Computational content of circular proof systems.

Denis Kuperberg Laureline Pinault Damien Pous

LIP, ENS Lyon

Lambda Pros
Paris, June 28th 2023

1 Context

Curry-Howard correspondence

Proof of formula ¢ <> Program of type ¢

Example: The identity program Az.x is a proof of p — p.

Curry-Howard correspondence
Proof of formula ¢ <> Program of type ¢
Example: The identity program Az.x is a proof of p — p.
Deduction Rule

A B

implies

Curry-Howard correspondence

Proof of formula ¢ <> Program of type ¢

Example: The identity program Az.x is a proof of p — p.

Deduction Rule Program instruction

A
implies - calls

Curry-Howard correspondence
Proof of formula ¢ <> Program of type ¢
Example: The identity program Az.x is a proof of p — p.
Deduction Rule Program instruction

N A
implies o calls

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic <+ Typed A-calculus
[..] I

3/19

Curry-Howard correspondence
Proof of formula ¢ <> Program of type ¢
Example: The identity program Az.x is a proof of p — p.
Deduction Rule Program instruction

N A
implies o calls

Correspondence well-understood for usual proof systems

[Curry,Howard] Intuitionistic logic <+ Typed A-calculus
[..] I

This work: Study the computational content of cyclic proofs.

3/19

Cyclic Proofs

Usual proofs:

Axioms
Axiom; A Axioms
B C
D

Cyclic Proofs

Usual proofs:

Axioms

Axiom; A
B

Axioms

D

Cyclic Proofs:

Axiom

B

A
A

D

D

Cyclic Proofs

Usual proofs: Cyclic Proofs:

Axiomo A

Axiom; A Axiomg Axiom »A D
B C B C
D

D

Validity conditions: Cycles must contain particular rules.

Cyclic Proofs

Usual proofs: Cyclic Proofs:
Axiomo Cé
Axiom; A Axiomg Axiom »A D
B C B C
D D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.

Cyclic Proofs

Usual proofs: Cyclic Proofs:
Axiomo Cé
Axiom; A Axiomg Axiom »A D
B C B C
D D

Validity conditions: Cycles must contain particular rules.

As programs: recursive calls must be done on smaller arguments.
— guarantees termination.

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

(Ax) — (Ax) =
eCe aCa a* Ca

— - (*-righty)

(*-right2)
eCa ?

a*ga*

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

(Ax)

X
eCe aCa a* C a*
" (*-righty)

(*-right2)
eCa ?

a* C a*

Soundness and completeness [Das, Pous '17]

L(e) C L(f) < 3 proof of e C f.

5/19

A proof system for regular expressions

Example: [Das, Pous '17]
Cyclic proof system for inclusion of regular expressions:

(Ax)

eCe aCa
" (*-righty)

(*-right2)

eCa

a* C a*

Soundness and completeness [Das, Pous '17]

L(e) C L(f) < 3 proof of e C f.

Here, we care about computational content.
This example: program whose type is a* — a™*:

let rec £ 1 = match 1 with
(a-> 0
la::q > a::(f @)

5/19

2 Computing languages

Computing languages
Goal: Avoid transductions, start with languages.
» Regular expressions e, f:=a € Ale.f|e+ f]|e*
» Boolean type bool (encoded by = + =)

Proof of A* I bool < Program of type A* — bool
< Language L C A*.

Computing languages

Goal: Avoid transductions, start with languages.
» Regular expressions e, f:=a € Ale.f|e+ f]|e*
» Boolean type bool (encoded by = + =)

Proof of A* I bool < Program of type A* — bool
< Language L C A*.

Structural rules: basic data manipulation (erase, copy).

Computing languages

Goal: Avoid transductions, start with languages.
» Regular expressions e, f:=a € Ale.f|e+ f]|e*
» Boolean type bool (encoded by = + =)

Proof of A* I bool < Program of type A* — bool
< Language L C A*.

Structural rules: basic data manipulation (erase, copy).

On the proof side: reuse or ignore hypotheses (cf linear logic)

Simplified proof system

Expressions ¢ := A | A*
Lists £, F = eq,es,..., e, interpreted as tuples

Proof system:
Return true or false

o] (true) ool (false)
Pattern matchings
(E,F F bool),ca E,Ft bool E,A, A* F+ bool
E A FF bool E, A", F F bool)
Erase, copy
E, F F bool E e e, F'+ bool

(weakening) (contraction)

E e, F I bool E. e, F F bool

Proofs as language acceptors
What are the languages computed by cyclic proofs ?

Example on alphabet {a,b}: The language b*

F bool (fals(i)an)
(A* + bool), (A* = bool)y
— (true) " (A)
F bool A, A* + bool

(%)

A* + bool

Proofs as language acceptors
What are the languages computed by cyclic proofs ?

Example on alphabet {a,b}: The language b*

F bool (fals(i)an)
(A* + bool), (A* = bool)y
— (true) " (A)
F bool A, A* + bool
A* - bool ®

No contraction rule: Affine system.

