Computational content of circular proof systems.

Denis Kuperberg Laureline Pinault Damien Pous

LIP, ENS Lyon

Lambda Pros Paris, June 28th 2023

1 Context

2 Computing languages

3 Computing functions

 $\mathsf{Proof} \text{ of formula } \varphi \leftrightarrow \mathsf{Program} \text{ of type } \varphi$

Example: The identity program $\lambda x.x$ is a proof of $p \rightarrow p$.

 $\mathsf{Proof of formula} \ \varphi \leftrightarrow \mathsf{Program of type} \ \varphi$

Example: The identity program $\lambda x.x$ is a proof of $p \rightarrow p$.

Deduction Rule

implies
$$\frac{A \qquad B}{C}$$

 $\begin{array}{c|c} \mbox{Proof of formula } \varphi \leftrightarrow \mbox{Program of type } \varphi \\ \hline \mbox{Example: The identity program } \lambda x.x \mbox{ is a proof of } p \rightarrow p. \\ \hline \mbox{Deduction Rule} & \mbox{Program instruction} \\ \hline \mbox{implies} & \hline \mbox{A} & \hline \mbox{C} & \mbox{calls} \end{array}$

Proof of formula $\varphi \leftrightarrow \mathsf{Program}$ of type φ **Example:** The identity program $\lambda x.x$ is a proof of $p \to p$. Program instruction Deduction Rule implies $\frac{A}{C}$ $\frac{B}{C}$ calls Correspondence well-understood for usual proof systems [Curry, Howard] Intuitionistic logic \leftrightarrow Typed λ -calculus [...] $\ldots \leftrightarrow \ldots$

Proof of formula $\varphi \leftrightarrow \mathsf{Program}$ of type φ **Example:** The identity program $\lambda x.x$ is a proof of $p \rightarrow p$. Program instruction Deduction Rule implies $\frac{A}{C}$ $\frac{B}{C}$ calls Correspondence well-understood for usual proof systems [Curry, Howard] Intuitionistic logic \leftrightarrow Typed λ -calculus [...] $\dots \leftrightarrow \dots$

This work: Study the computational content of cyclic proofs.

Usual proofs:

	$Axiom_2$	
$Axiom_1$	\overline{A}	$Axiom_3$
В		C
	D	

Usual proofs:

Cyclic Proofs:

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments. \rightarrow guarantees termination.

A proof system for regular expressions

Example: [Das, Pous '17]

Cyclic proof system for inclusion of regular expressions:

A proof system for regular expressions

Example: [Das, Pous '17]

Cyclic proof system for inclusion of regular expressions:

Soundness and completeness [Das, Pous '17]

 $L(e)\subseteq L(f)\Leftrightarrow \exists \text{ proof of }e\subseteq f.$

A proof system for regular expressions

Example: [Das, Pous '17]

Cyclic proof system for inclusion of regular expressions:

 $L(e)\subseteq L(f)\Leftrightarrow \exists \text{ proof of }e\subseteq f.$

Here, we care about computational content.

This example: program whose type is $a^* \rightarrow a^*$:

1 Context

2 Computing languages

3 Computing functions

Computing languages

Goal: Avoid transductions, start with languages.

- $\blacktriangleright \text{ Regular expressions } e,f:=a\in A\mid e.f\mid e+f\mid e^*$
- ▶ Boolean type *bool* (encoded by $\varepsilon + \varepsilon$)

 $\begin{array}{ll} \mathsf{Proof of} \ A^* \vdash bool & \Leftrightarrow \mathsf{Program of type} \ A^* \to bool \\ & \Leftrightarrow \mathsf{Language} \ L \subseteq A^*. \end{array}$

Computing languages

Goal: Avoid transductions, start with languages.

- ▶ Regular expressions $e, f := a \in A \mid e.f \mid e + f \mid e^*$
- ▶ Boolean type *bool* (encoded by $\varepsilon + \varepsilon$)

 $\begin{array}{ll} \mathsf{Proof of} \ A^* \vdash bool & \Leftrightarrow \mathsf{Program of type} \ A^* \to bool \\ & \Leftrightarrow \mathsf{Language} \ L \subseteq A^*. \end{array}$

Structural rules: basic data manipulation (erase, copy).

