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This work: Study the computational content of cyclic proofs.

3/19



Cyclic Proofs

Usual proofs:

Axioms
Axiom; A Axioms
B C
D




Cyclic Proofs

Usual proofs:

Axioms

Axiom; A
B

Axioms

D

Cyclic Proofs:

Axiom

B

A
A

D

D



Cyclic Proofs

Usual proofs: Cyclic Proofs:

Axiomo A

Axiom; A Axiomg Axiom »A D
B C B C
D

D

Validity conditions: Cycles must contain particular rules.



Cyclic Proofs

Usual proofs: Cyclic Proofs:
Axiomo Cé
Axiom; A Axiomg Axiom »A D
B C B C
D D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.



Cyclic Proofs

Usual proofs: Cyclic Proofs:
Axiomo Cé
Axiom; A Axiomg Axiom »A D
B C B C
D D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
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A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

(Ax)

X
eCe aCa a* C a*
" (*-righty)

(*-right2)
eCa ?

a* C a*

Soundness and completeness [Das, Pous '17]

L(e) C L(f) < 3 proof of e C f.
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A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

(Ax)

eCe aCa
" (*-righty)

(*-right2)

eCa

a* C a*

Soundness and completeness [Das, Pous '17]

L(e) C L(f) < 3 proof of e C f.

Here, we care about computational content.
This example: program whose type is a* — a™*:

let rec £ 1 = match 1 with
(a-> 0
la::q > a::(f @)
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Computing languages

Goal: Avoid transductions, start with languages.
» Regular expressions e, f:=a € Ale.f|e+ f]|e*
» Boolean type bool (encoded by = + =)

Proof of A* I bool < Program of type A* — bool
< Language L C A*.

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)



Simplified proof system

Expressions ¢ := A | A*
Lists £, F = eq,es,..., e, interpreted as tuples

Proof system:
Return true or false

o] (true) ool (false)
Pattern matchings
(E,F F bool),ca E,Ft bool E,A, A* F+ bool
E A FF bool E, A", F F bool )
Erase, copy
E, F F bool E e e, F'+ bool

(weakening) (contraction)

E e, F I bool E. e, F F bool



Proofs as language acceptors
What are the languages computed by cyclic proofs ?

Example on alphabet {a,b}: The language b*

F bool (fals(i)an)
(A* + bool), (A* = bool)y
— (true) " (A)
F bool A, A* + bool
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Example on alphabet {a,b}: The language b*

F bool (fals(i)an)
(A* + bool), (A* = bool)y
— (true) " (A)
F bool A, A* + bool
A* - bool ®

No contraction rule: Affine system.

Lemma
The affine system captures exactly regular languages.



With contractions: what class of language?

Example on alphabet {a,b}: Language {a"b" | n € N}.

Intuition:
» Copy the input uy into us: aaabbb  aaabbbb
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» Match each leading a in u; to a leading b in ug: bbb ¢
» When uy becomes empty, verify that u; € b*.
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With contractions: what class of language?

Example on alphabet {a,b}: Language {a"b" | n € N}.

Intuition:
» Copy the input uy into us: aaabbb  aaabbbb
» Erase leading a's in ua: aaabbb bbb

» Match each leading a in u; to a leading b in ug: bbb ¢
» When uy becomes empty, verify that u; € b*.

We can also recognize a"*b"c" with the same technique.

Theorem
The proof system recognizes exactly languages in LOGSPACE.

Proof technique: Design an equivalent automaton model.



A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: @ x (AU {<1})’C —Q x M, T, Jk}]’c

2 1 3

EEEEEEBEE

» )| : advance one step
» * stay in place
» J;: jump to the position of head ¢
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Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: @ x (AU {<1})k —Q x M, T, Jk}]’c

2 1 3

EEEEEEBEE

» )| : advance one step
» * stay in place
» J;: jump to the position of head i

(optional: Syntactic criterion guaranteeing halting)
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Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.
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Theorem
Cyclic proofs and JMA recognize the same class of languages.
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Generalization of this idea = Translation from 2MA to JMA.
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Focus on functions: N¥ — N (unary alphabet).

Expressions (simplified): e, f:=1|e-f|le+ f|e*|e— f.
Sequents: (1*)* I- 1*: functions N¥ — N.

Which functions N* — N can the system with cuts compute ?
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System T

As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
» \-calculus with explicit integer type,
» Explicit recursion operator on integers,

» Type system, typing derivations are finite trees.

System T terms:

M,N = z|0]|s(M) | x.M|MN | Rec(N, My, Ms(z,y))
(4-constructors/destructors for pairs, lists)

M, if N=0
Rec(N, My, M) returns { M,(N,Rec(n, My, M,)) if N =s(n)

Example: Addition a + b: Aab.Rec(b, a, s(y))
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Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,
Theorem

Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Easy

— T
Aab.Rec(b, a, s(y))

\/
Hard

Open problems in proof theory: infinite descent versus induction.
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» Stronger normal form through T,
» RCA(: constructive fragment of 21d_grder arithmetic,
» V affine cyclic proof, prove in RCA( that its computation terminates,

» From reverse maths: RCAg <> Prim. rec.

Proofs — System T:
» ACA(: RCAg + Konig's lemma,

» Y/ cyclic proof , prove in ACA( that its computation terminates,
» Conservativity result: ACAg <+ Peano for integer functions,

» Classic result: Peano <> System T.
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Thank you for your attention !
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