Proofs as language acceptors
What are the languages computed by cyclic proofs ?

Example on alphabet {a,b}: The language b*

F bool (fals(i)an)
(A* + bool), (A* = bool)y
— (true) " (A)
F bool A, A* + bool
A* - bool ®

No contraction rule: Affine system.

Lemma
The affine system captures exactly regular languages.

With contractions: what class of language?

Example on alphabet {a,b}: Language {a"b" | n € N}.

Intuition:
» Copy the input uy into us: aaabbb aaabbbb
» Erase leading a's in ua: aaabbb bbb

» Match each leading a in u; to a leading b in ug: bbb ¢
» When uy becomes empty, verify that u; € b*.

With contractions: what class of language?

Example on alphabet {a,b}: Language {a"b" | n € N}.

Intuition:
» Copy the input uy into us: aaabbb aaabbbb
» Erase leading a's in ua: aaabbb bbb

» Match each leading a in u; to a leading b in ug: bbb ¢
» When uy becomes empty, verify that u; € b*.

We can also recognize a"*b"c" with the same technique.

With contractions: what class of language?

Example on alphabet {a,b}: Language {a"b" | n € N}.

Intuition:
» Copy the input uy into us: aaabbb aaabbbb
» Erase leading a's in ua: aaabbb bbb

» Match each leading a in u; to a leading b in ug: bbb ¢
» When uy becomes empty, verify that u; € b*.

We can also recognize a"*b"c" with the same technique.

Theorem
The proof system recognizes exactly languages in LOGSPACE.

Proof technique: Design an equivalent automaton model.

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: @ x (AU {<1})’C —Q x M, T, Jk}]’c

2 1 3

EEEEEEBEE

»)| : advance one step
» * stay in place
» J;: jump to the position of head ¢

11/19

A new automaton model

Jumping Multihead Automata

A JMA is an automaton with k reading heads.
Transitions: @ x (AU {<1})k —Q x M, T, Jk}]’c

2 1 3

EEEEEEBEE

»)| : advance one step
» * stay in place
» J;: jump to the position of head i

(optional: Syntactic criterion guaranteeing halting)

11/19

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\ P 0<
"
e[ale[a]e]a]a]e]4]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
[a]e[alo]a[a]a]a]<]
T

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
[a]e[alo]a[a]a]a]]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
a]e[alo]a[a]a]a]]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
[a]e[alo]a[a]a]a]]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a,<),, Jh

(<, 9),¢

*\ P 0<
l
e[ale[a]e]a]a]e]4]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
[a]e[alo]a[a]a]a]]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\/.L.<

(a,a), MM

l
[a]e[alo]a[a]a]a]]
T

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a,<),, Jh

(<, 9),¢

*\ P 0<
l
(e[ale[a]e]a]a]e]4]
T

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a,<), % Jp

(<, 9),¢

*\/.L.<:

(a,a), MM

l
la]e[alo]a[a]a]a]]
T

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\ P 0<
l
e[ale[a]e]a]a]e]4]
!

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(a,), %, o

*\ P 0<
l
e[ale[a]e]a]a]e]4]
!

ACCEPT

Example of JMA

Example: {a®" | n € N} is accepted by a 2-head JMA.

(a, <), J1

(<, 9),¢

*\ P 0<
l
e[ale[a]e]a]a]e]4]
!

Theorem
Cyclic proofs and JMA recognize the same class of languages.

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

Expressive power of JMAs
JMAs C LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Expressive power of JMAs
JMAs C LOGSPACE easy: remember the location of the k heads.
2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:

» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>[afafv]e]c]o]a]a]<]

M

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>]afafo]e]c]]a]a]]

M

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>[afafo]c]c]]a]a]<]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>]afafo]e]c]b]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>]afafo]e]c[v]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

>[afafo]e]c[]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

B!

eLe[alele[o]ale[]

i

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

!

>]afafo]e]c]v]a]a]]

T

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

!

>]afafo]e]c[o]a]a]]

P

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

!

>[afafo]c]c[v]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

!

>]afafv]e]c]v]a]a]]

T

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

i

>[afafo]c]c]b]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

!

>]afafo]e]c]]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

i

>[afafo]e]c[v]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

i

ple[o[olele[o]ale[]

T

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>]afafo]e]c[o]a]a]]

P

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>]afafo]c]c]v]a]a]]

T

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>[afafo]e]c[o]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>[afafo]e]c]b]a]a]]

T

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>]afafo]c]c[o]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

|

>[afafo]e]c]]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

,

>]afafo]e]c]v]a]a]]

Expressive power of JMAs

JMAs C LOGSPACE easy: remember the location of the k heads.

2MAs: 2-way Multihead Automata [Holzer, Kutrib, Malcher '08]:
» No jump, but heads can move left or right.

» Characterizes LOGSPACE.

Theorem
Any 2MA can be simulated by a JMA

Difficulty: simulate a left move of some head.

Example: Palindroms = {u € ¥* | u = u'} is accepted by a JMA.

>]afafo]e]c[]a]a]]

Generalization of this idea = Translation from 2MA to JMA.

