Decidability problems in automata theory

Denis Kuperberg

Onera/DTIM, Toulouse

Séminaire du DTIM
06-10-2014
Some natural problems are **undecidable**.

For some problems, decidability is open.

Finite Automata: Abstract machine with a lot of **decidable** properties and **equivalent** formalisms.

Automata theory: Toolbox to decide many problems arising naturally. Verification of systems can be done automatically. Theoretical and practical advantages.

Problem: Decidability is still open for some automata-related problems.
1. Automata theory
2. Hard decision problems
3. Regular Cost Functions
4. Formalisms on finite words
Descriptions of a language

Language recognized: $L_{ab} = \{\text{words containing } ab\}$.
Language recognized: \(L_{ab} = \{ \text{words containing } ab \} \).

Other ways than automata to specify \(L_{ab} \subseteq A^* \):

- Regular expression: \(A^* ab A^* \),
- Logical sentence (MSO): \(\exists x \; \exists y \; a(x) \land b(y) \land (y = Sx) \).
- Finite monoid: ?
Decision problems

What can we easily decide/compute with automata?

- Emptyness (Hard for Logic !)
- Complementation
- Union/Intersection
- Concatenation
- ...

What about expressibility in smaller formalisms? Like FO or star-free expressions? I.e. given \(L \), is there a FO-formula for \(L \) (resp. star-free expression)?
Decision problems

What can we easily decide/compute with automata?

- Emptyness (Hard for Logic !)
- Complementation
- Union/Intersection
- Concatenation
- ...

What about expressibility in smaller formalisms?
Like FO or star-free expressions?

I.e. given L, is there a FO-formula for L? (resp. star-free expression)
What is a monoid?

A monoid is a set M equipped with an associative and containing a neutral element $1 \in M$.

Examples: Groups, $(\mathbb{A}^*, \text{concat})$, $(\{0, 1\}, \land)$.
What is a monoid?

A monoid is a set M equipped with an associative and containing a neutral element $1 \in M$.

Examples: Groups, (A^*, concat), $(\{0, 1\}, \land)$.

A monoid M recognizes a language $L \subseteq A^*$ if there exists $P \subseteq M$ and a morphism $h : A^* \to M$ such that $L = h^{-1}(P)$.

Examples:
- Any language $L \subseteq A^*$ is recognized by A^*.
What is a monoid?

A monoid is a set M equipped with an associative and containing a neutral element $1 \in M$.

Examples: Groups, $(\mathbb{A}^*, \text{concat})$, $(\{0, 1\}, \land)$.

A monoid M recognizes a language $L \subseteq \mathbb{A}^*$ if there exists $P \subseteq M$ and a morphism $h : \mathbb{A}^* \rightarrow M$ such that $L = h^{-1}(P)$.

Examples:

- Any language $L \subseteq \mathbb{A}^*$ is recognized by \mathbb{A}^*.
- $(\mathbb{A} \mathbb{A})^*$ is recognized by the group $\mathbb{Z}/2\mathbb{Z}$, with $P = \{0\}$ and $h(a) = 1$ for all $a \in \mathbb{A}$.
What is a monoid?

A monoid is a set M equipped with an associative and containing a neutral element $1 \in M$.

Examples: Groups, $(\mathbb{A}^*, \text{concat})$, $(\{0, 1\}, \wedge)$.

A monoid M recognizes a language $L \subseteq \mathbb{A}^*$ if there exists $P \subseteq M$ and a morphism $h : \mathbb{A}^* \to M$ such that $L = h^{-1}(P)$.

Examples:

- Any language $L \subseteq \mathbb{A}^*$ is recognized by \mathbb{A}^*.
- $(\mathbb{A}\mathbb{A})^*$ is recognized by the group $\mathbb{Z}/2\mathbb{Z}$, with $P = \{0\}$ and $h(a) = 1$ for all $a \in \mathbb{A}$.
- $\mathbb{A}^* b \mathbb{A}^*$ is recognized by $(\{0, 1\}, \wedge)$, with $P = \{0\}$, $h(b) = 0$ and $h(a) = 1$ for $a \neq b$.
All these formalisms are effectively equivalent.
All these formalisms are effectively equivalent.

