
1/19

Computational content of circular proof systems.

Denis Kuperberg Laureline Pinault Damien Pous

LIP, ENS Lyon

Lambda Pros
Paris, June 28th 2023

2/19

1 Context

2 Computing languages

3 Computing functions

3/19

Curry-Howard correspondence

Proof of formula ϕ ↔ Program of type ϕ

Example: The identity program λx.x is a proof of p→ p.

A B

C
implies

Deduction Rule

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic ↔ Typed λ-calculus
[...] . . . ↔ . . .

This work: Study the computational content of cyclic proofs.

3/19

Curry-Howard correspondence

Proof of formula ϕ ↔ Program of type ϕ

Example: The identity program λx.x is a proof of p→ p.

A B

C
implies

Deduction Rule

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic ↔ Typed λ-calculus
[...] . . . ↔ . . .

This work: Study the computational content of cyclic proofs.

3/19

Curry-Howard correspondence

Proof of formula ϕ ↔ Program of type ϕ

Example: The identity program λx.x is a proof of p→ p.

A B

C
implies

Deduction Rule

calls

Program instruction

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic ↔ Typed λ-calculus
[...] . . . ↔ . . .

This work: Study the computational content of cyclic proofs.

3/19

Curry-Howard correspondence

Proof of formula ϕ ↔ Program of type ϕ

Example: The identity program λx.x is a proof of p→ p.

A B

C
implies

Deduction Rule

calls

Program instruction

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic ↔ Typed λ-calculus
[...] . . . ↔ . . .

This work: Study the computational content of cyclic proofs.

3/19

Curry-Howard correspondence

Proof of formula ϕ ↔ Program of type ϕ

Example: The identity program λx.x is a proof of p→ p.

A B

C
implies

Deduction Rule

calls

Program instruction

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic ↔ Typed λ-calculus
[...] . . . ↔ . . .

This work: Study the computational content of cyclic proofs.

4/19

Cyclic Proofs

Usual proofs:

Axiom1

Axiom2

A

B

Axiom3

C

D

Cyclic Proofs:

Axiom
A

A

B

D

C

D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
→ guarantees termination.

4/19

Cyclic Proofs

Usual proofs:

Axiom1

Axiom2

A

B

Axiom3

C

D

Cyclic Proofs:

Axiom
A

A

B

D

C

D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
→ guarantees termination.

4/19

Cyclic Proofs

Usual proofs:

Axiom1

Axiom2

A

B

Axiom3

C

D

Cyclic Proofs:

Axiom
A

A

B

D

C

D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
→ guarantees termination.

4/19

Cyclic Proofs

Usual proofs:

Axiom1

Axiom2

A

B

Axiom3

C

D

Cyclic Proofs:

Axiom
A

A

B

D

C

D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.

→ guarantees termination.

4/19

Cyclic Proofs

Usual proofs:

Axiom1

Axiom2

A

B

Axiom3

C

D

Cyclic Proofs:

Axiom
A

A

B

D

C

D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
→ guarantees termination.

5/19

A proof system for regular expressions
Example: [Das, Pous ’17]
Cyclic proof system for inclusion of regular expressions:

(Ax)
ε ⊆ ε

(*-right1)
ε ⊆ a∗

(Ax)
a ⊆ a a∗ ⊆ a∗

(*-right2)
a, a∗ ⊆ a∗

(*-left)
a∗ ⊆ a∗

Soundness and completeness [Das, Pous ’17]

L(e) ⊆ L(f)⇔ ∃ proof of e ⊆ f .

Here, we care about computational content.
This example: program whose type is a∗ → a∗:

let rec f l = match l with
|[] -> []
|a::q -> a::(f q)

5/19

A proof system for regular expressions
Example: [Das, Pous ’17]
Cyclic proof system for inclusion of regular expressions:

(Ax)
ε ⊆ ε

(*-right1)
ε ⊆ a∗

(Ax)
a ⊆ a a∗ ⊆ a∗

(*-right2)
a, a∗ ⊆ a∗

(*-left)
a∗ ⊆ a∗

Soundness and completeness [Das, Pous ’17]

L(e) ⊆ L(f)⇔ ∃ proof of e ⊆ f .