3 Computing functions

Cut rule and integer functions

The cut rule:
EFrte e Flkyg

E Flg

» Corresponds to composition of programs.
» Fundamental in proof theory.

» Computation < cut elimination process.

Cut rule and integer functions

The cut rule:
EFrte e Flkyg

E Flg

» Corresponds to composition of programs.
» Fundamental in proof theory.

» Computation < cut elimination process.

We can now consider transductions: A* — B*.
Focus on functions: N¥ — N (unary alphabet).

Cut rule and integer functions

The cut rule:
EFrte e Flkyg

E Flg

» Corresponds to composition of programs.
» Fundamental in proof theory.

» Computation < cut elimination process.

We can now consider transductions: A* — B*.
Focus on functions: N¥ — N (unary alphabet).

Expressions (simplified): e, f:=1|e-f|le+ f|e*|e— f.
Sequents: (1*)* I- 1*: functions N¥ — N.

Cut rule and integer functions

The cut rule:
EFrte e Flkyg

E Flg

» Corresponds to composition of programs.
» Fundamental in proof theory.

» Computation < cut elimination process.

We can now consider transductions: A* — B*.
Focus on functions: N¥ — N (unary alphabet).

Expressions (simplified): e, f:=1|e-f|le+ f|e*|e— f.
Sequents: (1*)* I- 1*: functions N¥ — N.

Which functions N* — N can the system with cuts compute ?

System T

As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
» \-calculus with explicit integer type,
» Explicit recursion operator on integers,

» Type system, typing derivations are finite trees.

System T

As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
» \-calculus with explicit integer type,
» Explicit recursion operator on integers,

» Type system, typing derivations are finite trees.

System T terms:
M,N = z|0]|s(M) | x.M|MN | Rec(N, My, Ms(z,y))

(+constructors/destructors for pairs, lists)

M, if N=0
Rec(N, My, M) returns { M,(N,Rec(n, My, M,)) if N =s(n)

System T

As automata before, we want a computational framework to
characterize the expressive power of our cyclic proof system.

System T:
» \-calculus with explicit integer type,
» Explicit recursion operator on integers,

» Type system, typing derivations are finite trees.

System T terms:

M,N = z|0]|s(M) | x.M|MN | Rec(N, My, Ms(z,y))
(4-constructors/destructors for pairs, lists)

M, if N=0
Rec(N, My, M) returns { M,(N,Rec(n, My, M,)) if N =s(n)

Example: Addition a + b: Aab.Rec(b, a, s(y))

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afz.f(f(z)) is not typable in T,

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,

Theorem
Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,

Theorem
Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Aab.Rec(b, a, s(y))

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,

Theorem
Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Easy

Aab.Rec(b, a, s(y))

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,

Theorem
Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Easy

Aab.Rec(b, a, s(y))

Results

System T.g: Affine version of System T, data cannot be duplicated.
Example: Afxz.f(f(z)) is not typable in T,
Theorem

Affine Cyclic proofs <= System T,y <= Prim. rec.
Cyclic proofs < System T <= Peano

Easy

— T
Aab.Rec(b, a, s(y))

\/
Hard

Open problems in proof theory: infinite descent versus induction.

Proof schemes

Affine proofs — T

» normal form for proofs, with explicit hierarchy of cycles,

» inductively build T, terms.

Proof schemes

Affine proofs — T

» normal form for proofs, with explicit hierarchy of cycles,

» inductively build T, terms.

Affine proofs — Prim. rec.:

» Stronger normal form through T,
» RCA(: constructive fragment of 21d_grder arithmetic,
» V affine cyclic proof, prove in RCA(that its computation terminates,

» From reverse maths: RCAg <> Prim. rec.

Proof schemes

Affine proofs — T

» normal form for proofs, with explicit hierarchy of cycles,

» inductively build T, terms.

Affine proofs — Prim. rec.:

» Stronger normal form through T,
» RCA(: constructive fragment of 21d_grder arithmetic,
» V affine cyclic proof, prove in RCA(that its computation terminates,

» From reverse maths: RCAg <> Prim. rec.

Proofs — System T:
» ACA(: RCAg + Konig's lemma,

» Y/ cyclic proof , prove in ACA(that its computation terminates,
» Conservativity result: ACAg <+ Peano for integer functions,

» Classic result: Peano <> System T.

Conclusion

Open problems:
» Avoid the “blackbox” of reverse maths.
» Lift results to transductions.

» Generalize the normal form with hierarchy of cycles to other
cyclic proof systems.

» Include greatest fixed point (w-regular expressions)

— Internship supervision planned in September 2023 with
Tito Nguyen.

Conclusion

Open problems:
» Avoid the “blackbox” of reverse maths.
» Lift results to transductions.

» Generalize the normal form with hierarchy of cycles to other
cyclic proof systems.
» Include greatest fixed point (w-regular expressions)

— Internship supervision planned in September 2023 with
Tito Nguyen.

Thank you for your attention !

	Context
	Computing languages
	Computing functions