Regular Languages

Expressions
MSO
Finite Monoids
Automata

Star-free Languages
Star-free Expressions
FO
LTL
Aperiodic Monoids
Counter-free Automata

a^n b^n

(aa)^*
1. Automata theory

2. Hard decision problems

3. Regular Cost Functions

4. Formalisms on finite words
Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids (i.e. without groups).
Algebraic approach to membership problems

Given a class of languages C, is there an algorithm which given an automaton for L, decides whether $L \in C$?

Theorem (Schützenberger 1965)

It is decidable whether a regular language is star-free, thanks to the equivalence with aperiodic monoids (i.e. without groups).

Finite Power Problem: Given L, is there n such that $(L + \varepsilon)^n = L^*$?

There is no known algebraic characterization, other technics are needed to show decidability.
Distance Automata

\(A_1\): number of \(a\)

\(A_2\): smallest block of \(a\)

Unbounded: There are words with arbitrarily large value (on any run).
Distance Automata

A_1: number of a

A_2: smallest block of a

Unbounded: There are words with arbitrarily large value (on any run).

Theorem (Hashiguchi 82, Kirsten 05)

Boundedness is decidable for distance automata.

Deciding Boundedness for distance automata \Rightarrow solving finite power problem.
1. Start with an automaton for L.

![Diagram of an automaton with transitions and loops]
1. Start with an automaton for L.
2. Add increment ε-transitions from final states to initial.
Reductions from Finite Power to Boundedness

1. Start with an automaton for L.
2. Add increment ε-transitions from final states to initial.
3. Decide boundedness
Problems solved using counters

- **Finite Power** (finite words) [Simon '78, Hashiguchi '79]
 Is there \(n \) such that \((L + \varepsilon)^n = L^*\)?

- **Fixed Point Iteration** (finite words)
 [Blumensath+Otto+Weyer '09]
 Can we bound the number of fixpoint iterations in a MSO formula?

- **Star-Height** (finite words/trees)
 [Hashiguchi '88, Kirsten '05, Colcombet+Löding '08]
 Given \(n \), is there an expression for \(L \), with at most \(n \) nesting of Kleene stars?

- **Parity Rank** (infinite trees)
 [reduction in Colcombet+Löding '08, decidability open, deterministic input Niwinski+Walukiewicz '05]
 Given \(i < j \), is there a parity automaton for \(L \) using ranks \(\{i, i+1, \ldots, j\} \)?
1 Automata theory
2 Hard decision problems
3 Regular Cost Functions
4 Formalisms on finite words
Theory of Regular Cost Functions

Aim: General framework for previous constructions.

- Generalize from languages $L : A^* \rightarrow \{0, 1\}$

 to functions $f : A^* \rightarrow \mathbb{N} \cup \{\infty\}$

- Accordingly generalize automata, logics, semigroups, in order to obtain a theory of regular cost functions, which behaves as well as possible.

- Obtain decidability results thanks to this new theory.
Cost automata over words

Nondeterministic finite-state automaton \mathcal{A}
+ finite set of counters
 (initialized to 0, values range over \mathbb{N})
+ counter operations on transitions
 (increment I, reset R, check C, no change ε)

Semantics: $[[\mathcal{A}]] : \mathbb{A}^* \rightarrow \mathbb{N} \cup \{\infty\}$
Boundedness relation

“$[A] = [B]$”: undecidable [Krob '94]
Boundedness relation

"\[[A] = [B]\]"\n: undecidable [Krob '94]

"\[[A] \approx [B]\]"\n: decidable on words

[Colcombet '09, following Bojánczyk+Colcombet '06]

for all subsets \(U\), \([[A]](U)\) bounded iff \([[B]](U)\) bounded
Boundedness relation

“$[A] = [B]$”: undecidable [Krob ’94]

“$[A] \approx [B]$”: decidable on words

[Colcombet ’09, following Bojánczyk+Colcombet ’06]
for all subsets U, $[A](U)$ bounded iff $[B](U)$ bounded
Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$.

