_1 or \blacksquare_2 accepts \Rightarrow \bigcirc accepts.
Abstracting the GFG game

The game G_2:

Adam plays letters: $a \ a \ b \ c \ldots = w$

Eve: moves one token Adam: moves two tokens

Eve wins if: \blacksquare_1 or \blacksquare_2 accepts $\Rightarrow \bigcirc$ accepts.

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Proof sketch

Lemma

Eve wins $G_2 \iff$ Eve wins G_k for all k.

Proof sketch: how to win against $k + 1$ tokens:

- play a virtual token \bigcirc against the first k tokens
- play the G_2 strategy against the virtual token and the remaining token.
Main proof sketch for $G_2 \Leftrightarrow \text{GFG}$

Assume:
- Adam wins the GFG game with finite-memory strategy τ_{GFG}.
- Eve wins $G_2 \Rightarrow$ wins G_k with strategy σ_k, for a big k.

Build strategy for Eve against τ_{GFG}:
- move k virtual tokens against τ_{GFG}
- play σ_k against these k tokens...
Main proof sketch for $G_2 \Leftrightarrow \text{GFG}$

Assume:
- Adam wins the GFG game with finite-memory strategy τ_{GFG}.
- Eve wins $G_2 \Rightarrow$ wins G_k with strategy σ_k, for a big k.

Build strategy for Eve against τ_{GFG}:
- move k virtual tokens \bigcirc against τ_{GFG}
- play σ_k against these k tokens

\[\text{at most } M \text{ steps} \]

\[\text{initial state} \rightarrow \text{Büchi state} \geq N \text{ tokens}\]
Conclusion

Results

▶ Characterisation of Büchi GFG automata via G_2.
▶ → Büchi GFGness $\in P$, actually in $O(n^4 m(n + m)|\Sigma|^2)$.

Perspectives

▶ is G_2 equivalent to GFG for coBüchi, Parity ?
▶ if Yes, Parity GFGness $\in P$ for any fixed parity condition.
▶ recognizing GFG automata \rightarrow building them.