Here, we care about computational content.
This example: program whose type is a∗ → a∗:

let rec f l = match l with
|[] -> []
|a::q -> a::(f q)

5/19

A proof system for regular expressions
Example: [Das, Pous ’17]
Cyclic proof system for inclusion of regular expressions:

(Ax)
ε ⊆ ε

(*-right1)
ε ⊆ a∗

(Ax)
a ⊆ a a∗ ⊆ a∗

(*-right2)
a, a∗ ⊆ a∗

(*-left)
a∗ ⊆ a∗

Soundness and completeness [Das, Pous ’17]

L(e) ⊆ L(f)⇔ ∃ proof of e ⊆ f .

Here, we care about computational content.
This example: program whose type is a∗ → a∗:

let rec f l = match l with
|[] -> []
|a::q -> a::(f q)

6/19

1 Context

2 Computing languages

3 Computing functions

7/19

Computing languages
Goal: Avoid transductions, start with languages.
I Regular expressions e, f := a ∈ A | e.f | e+ f | e∗

I Boolean type bool (encoded by ε+ ε)

Proof of A∗ ` bool ⇔ Program of type A∗ → bool
⇔ Language L ⊆ A∗.

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)

7/19

Computing languages
Goal: Avoid transductions, start with languages.
I Regular expressions e, f := a ∈ A | e.f | e+ f | e∗

I Boolean type bool (encoded by ε+ ε)

Proof of A∗ ` bool ⇔ Program of type A∗ → bool
⇔ Language L ⊆ A∗.

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)

7/19

Computing languages
Goal: Avoid transductions, start with languages.
I Regular expressions e, f := a ∈ A | e.f | e+ f | e∗

I Boolean type bool (encoded by ε+ ε)

Proof of A∗ ` bool ⇔ Program of type A∗ → bool
⇔ Language L ⊆ A∗.

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)

8/19

Simplified proof system

Expressions e := A | A∗

Lists E,F = e1, e2, . . . , en interpreted as tuples

Proof system:
Return true or false

(true)
` bool

(false)
` bool

Pattern matchings
(E,F ` bool)a∈A

(A)
E,A, F ` bool

E,F ` bool E,A,A∗, F ` bool
(∗)

E,A∗, F ` bool
Erase, copy

E,F ` bool
(weakening)

E, e, F ` bool
E, e, e, F ` bool

(contraction)
E, e, F ` bool

9/19

Proofs as language acceptors

What are the languages computed by cyclic proofs ?

Example on alphabet {a, b}: The language b∗

(true)
` bool

(false)
` bool

(wkn)
(A∗ ` bool)a (A∗ ` bool)b

(A)
A,A∗ ` bool

(∗)
A∗ ` bool

No contraction rule: Affine system.

Lemma
The affine system captures exactly regular languages.

9/19

Proofs as language acceptors

What are the languages computed by cyclic proofs ?

Example on alphabet {a, b}: The language b∗

(true)
` bool

(false)
` bool

(wkn)
(A∗ ` bool)a (A∗ ` bool)b

(A)
A,A∗ ` bool

(∗)
A∗ ` bool

No contraction rule: Affine system.

Lemma
The affine system captures exactly regular languages.

9/19

Proofs as language acceptors

What are the languages computed by cyclic proofs ?

Example on alphabet {a, b}: The language b∗

(true)
` bool

(false)
` bool

(wkn)
(A∗ ` bool)a (A∗ ` bool)b

(A)
A,A∗ ` bool

(∗)
A∗ ` bool

No contraction rule: Affine system.

Lemma
The affine system captures exactly regular languages.

10/19

With contractions: what class of language?

Example on alphabet {a, b}: Language {anbn | n ∈ N}.
Intuition:
I Copy the input u1 into u2: aaabbb aaabbbb

I Erase leading a’s in u2: aaabbb bbb

I Match each leading a in u1 to a leading b in u2: bbb ε

I When u2 becomes empty, verify that u1 ∈ b∗.

We can also recognize anbncn with the same technique.

Theorem
The proof system recognizes exactly languages in Logspace.

Proof technique: Design an equivalent automaton model.

10/19

With contractions: what class of language?

Example on alphabet {a, b}: Language {anbn | n ∈ N}.
Intuition:
I Copy the input u1 into u2: aaabbb aaabbbb

I Erase leading a’s in u2: aaabbb bbb

I Match each leading a in u1 to a leading b in u2: bbb ε

I When u2 becomes empty, verify that u1 ∈ b∗.

We can also recognize anbncn with the same technique.

Theorem
The proof system recognizes exactly languages in Logspace.

Proof technique: Design an equivalent automaton model.

10/19

With contractions: what class of language?