Computing languages

Goal: Avoid transductions, start with languages.

- ▶ Regular expressions $e, f := a \in A \mid e.f \mid e + f \mid e^*$
- ▶ Boolean type *bool* (encoded by $\varepsilon + \varepsilon$)

 $\begin{array}{ll} \mathsf{Proof of} \ A^* \vdash bool & \Leftrightarrow \mathsf{Program of type} \ A^* \to bool \\ & \Leftrightarrow \mathsf{Language} \ L \subseteq A^*. \end{array}$

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)

Simplified proof system

Expressions $e := A \mid A^*$ **Lists** $E, F = e_1, e_2, \ldots, e_n$ interpreted as tuples Proof system: Return true or false $\frac{}{\vdash bool} \quad ^{(false)}$ $\overline{\vdash bool}$ (true) Pattern matchings $\frac{(E,F \vdash bool)_{\underline{a} \in A}}{E,A,F \vdash bool} ~(\mathsf{A})$ $\frac{E, F \vdash bool \qquad E, A, A^*, F \vdash bool}{E, A^*, F \vdash bool}$ (*)Erase, copy $\frac{E, \underline{e}, \underline{e}, F \vdash bool}{E, e, F \vdash bool} \quad \text{(contraction)}$ $\frac{E, F \vdash bool}{E, e, F \vdash bool} \text{ (weakening)}$

Proofs as language acceptors

What are the languages computed by cyclic proofs ?

Example on alphabet $\{a, b\}$: The language b^*

Proofs as language acceptors

What are the languages computed by cyclic proofs?

Example on alphabet $\{a, b\}$: The language b^*

No contraction rule: *Affine* system.

Proofs as language acceptors

What are the languages computed by cyclic proofs?

Example on alphabet $\{a, b\}$: The language b^*

No contraction rule: *Affine* system.

Lemma

The affine system captures exactly regular languages.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\{a^n b^n \mid n \in \mathbb{N}\}$. Intuition:

- Copy the input u_1 into u_2 : aaabbb aaabbbb
- Erase leading a's in u_2 : $aaabbb \ bbb$
- Match each leading a in u_1 to a leading b in u_2 : $bbb \in \varepsilon$
- When u_2 becomes empty, verify that $u_1 \in b^*$.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\{a^n b^n \mid n \in \mathbb{N}\}$. Intuition:

- Copy the input u_1 into u_2 : aaabbb aaabbbb
- Erase leading a's in u_2 : $aaabbb \ bbb$
- Match each leading a in u_1 to a leading b in u_2 : $bbb \in \varepsilon$
- When u_2 becomes empty, verify that $u_1 \in b^*$.

We can also recognize $a^n b^n c^n$ with the same technique.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\{a^n b^n \mid n \in \mathbb{N}\}$. Intuition:

- Copy the input u_1 into u_2 : aaabbb aaabbbb
- Erase leading a's in u_2 : $aaabbb \ bbb$
- Match each leading a in u_1 to a leading b in u_2 : $bbb \in \varepsilon$
- When u_2 becomes empty, verify that $u_1 \in b^*$.

We can also recognize $a^n b^n c^n$ with the same technique.

Theorem

The proof system recognizes exactly languages in LOGSPACE.

Proof technique: Design an equivalent automaton model.

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.

Transitions: $Q \times (A \cup \{\triangleleft\})^k \to Q \times \{\aleph, \because, J_1, \dots, J_k\}^k$

- \blacktriangleright \blacksquare : advance one step
- stay in place
- J_i : jump to the position of head i

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.

Transitions: $Q \times (A \cup \{\triangleleft\})^k \to Q \times \{\blacktriangleright, \vdots, J_1, \dots, J_k\}^k$

- \blacktriangleright \blacksquare : advance one step
- stay in place
- J_i : jump to the position of head i

(optional: Syntactic criterion guaranteeing halting)

Example: $\{a^{2^n} \mid n \in \mathbb{N}\}$ is accepted by a 2-head JMA.

