Computational content of circular proof systems.

Denis Kuperberg Laureline Pinault Damien Pous
LIP, ENS Lyon

Lambda Pros
Paris, June 28th 2023

1 Context

2 Computing languages

3 Computing functions

Curry-Howard correspondence

$$
\text { Proof of formula } \varphi \leftrightarrow \text { Program of type } \varphi
$$

Example: The identity program $\lambda x . x$ is a proof of $p \rightarrow p$.

Curry-Howard correspondence

$$
\text { Proof of formula } \varphi \leftrightarrow \text { Program of type } \varphi
$$

Example: The identity program $\lambda x . x$ is a proof of $p \rightarrow p$.
Deduction Rule

Curry-Howard correspondence

$$
\text { Proof of formula } \varphi \leftrightarrow \text { Program of type } \varphi
$$

Example: The identity program $\lambda x . x$ is a proof of $p \rightarrow p$.
Deduction Rule
Program instruction

Curry-Howard correspondence

Proof of formula $\varphi \leftrightarrow$ Program of type φ

Example: The identity program $\lambda x . x$ is a proof of $p \rightarrow p$.
Deduction Rule
Program instruction

Correspondence well-understood for usual proof systems
[Curry,Howard] Intuitionistic logic \leftrightarrow Typed λ-calculus [...] $\ldots \leftrightarrow \ldots$

Curry-Howard correspondence

$$
\text { Proof of formula } \varphi \leftrightarrow \text { Program of type } \varphi
$$

Example: The identity program $\lambda x . x$ is a proof of $p \rightarrow p$.
Deduction Rule
Program instruction

Correspondence well-understood for usual proof systems

```
    [Curry,Howard] Intuitionistic logic }\leftrightarrow\mathrm{ Typed }\lambda\mathrm{ -calculus
    [..] ... ↔ ...
```

This work: Study the computational content of cyclic proofs.

Cyclic Proofs

Usual proofs:

Cyclic Proofs

Usual proofs:

Cyclic Proofs:

Cyclic Proofs

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

Cyclic Proofs

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.

Cyclic Proofs

Usual proofs:

Cyclic Proofs:

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
\rightarrow guarantees termination.

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

Soundness and completeness [Das, Pous '17]

$$
L(e) \subseteq L(f) \Leftrightarrow \exists \text { proof of } e \subseteq f
$$

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

$$
\begin{aligned}
& \frac{{\frac{\overline{\varepsilon \subseteq \varepsilon}}{\varepsilon \subseteq a^{*}}}_{\left({ }^{*} \text {-right }_{1}\right)}^{(\mathrm{Ax})} \quad \frac{\overline{a \subseteq a}(\mathrm{Ax})}{a, a^{*} \subseteq a^{*}}{ }^{\left({ }^{*} \text {-left }\right)}{\widehat{a^{*}}}_{\left(*-\text { right }_{2}\right)}}{a^{*} \subseteq a^{*}} .
\end{aligned}
$$

Soundness and completeness [Das, Pous '17]

$$
L(e) \subseteq L(f) \Leftrightarrow \exists \text { proof of } e \subseteq f .
$$

Here, we care about computational content.
This example: program whose type is $a^{*} \rightarrow a^{*}$:
let rec f l = match l with

$$
\begin{aligned}
& \text { |[] -> [] } \\
& \text { |a::q -> a::(f q) }
\end{aligned}
$$

1 Context

2 Computing languages

3 Computing functions

Computing languages

Goal: Avoid transductions, start with languages.

- Regular expressions $e, f:=a \in A|e . f| e+f \mid e^{*}$
- Boolean type bool (encoded by $\varepsilon+\varepsilon$)

$$
\begin{aligned}
\text { Proof of } A^{*} \vdash \text { bool } & \Leftrightarrow \text { Program of type } A^{*} \rightarrow \text { bool } \\
& \Leftrightarrow \text { Language } L \subseteq A^{*} .
\end{aligned}
$$

Computing languages

Goal: Avoid transductions, start with languages.

- Regular expressions $e, f:=a \in A|e . f| e+f \mid e^{*}$
- Boolean type bool (encoded by $\varepsilon+\varepsilon$)

$$
\text { Proof of } \begin{aligned}
A^{*} \vdash \text { bool } & \Leftrightarrow \text { Program of type } A^{*} \rightarrow \text { bool } \\
& \Leftrightarrow \text { Language } L \subseteq A^{*} .
\end{aligned}
$$

Structural rules: basic data manipulation (erase, copy).

Computing languages

Goal: Avoid transductions, start with languages.