Example on alphabet {a, b}: Language {anbn | n ∈ N}.
Intuition:
I Copy the input u1 into u2: aaabbb aaabbbb

I Erase leading a’s in u2: aaabbb bbb

I Match each leading a in u1 to a leading b in u2: bbb ε

I When u2 becomes empty, verify that u1 ∈ b∗.

We can also recognize anbncn with the same technique.

Theorem
The proof system recognizes exactly languages in Logspace.

Proof technique: Design an equivalent automaton model.

11/19

A new automaton model
Jumping Multihead Automata

A JMA is an automaton with k reading heads.

Transitions: Q× (A ∪ {/})k → Q× {�,�, J1, . . . , Jk}k

a a b a a b b a /

q

12 3

I � : advance one step
I �: stay in place
I Ji: jump to the position of head i

(optional: Syntactic criterion guaranteeing halting)

11/19

A new automaton model
Jumping Multihead Automata

A JMA is an automaton with k reading heads.

Transitions: Q× (A ∪ {/})k → Q× {�,�, J1, . . . , Jk}k

a a b a a b b a /

q

12 3

I � : advance one step
I �: stay in place
I Ji: jump to the position of head i

(optional: Syntactic criterion guaranteeing halting)

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

12/19

Example of JMA

Example: {a2n | n ∈ N} is accepted by a 2-head JMA.

q0 q1 q2

qrej

qacc

(a, /), �, J1

(a, a), �, �

(a, a), �, �

(a, /), �, �

(/, /), �, �

(a, /), �, �

a a a a a a a a /

ACCEPT

Theorem
Cyclic proofs and JMA recognize the same class of languages.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

c c /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

c c /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

13/19

Expressive power of JMAs
JMAs ⊆ Logspace easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher ’08]:
I No jump, but heads can move left or right.
I Characterizes Logspace.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u ∈ Σ∗ | u = uR} is accepted by a JMA.

a a b c c b a a /.

Generalization of this idea ⇒ Translation from 2MA to JMA.

14/19

1 Context

2 Computing languages

3 Computing functions

15/19

Cut rule and integer functions
The cut rule:

E ` e e, F ` g
E, F ` g

I Corresponds to composition of programs.
I Fundamental in proof theory.
I Computation ↔ cut elimination process.

We can now consider transductions: A∗ → B∗.
Focus on functions: Nk → N (unary alphabet).

Expressions (simplified): e, f := 1 | e · f | e+ f | e∗ | e→ f .

Sequents: (1∗)k ` 1∗: functions Nk → N.

Which functions Nk → N can the system with cuts compute ?

15/19

Cut rule and integer functions
The cut rule:

E ` e e, F ` g
E, F ` g

I Corresponds to composition of programs.
I Fundamental in proof theory.
I Computation ↔ cut elimination process.

We can now consider transductions: A∗ → B∗.
Focus on functions: Nk → N (unary alphabet).

Expressions (simplified): e, f := 1 | e · f | e+ f | e∗ | e→ f .

Sequents: (1∗)k ` 1∗: functions Nk → N.

Which functions Nk → N can the system with cuts compute ?

15/19

Cut rule and integer functions
The cut rule:

E ` e e, F ` g
E, F ` g

I Corresponds to composition of programs.
I Fundamental in proof theory.
I Computation ↔ cut elimination process.

We can now consider transductions: A∗ → B∗.
Focus on functions: Nk → N (unary alphabet).

Expressions (simplified): e, f := 1 | e · f | e+ f | e∗ | e→ f .

Sequents: (1∗)k ` 1∗: functions Nk → N.

Which functions Nk → N can the system with cuts compute ?

15/19

Cut rule and integer functions
The cut rule:

E ` e e, F ` g
E, F ` g

I Corresponds to composition of programs.
I Fundamental in proof theory.
I Computation ↔ cut elimination process.

We can now consider transductions: A∗ → B∗.
Focus on functions: Nk → N (unary alphabet).

Expressions (simplified): e, f := 1 | e · f | e+ f | e∗ | e→ f .

Sequents: (1∗)k ` 1∗: functions Nk → N.

Which functions Nk → N can the system with cuts compute ?

16/19

System T
As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
I λ-calculus with explicit integer type,
I Explicit recursion operator on integers,
I Type system, typing derivations are finite trees.