But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^*.
Therefore we always identify two functions if they are bounded on the same sets.

Example

For any function f, we have $f \approx 2f \approx \exp(f)$.

But $(u \mapsto |u|_a) \not\approx (u \mapsto |u|_b)$, as witnessed by the set a^*.

Theorem (Colcombet ’09, following Hashiguchi, Leung, Simon, Kirsten, Bojańczyk+Colcombet)

Cost automata \iff Cost logics \iff Stabilisation monoids.

For some suitable models of Cost Logics and Stabilisation Monoids, extending the classical ones.

Boundedness decidable.

All these equivalences are only valid up to \approx.

It provides a toolbox to decide boundedness problems.
Languages as cost functions

A language L is represented by its characteristic function

$$
\chi_L(u) = \begin{cases}
0 & \text{if } u \in L \\
\infty & \text{if } u \notin L
\end{cases}
$$

Cost function theory strictly extends language theory.

All theorems on cost functions are in particular true for languages.

Research program: Study cost function theory, and generalise known theorems from languages to cost functions.
Automata theory

Hard decision problems

Regular Cost Functions

Formalisms on finite words
Linear Temporal Logic (LTL) over \mathbb{A}^*:

$$\varphi := a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi$$

$$\varphi U\psi: \quad a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ a_9 \ a_{10}$$

Future operators G (Always) and F (Eventually).

Example: To describe L_{ab}, we can write $F(a \land Xb)$.
Classical Logics on Finite Words

- **Linear Temporal Logic (LTL) over A^*:**
 \[
 \varphi := a \mid \Omega \mid \neg \varphi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U \psi
 \]
 \[
 \varphi U \psi: \quad a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}
 \]

 Future operators G (Always) and F (Eventually).

 Example: To describe L_{ab}, we can write $F(a \land Xb)$.

- **First-Order Logic (FO):** we quantify over positions in the word.
 \[
 \varphi := a(x) \mid x \leq y \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x \varphi
 \]
Classical Logics on Finite Words

- **Linear Temporal Logic (LTL)** over A^*:
 \[\varphi := a | \Omega | \neg \varphi | \varphi \lor \psi | X\varphi | \varphi U \psi \]

 $\varphi U \psi$: $a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}$

 Future operators G (Always) and F (Eventually).

 Example: To describe L_{ab}, we can write $F(a \land Xb)$.

- **First-Order Logic (FO)**: we quantify over positions in the word.
 \[\varphi := a(x) | x \leq y | \neg \varphi | \varphi \lor \psi | \exists x \varphi \]

- **MSO**: FO with quantification on sets, noted X, Y.
Generalisation: cost LTL

- **CLTL** over A^*:

$$\varphi ::= a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U \leq^N \psi$$

Negations pushed to the leaves, to guarantee monotonicity.
Generalisation: cost LTL

- **CLTL** over A^*:

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U\leq N\psi$$

Negations pushed to the leaves, to guarantee monotonicity.

- $\varphi U\leq N\psi$ means that ψ is true in the future, and φ is false at most N times in the mean time.

$$\varphi U\leq N\psi: \quad \varphi \varphi \times \varphi \varphi \times \varphi \varphi \psi \quad a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ a_9 \ a_{10}$$
Generalisation: cost LTL

- **CLTL** over \mathbb{A}^*:

$$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U \leq N \psi$$

Negations pushed to the leaves, to guarantee monotonicity.

- $\varphi U \leq N \psi$ means that ψ is true in the future, and φ is false at most N times in the mean time.

$$\varphi U \leq N \psi: \quad \varphi \varphi \times \varphi \varphi \times \varphi \varphi \psi$$

$$a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8 \ a_9 \ a_{10}$$

- “Error variable” N is unique, shared by all occurrences of $U \leq N$.