- Regular expressions $e, f:=a \in A|e . f| e+f \mid e^{*}$
- Boolean type bool (encoded by $\varepsilon+\varepsilon$)

$$
\begin{aligned}
\text { Proof of } A^{*} \vdash \text { bool } & \Leftrightarrow \text { Program of type } A^{*} \rightarrow \text { bool } \\
& \Leftrightarrow \text { Language } L \subseteq A^{*} .
\end{aligned}
$$

Structural rules: basic data manipulation (erase, copy).
On the proof side: reuse or ignore hypotheses (cf linear logic)

Simplified proof system

Expressions $e:=A \mid A^{*}$
Lists $E, F=e_{1}, e_{2}, \ldots, e_{n}$ interpreted as tuples

Proof system:

Return true or false
$\overline{\vdash \text { bool }}^{\text {(true) }} \quad \quad \overline{\vdash \text { bool }}^{\text {(false) }}$
Pattern matchings

$$
\begin{array}{cc}
\frac{(E, F \vdash b o o l)_{a \in A}}{E, \underline{A}, F \vdash \text { bool }} \text { (A) } & \frac{E, F \vdash b o o l \quad E, A, A^{*}, F \vdash b o o}{E, \underline{A}^{*}, F \vdash b o o l} \\
& \text { Erase, copy } \\
\frac{E, F \vdash \text { bool }}{E, \underline{e}, F \vdash \text { bool }} \text { (weakening) } & \frac{E, \underline{e, e}, F \vdash \text { bool }}{E, \underline{e}, F \vdash \text { bool }} \text { (contraction) }
\end{array}
$$

Proofs as language acceptors

What are the languages computed by cyclic proofs ?
Example on alphabet $\{a, b\}$: The language b^{*}

$$
\frac{\overline{\vdash \text { bool }}^{(\text {true })} \frac{{\overline{\frac{\mathcal{A}^{*} \vdash \text { bool }}{}(\text { false })}(\mathrm{wkn})}_{\underline{A}, A^{*} \vdash \text { bool }}\left(A^{*} \vdash \text { bool }\right)_{b}}{(\mathrm{~F})}}{\underline{A^{*} \vdash \text { bool } \longleftarrow}}
$$

Proofs as language acceptors

What are the languages computed by cyclic proofs ?
Example on alphabet $\{a, b\}$: The language b^{*}

No contraction rule: Affine system.

Proofs as language acceptors

What are the languages computed by cyclic proofs ?
Example on alphabet $\{a, b\}$: The language b^{*}

$$
\frac{\overline{\vdash \text { bool }}^{(\text {true })} \frac{{\left.\overline{\frac{\mathcal{A}^{*} \vdash \text { bool }}{}(\text { fallse })}\right)_{a}}^{(\mathrm{wkn})}\left(A^{*} \vdash \text { bool }\right)_{b}}{\underline{A}, A^{*} \vdash \text { bool }}(\mathrm{A})}{(*)}
$$

No contraction rule: Affine system.

Lemma

The affine system captures exactly regular languages.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$. Intuition:

- Copy the input u_{1} into u_{2} : $a a a b b b \quad a a a b b b b$
- Erase leading a 's in u_{2} : $\quad a a a b b b \quad b b b$
- Match each leading a in u_{1} to a leading b in u_{2} : $\quad b b b \quad \varepsilon$
- When u_{2} becomes empty, verify that $u_{1} \in b^{*}$.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$. Intuition:

- Copy the input u_{1} into u_{2} : $\quad a a a b b b \quad a a a b b b b$
- Erase leading a 's in u_{2} : $\quad a a a b b b \quad b b b$
- Match each leading a in u_{1} to a leading b in u_{2} : $\quad b b b \quad \varepsilon$
- When u_{2} becomes empty, verify that $u_{1} \in b^{*}$.

We can also recognize $a^{n} b^{n} c^{n}$ with the same technique.

With contractions: what class of language?

Example on alphabet $\{a, b\}$: Language $\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$. Intuition:

- Copy the input u_{1} into u_{2} : $a a a b b b \quad a a a b b b b$
- Erase leading a 's in u_{2} : $\quad a a a b b b \quad b b b$
- Match each leading a in u_{1} to a leading b in u_{2} : $\quad b b b \quad \varepsilon$
- When u_{2} becomes empty, verify that $u_{1} \in b^{*}$.

We can also recognize $a^{n} b^{n} c^{n}$ with the same technique.

Theorem

The proof system recognizes exactly languages in LOGSPACE.
Proof technique: Design an equivalent automaton model.

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: $Q \times(A \cup\{\triangleleft\})^{k} \rightarrow Q \times\left\{\boldsymbol{\bullet}, \because, J_{1}, \ldots, J_{k}\right\}^{k}$

- M : advance one step
- $\because:$ stay in place
- J_{i} : jump to the position of head i

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: $Q \times(A \cup\{\triangleleft\})^{k} \rightarrow Q \times\left\{\boldsymbol{\bullet}, \because, J_{1}, \ldots, J_{k}\right\}^{k}$

- M : advance one step
- $\because:$ stay in place
- J_{i} : jump to the position of head i
(optional: Syntactic criterion guaranteeing halting)

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

ACCEPT

Example of JMA

Example: $\left\{a^{2^{n}} \mid n \in \mathbb{N}\right\}$ is accepted by a 2 -head JMA.