System T terms:

M,N ::= x | 0 | s(M) | λx.M |MN | Rec(N,M0,Ms(x, y))
(+constructors/destructors for pairs, lists)

Rec(N,M0,Ms) returns
{
M0 if N = 0
Ms(N,Rec(n,M0,Ms)) if N = s(n)

Example: Addition a+ b: λab.Rec(b, a, s(y))

16/19

System T
As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
I λ-calculus with explicit integer type,
I Explicit recursion operator on integers,
I Type system, typing derivations are finite trees.

System T terms:

M,N ::= x | 0 | s(M) | λx.M |MN | Rec(N,M0,Ms(x, y))
(+constructors/destructors for pairs, lists)

Rec(N,M0,Ms) returns
{
M0 if N = 0
Ms(N,Rec(n,M0,Ms)) if N = s(n)

Example: Addition a+ b: λab.Rec(b, a, s(y))

16/19

System T
As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
I λ-calculus with explicit integer type,
I Explicit recursion operator on integers,
I Type system, typing derivations are finite trees.

System T terms:

M,N ::= x | 0 | s(M) | λx.M |MN | Rec(N,M0,Ms(x, y))
(+constructors/destructors for pairs, lists)

Rec(N,M0,Ms) returns
{
M0 if N = 0
Ms(N,Rec(n,M0,Ms)) if N = s(n)

Example: Addition a+ b: λab.Rec(b, a, s(y))

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction

.

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction

.

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction

.

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction

.

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction

.

17/19

Results

System Taff: Affine version of System T, data cannot be duplicated.
Example: λfx.f(f(x)) is not typable in Taff.

Theorem
Affine Cyclic proofs ⇐⇒ System Taff ⇐⇒ Prim. rec.
Cyclic proofs ⇐⇒ System T ⇐⇒ Peano

λab.Rec(b, a, s(y))

Easy

Hard

Open problems in proof theory: infinite descent versus induction.

18/19

Proof schemes
Affine proofs → Taff:
I normal form for proofs, with explicit hierarchy of cycles,
I inductively build Taff terms.

Affine proofs → Prim. rec.:
I Stronger normal form through Taff,
I RCA0: constructive fragment of 2nd-order arithmetic,
I ∀ affine cyclic proof, prove in RCA0 that its computation terminates,
I From reverse maths: RCA0 ↔ Prim. rec.

Proofs → System T:
I ACA0: RCA0 + König’s lemma,
I ∀ cyclic proof , prove in ACA0 that its computation terminates,
I Conservativity result: ACA0 ↔ Peano for integer functions,
I Classic result: Peano ↔ System T.

18/19

Proof schemes
Affine proofs → Taff:
I normal form for proofs, with explicit hierarchy of cycles,
I inductively build Taff terms.

Affine proofs → Prim. rec.:
I Stronger normal form through Taff,
I RCA0: constructive fragment of 2nd-order arithmetic,
I ∀ affine cyclic proof, prove in RCA0 that its computation terminates,
I From reverse maths: RCA0 ↔ Prim. rec.

Proofs → System T:
I ACA0: RCA0 + König’s lemma,
I ∀ cyclic proof , prove in ACA0 that its computation terminates,
I Conservativity result: ACA0 ↔ Peano for integer functions,
I Classic result: Peano ↔ System T.

18/19

Proof schemes
Affine proofs → Taff:
I normal form for proofs, with explicit hierarchy of cycles,
I inductively build Taff terms.

Affine proofs → Prim. rec.:
I Stronger normal form through Taff,
I RCA0: constructive fragment of 2nd-order arithmetic,
I ∀ affine cyclic proof, prove in RCA0 that its computation terminates,
I From reverse maths: RCA0 ↔ Prim. rec.

Proofs → System T:
I ACA0: RCA0 + König’s lemma,
I ∀ cyclic proof , prove in ACA0 that its computation terminates,
I Conservativity result: ACA0 ↔ Peano for integer functions,
I Classic result: Peano ↔ System T.

19/19

Conclusion
Open problems:
I Avoid the “blackbox” of reverse maths.
I Lift results to transductions.
I Generalize the normal form with hierarchy of cycles to other

cyclic proof systems.
I Include greatest fixed point (ω-regular expressions)
→ Internship supervision planned in September 2023 with
Tito Nguyen.

Thank you for your attention !

19/19

Conclusion
Open problems:
I Avoid the “blackbox” of reverse maths.
I Lift results to transductions.
I Generalize the normal form with hierarchy of cycles to other

cyclic proof systems.
I Include greatest fixed point (ω-regular expressions)
→ Internship supervision planned in September 2023 with
Tito Nguyen.

Thank you for your attention !

	Context
	Computing languages
	Computing functions