Generalisation: cost LTL

- **CLTL** over A^*:

 $$\varphi := a \mid \Omega \mid \varphi \land \psi \mid \varphi \lor \psi \mid X\varphi \mid \varphi U\psi \mid \varphi U\leq N\psi$$

 Negations pushed to the leaves, to guarantee monotonicity.

- $\varphi U\leq N\psi$ means that ψ is true in the future, and φ is false at most N times in the mean time.

 $$\varphi U\leq N\psi: \quad \varphi \varphi \times \varphi \varphi \times \varphi \varphi \psi$$

 $$a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8 a_9 a_{10}$$

- “Error variable” N is unique, shared by all occurrences of $U\leq N$.

- $G\leq N\varphi$: φ is false at most N times in the future ($\varphi U\leq N\Omega$).
Generalisation: Cost FO and Cost MSO

- **CFO** over A^*:

 $\varphi := a(x) \mid x = y \mid x < y \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \forall x \varphi \mid \forall \leq N x \varphi$

 Negations pushed to the leaves, to guarantee monotonicity.

 As before, N unique free variable.

 $\forall \leq N x \varphi(x)$ means φ is false on at most N positions.

- **CMSO** extends CFO by allowing quantification over sets.
Semantics of Cost Logics

From formula to cost function:
Formula $\varphi \rightarrow$ cost function $[[\varphi]] : A^* \rightarrow \mathbb{N} \cup \{\infty\}$, defined by

$$[[\varphi]](u) = \inf\{n \in \mathbb{N} : \varphi\text{ is true over } u\text{ with } n \text{ as error value}\}$$

Example on alphabet $\{\epsilon, \text{Request, Grant}\}$:
$G(\text{Request} \implies \bot \cup \leq^N \text{Grant})$.

If φ is a classical formula for L, then $[[\varphi]] = \chi_L$.
Aperiodic Monoids
Aperiodic Monoids

Theorem (McNaughton-Papert, Schützenberger, Kamp)

\[\text{Aperiodic Monoids} \iff \text{FO} \iff \text{LTL} \iff \text{Star-free Expressions}. \]

We want to generalise this theorem to cost functions. The problems are:

- No complementation \(\Rightarrow\) No Star-free expressions.
- Deterministic automata are strictly weaker.
- Heavy formalisms (semantics of stabilisation monoids).
- New quantitative behaviours.
- Original proofs already hard.
Aperiodic cost functions

Theorem (K. STACS 2011)

Aperiodic stabilisation monoid ⇔ CLTL ⇔ CFO.

Proof Ideas:

- Generalisation of Myhill-Nerode ⇒ Syntactic object.
- Induction on $(|M|, |A|)$.
- Extend functions to sequences of words.
- Use bounded approximations.
- Extend CLTL with Past operators, show Separability.
Decidability of membership and effectiveness of translations
[K+Colcombet+Lombardy ICALP ’10, K. STACS ’11].
Generalization of Myhill-Nerode Equivalence [K. STACS ’11].
Boundedness of CLTL is PSPACE-complete [K. LMCS].
As for regular languages, theory of regular cost functions can be extended to

- Infinite words,
- Finite trees,
- Infinite trees.

Led to rich developments, results for both functions and languages, but also complications and open problems...

Main open problem: Decidability of boundedness on infinite trees?
Conclusion

Achievements:

- Robust quantitative extension of regular language theory.
- Embeds proof using different kind of automata with counters.
- Rich quantitative behaviours occur.
- New proofs on regular languages and reductions obtained.
Conclusion

Achievements:

- Robust quantitative extension of regular language theory.
- Embeds proof using different kind of automata with counters.
- Rich quantitative behaviours occur.
- New proofs on regular languages and reductions obtained.

Current challenges and related works:

- Main open problem: decide boundedness on infinite trees. Application to language theory.
- Link with other formalisms, as MSO+U of Bojańczyk.
- Decide properties of cost automata, like optimal number of counters.
- Fine study of approximations (Daviaud)
- Alternative formalisms: IST, profinite words
Thank you!