Theorem

Cyclic proofs and JMA recognize the same class of languages.

JMAs \subseteq LOGSPACE easy: remember the location of the k heads.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- ► No jump, but heads can move left or right.
- ► Characterizes LOGSPACE.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- ► No jump, but heads can move left or right.
- ► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

$$\begin{vmatrix} & & \\ &$$

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

 $\mathsf{JMAs} \subseteq \mathsf{LOGSPACE}$ easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

► No jump, but heads can move left or right.

► Characterizes LOGSPACE.

Theorem

Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: $Palindroms = \{u \in \Sigma^* \mid u = u^R\}$ is accepted by a JMA.

$$\triangleright \ a \ a \ b \ c \ c \ b \ a \ a \ \triangleleft$$

Generalization of this idea \Rightarrow Translation from 2MA to JMA.

1 Context

2 Computing languages

3 Computing functions

Cut rule and integer functions

The cut rule:

$$\frac{E\vdash e \quad e,F\vdash g}{E,F\vdash g}$$

- Corresponds to composition of programs.
- ► Fundamental in proof theory.
- ► Computation ↔ cut elimination process.

Cut rule and integer functions

The cut rule:

$$\frac{E\vdash e \quad e,F\vdash g}{E,F\vdash g}$$

- Corresponds to composition of programs.
- ► Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^* \to B^*$. Focus on functions: $\mathbb{N}^k \to \mathbb{N}$ (unary alphabet).

Cut rule and integer functions

The cut rule:

$$\frac{E \vdash e \quad e, F \vdash g}{E, F \vdash g}$$

- Corresponds to composition of programs.
- ► Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^* \to B^*$. Focus on functions: $\mathbb{N}^k \to \mathbb{N}$ (unary alphabet).

Expressions (simplified): $e, f := 1 | e \cdot f | e + f | e^* | e \rightarrow f$.

Sequents: $(1^*)^k \vdash 1^*$: functions $\mathbb{N}^k \to \mathbb{N}$.
Cut rule and integer functions

The cut rule:

$$\frac{E\vdash e \quad e,F\vdash g}{E,F\vdash g}$$

- Corresponds to composition of programs.
- ► Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^* \to B^*$. Focus on functions: $\mathbb{N}^k \to \mathbb{N}$ (unary alphabet).

Expressions (simplified): $e, f := 1 | e \cdot f | e + f | e^* | e \rightarrow f$.

Sequents: $(1^*)^k \vdash 1^*$: functions $\mathbb{N}^k \to \mathbb{N}$.

Which functions $\mathbb{N}^k o \mathbb{N}$ can the system with cuts compute ?

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ -calculus with explicit integer type,
- ► Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ -calculus with explicit integer type,
- Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T terms:

$$\begin{split} M,N &::= & x \mid 0 \mid s(M) \mid \lambda x.M \mid MN \mid \mathbf{Rec}(N,M_0,M_s(x,y)) \\ & (+ \mathsf{constructors}/\mathsf{destructors} \text{ for pairs, lists}) \end{split}$$

 $\mathbf{Rec}(N,M_0,M_s) \text{ returns } \left\{ \begin{array}{ll} M_0 & \text{if } N=0\\ M_s(N,\mathbf{Rec}(n,M_0,M_s)) & \text{if } N=s(n) \end{array} \right.$

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ -calculus with explicit integer type,
- Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T terms:

$$\begin{split} M,N &::= & x \mid 0 \mid s(M) \mid \lambda x.M \mid MN \mid \mathbf{Rec}(N,M_0,M_s(x,y)) \\ & (+ \mathsf{constructors}/\mathsf{destructors} \text{ for pairs, lists}) \end{split}$$

 $\mathbf{Rec}(N, M_0, M_s) \text{ returns } \left\{ \begin{array}{ll} M_0 & \text{if } N = 0 \\ M_s(N, \mathbf{Rec}(n, M_0, M_s)) & \text{if } N = s(n) \end{array} \right.$

Example: Addition a + b: λab . **Rec**(b, a, s(y))

System T_{aff}: Affine version of System T, data cannot be duplicated. Example: $\lambda f x. f(f(x))$ is not typable in T_{aff}.