Theorem
Cyclic proofs and JMA recognize the same class of languages.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

Expressive power of JMAs

$J M A s \subseteq$ LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

- No jump, but heads can move left or right.
- Characterizes Logspace.

Theorem

Any 2MA can be simulated by a JMA
Difficulty: simulate a left move of some head.
Example: Palindroms $=\left\{u \in \Sigma^{*} \mid u=u^{R}\right\}$ is accepted by a JMA.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \triangleright & a & a & b & c & c & b & a & a & \triangleleft \\
\hline
\end{array}
$$

Generalization of this idea \Rightarrow Translation from 2MA to JMA.

1 Context

2 Computing languages

3 Computing functions

Cut rule and integer functions

The cut rule:

$$
\frac{E \vdash e \quad e, F \vdash g}{E, F \vdash g}
$$

- Corresponds to composition of programs.
- Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

Cut rule and integer functions

The cut rule:

$$
\frac{E \vdash e \quad e, F \vdash g}{E, F \vdash g}
$$

- Corresponds to composition of programs.
- Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^{*} \rightarrow B^{*}$. Focus on functions: $\mathbb{N}^{k} \rightarrow \mathbb{N}$ (unary alphabet).

Cut rule and integer functions

The cut rule:

$$
\frac{E \vdash e \quad e, F \vdash g}{E, F \vdash g}
$$

- Corresponds to composition of programs.
- Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^{*} \rightarrow B^{*}$. Focus on functions: $\mathbb{N}^{k} \rightarrow \mathbb{N}$ (unary alphabet).

Expressions (simplified): $e, f:=1|e \cdot f| e+f\left|e^{*}\right| e \rightarrow f$.
Sequents: $\left(1^{*}\right)^{k} \vdash 1^{*}$: functions $\mathbb{N}^{k} \rightarrow \mathbb{N}$.

Cut rule and integer functions

The cut rule:

$$
\frac{E \vdash e \quad e, F \vdash g}{E, F \vdash g}
$$

- Corresponds to composition of programs.
- Fundamental in proof theory.
- Computation \leftrightarrow cut elimination process.

We can now consider transductions: $A^{*} \rightarrow B^{*}$. Focus on functions: $\mathbb{N}^{k} \rightarrow \mathbb{N}$ (unary alphabet).

Expressions (simplified): $e, f:=1|e \cdot f| e+f\left|e^{*}\right| e \rightarrow f$.
Sequents: $\left(1^{*}\right)^{k} \vdash 1^{*}$: functions $\mathbb{N}^{k} \rightarrow \mathbb{N}$.
Which functions $\mathbb{N}^{k} \rightarrow \mathbb{N}$ can the system with cuts compute ?

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ-calculus with explicit integer type,
- Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ-calculus with explicit integer type,
- Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T terms:

$$
\begin{aligned}
M, N::= & x|0| s(M)|\lambda x . M| M N \mid \operatorname{Rec}\left(N, M_{0}, M_{s}(x, y)\right) \\
& (+ \text { constructors } / \text { destructors for pairs, lists })
\end{aligned}
$$

$\boldsymbol{\operatorname { R e c }}\left(N, M_{0}, M_{s}\right)$ returns $\begin{cases}M_{0} & \text { if } N=0 \\ M_{s}\left(N, \boldsymbol{\operatorname { R e c }}\left(n, M_{0}, M_{s}\right)\right) & \text { if } N=s(n)\end{cases}$

System T

As automata before, we want a computational framework to characterize the expressive power of our cyclic proof system.

System T:

- λ-calculus with explicit integer type,
- Explicit recursion operator on integers,
- Type system, typing derivations are finite trees.

System T terms:

$$
\begin{aligned}
M, N::= & x|0| s(M)|\lambda x . M| M N \mid \operatorname{Rec}\left(N, M_{0}, M_{s}(x, y)\right) \\
& (+ \text { constructors/destructors for pairs, lists) }
\end{aligned}
$$

$\boldsymbol{\operatorname { R e c }}\left(N, M_{0}, M_{s}\right)$ returns $\begin{cases}M_{0} & \text { if } N=0 \\ M_{s}\left(N, \boldsymbol{\operatorname { R e c }}\left(n, M_{0}, M_{s}\right)\right) & \text { if } N=s(n)\end{cases}$
Example: Addition $a+b: \lambda a b \cdot \operatorname{Rec}(b, a, s(y))$

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T , data cannot be duplicated.
Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff }}$.

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T , data cannot be duplicated. Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff }}$.

Theorem

$\begin{array}{lll}\text { Affine Cyclic proofs } & \Longleftrightarrow \text { System } T_{\text {aff }} & \Longleftrightarrow \text { Prim. rec. } \\ \text { Cyclic proofs } & \Longleftrightarrow \text { System } T & \Longleftrightarrow \text { Peano }\end{array}$

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T, data cannot be duplicated.
Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff }}$.

Theorem

Affine Cyclic proofs \Longleftrightarrow System $T_{\text {aff }} \Longleftrightarrow$ Prim. rec.
Cyclic proofs \Longleftrightarrow System $T \quad \Longleftrightarrow$ Peano

$\lambda a b \cdot \boldsymbol{R e c}(b, a, s(y))$

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T, data cannot be duplicated.
Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff }}$.

Theorem

Affine Cyclic proofs \Longleftrightarrow System $T_{\text {aff }} \Longleftrightarrow$ Prim. rec.
Cyclic proofs \Longleftrightarrow System $T \quad \Longleftrightarrow$ Peano

$\lambda a b \cdot \operatorname{Rec}(b, a, s(y))$

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T , data cannot be duplicated.
Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff }}$.

Theorem

Affine Cyclic proofs \Longleftrightarrow System $T_{\text {aff }} \Longleftrightarrow$ Prim. rec.
Cyclic proofs \Longleftrightarrow System $T \quad \Longleftrightarrow$ Peano

$\lambda a b . \operatorname{Rec}(b, a, s(y))$

Results

System $\mathbf{T}_{\text {aff: }}$ Affine version of System T, data cannot be duplicated.
Example: $\lambda f x . f(f(x))$ is not typable in $\mathrm{T}_{\text {aff. }}$.

Theorem

$\begin{array}{lll}\text { Affine Cyclic proofs } & \Longleftrightarrow \text { System } T_{\text {aff }} & \Longleftrightarrow \text { Prim. rec. } \\ \text { Cyclic proofs } & \Longleftrightarrow \text { System } T & \Longleftrightarrow \text { Peano }\end{array}$

$\lambda a b . \operatorname{Rec}(b, a, s(y))$

Open problems in proof theory: infinite descent versus induction.

Proof schemes

Affine proofs $\rightarrow \mathrm{T}_{\text {aff }}$:

- normal form for proofs, with explicit hierarchy of cycles,
- inductively build $\mathrm{T}_{\text {aff }}$ terms.

Proof schemes

Affine proofs $\rightarrow \mathrm{T}_{\text {aff }}$:

- normal form for proofs, with explicit hierarchy of cycles,
- inductively build $\mathrm{T}_{\text {aff }}$ terms.

Affine proofs \rightarrow Prim. rec.:

- Stronger normal form through $\mathrm{T}_{\text {aff }}$,
- RCA $_{0}$: constructive fragment of $2^{\text {nd }}$-order arithmetic,
- \forall affine cyclic proof, prove in RCA_{0} that its computation terminates,
- From reverse maths: $\mathrm{RCA}_{0} \leftrightarrow$ Prim. rec.

Proof schemes

Affine proofs $\rightarrow \mathrm{T}_{\text {aff }}$:

- normal form for proofs, with explicit hierarchy of cycles,
- inductively build $\mathrm{T}_{\text {aff }}$ terms.

Affine proofs \rightarrow Prim. rec.:

- Stronger normal form through $\mathrm{T}_{\text {aff }}$,
- RCA $_{0}$: constructive fragment of $2^{\text {nd }}$-order arithmetic,
- \forall affine cyclic proof, prove in RCA_{0} that its computation terminates,
- From reverse maths: $\mathrm{RCA}_{0} \leftrightarrow$ Prim. rec.

Proofs \rightarrow System T:

- $\mathrm{ACA}_{0}: \mathrm{RCA}_{0}+$ König's lemma,
- \forall cyclic proof, prove in ACA_{0} that its computation terminates,
- Conservativity result: $\mathrm{ACA}_{0} \leftrightarrow$ Peano for integer functions,
- Classic result: Peano \leftrightarrow System T.

Conclusion

Open problems:

- Avoid the "blackbox" of reverse maths.
- Lift results to transductions.
- Generalize the normal form with hierarchy of cycles to other cyclic proof systems.
- Include greatest fixed point (ω-regular expressions)
\rightarrow Internship supervision planned in September 2023 with Tito Nguyen.

Conclusion

Open problems:

- Avoid the "blackbox" of reverse maths.
- Lift results to transductions.
- Generalize the normal form with hierarchy of cycles to other cyclic proof systems.
- Include greatest fixed point (ω-regular expressions)
\rightarrow Internship supervision planned in September 2023 with Tito Nguyen.

Thank you for your attention!