System T_{aff}: Affine version of System T, data cannot be duplicated. Example: $\lambda f x. f(f(x))$ is not typable in T_{aff}.

Theorem

 $\begin{array}{l} \textbf{System } \textbf{T}_{aff} : \text{ Affine version of System T, data cannot be duplicated.} \\ \text{Example: } \lambda f x. f(f(x)) \text{ is not typable in } \textbf{T}_{aff}. \end{array}$

Theorem

Affine Cyclic proofs	\iff	System T _{aff}	\iff	Prim. rec.
Cyclic proofs	\iff	System T	\iff	Peano

 $\lambda ab.\mathbf{Rec}(b, a, s(y))$

System T_{aff}: Affine version of System T, data cannot be duplicated. Example: $\lambda f x. f(f(x))$ is not typable in T_{aff}.

TheoremAffine Cyclic proofs \Leftrightarrow System T_{aff} \leftrightarrow Prim. rec.Cyclic proofs \Leftrightarrow System T \Leftrightarrow PeanoEasy $\lambda ab. \operatorname{Rec}(b, a, s(y))$

System T_{aff}: Affine version of System T, data cannot be duplicated. Example: $\lambda f x. f(f(x))$ is not typable in T_{aff}.

TheoremAffine Cyclic proofs \iff System T_{aff} \iff Prim. rec.Cyclic proofs \iff System T \iff PeanoEasy

System T_{aff}: Affine version of System T, data cannot be duplicated. Example: $\lambda f x. f(f(x))$ is not typable in T_{aff}.

Theorem Affine Cyclic proofs \iff System T_{aff} \iff Prim. rec. Cyclic proofs \iff System T \iff Peano Easy $\lambda ab. \mathbf{Rec}(b, a, s(y))$ Hard

Open problems in proof theory: infinite descent versus induction.

Proof schemes

Affine proofs $\rightarrow T_{aff}$:

▶ normal form for proofs, with explicit hierarchy of cycles,

• inductively build T_{aff} terms.

Proof schemes

Affine proofs $\rightarrow T_{aff}$:

- normal form for proofs, with explicit hierarchy of cycles,
- inductively build T_{aff} terms.

Affine proofs \rightarrow Prim. rec.:

- ► Stronger normal form through T_{aff},
- ▶ RCA₀: constructive fragment of 2nd-order arithmetic,
- \blacktriangleright \forall affine cyclic proof, prove in RCA₀ that its computation terminates,
- From reverse maths: $RCA_0 \leftrightarrow Prim. rec.$

Proof schemes

Affine proofs $\rightarrow T_{aff}$:

- normal form for proofs, with explicit hierarchy of cycles,
- inductively build T_{aff} terms.

Affine proofs \rightarrow Prim. rec.:

- ► Stronger normal form through T_{aff},
- ▶ RCA₀: constructive fragment of 2nd-order arithmetic,
- \blacktriangleright \forall affine cyclic proof, prove in RCA₀ that its computation terminates,
- From reverse maths: $RCA_0 \leftrightarrow Prim. rec.$

Proofs \rightarrow System T:

- ► ACA₀: RCA₀ + König's lemma,
- \blacktriangleright \forall cyclic proof , prove in ACA_0 that its computation terminates,
- Conservativity result: $ACA_0 \leftrightarrow Peano$ for integer functions,
- Classic result: Peano \leftrightarrow System T.

Conclusion

Open problems:

- ► Avoid the "blackbox" of reverse maths.
- ► Lift results to transductions.
- Generalize the normal form with hierarchy of cycles to other cyclic proof systems.
- ► Include greatest fixed point (ω-regular expressions)
 → Internship supervision planned in September 2023 with Tito Nguyen.

Conclusion

Open problems:

- ► Avoid the "blackbox" of reverse maths.
- ► Lift results to transductions.
- Generalize the normal form with hierarchy of cycles to other cyclic proof systems.
- ► Include greatest fixed point (ω-regular expressions)
 → Internship supervision planned in September 2023 with Tito Nguyen.

Thank you for your attention !