Is your automaton good for playing games?

Marc Bagnol, Denis Kuperberg
CNRS, LIP, ENS Lyon

University of Warwick
30/10/2018
Games

Two Players:

- Eve
- Adam

Arena: finite graph $G = (V, E)$, with $V = V_a \cup V_b$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0v_1v_2\cdots \in V_\omega$.

Winning Condition: $W \subseteq V_\omega$.

Eve wins a play π if $\pi \in W$.
Games

Two Players:

Eve

Adam

Arena: finite graph $G = (V, E)$, with $V = V_\circ \uplus V_\square$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 \rightarrow v_1 \rightarrow v_2 \cdots \in V_\omega$.

Winning Condition: $W \subseteq V_\omega$.

Eve wins a play π if $\pi \in W$.
Games

Two Players: Eve \quad Adam

Arena: finite graph $G = (V, E)$, with $V = V_0 \cup V_\square$.

Initial vertex: $v_0 \in V$.

Diagram: A graph with vertices labeled a, b, and c, and edges connecting them.
Games

Two Players:

Arena: finite graph $G = (V, E)$, with $V = V_\circ \cup V_\blacksquare$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0v_1v_2\cdots \in V^\omega$
Two Players: Eve, Adam

Arena: finite graph \(G = (V, E) \), with \(V = V_\bigcirc \cup V_\square \).

Initial vertex: \(v_0 \in V \).

Play: Infinite path: \(v_0 v_1 v_2 \cdots \in V^\omega \)

Winning Condition: \(W \subseteq V^\omega \).
Games

Two Players:

Eve
Adam

Arena: finite graph $G = (V, E)$, with $V = V_\circ \sqcup V_\square$.

Initial vertex: $v_0 \in V$.

Play: Infinite path: $v_0 v_1 v_2 \cdots \in V^\omega$

Winning Condition: $W \subseteq V^\omega$.

Eve wins a play π if $\pi \in W$
ω-regular games

Winning condition W: an ω-regular language.

Example:

$W = (a^* ba^* c)^\omega$
ω-regular games

Winning condition W: an ω-regular language.

Example:

Why study these games?
ω-regular games

Winning condition W: an ω-regular language.

Example:

$$W = (a^* ba^* c)^\omega$$

Why study these games?

Applications in Logic, Verification, Proof theory, Complexity, ...

Church Synthesis Problem.
Solving an \(\omega \)-regular game

Input: \(G \) game with \(\omega \)-regular winning condition \(W \subseteq V^\omega \).

Question: Who wins \(G \)? How?

Solution:
1. Build Det Parity automaton \(A_{Det} \) for \(W \),
2. Solve the parity game \(G' = A_{Det} \circ G \).

Theorem: \(A_{Det} \circ G \) has the same winner as \(G \).

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006): \(A \) is Good-for-Games (GFG) if \(A \circ G \) has the same winner as \(G \), for any game \(G \) with winning condition \(L (A) \).

Also works for composition with infinite trees.
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution:

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = A_{Det} \circ G$.

Theorem

$A_{Det} \circ G$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $A \circ G$ has same winner as G, for any game G with winning condition $L(A)$.

Also works for composition with infinite trees.
Solving an \(\omega \)-regular game

Input: \(G \) game with \(\omega \)-regular winning condition \(W \subseteq V^\omega \).

Question: Who wins \(G \) ? How ?

Solution:

1. Build Det Parity automaton \(A_{Det} \) for \(W \),
2. Solve the parity game \(G' = A_{Det} \circ G \).

Theorem

\(A_{Det} \circ G \) has same winner as \(G \).

Problem: Determinization is expensive. Maybe too strong ?
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution:

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = A_{\text{Det}} \circ G$.

Theorem

$A_{\text{Det}} \circ G$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $A \circ G$ has same winner as G, for any game G with winning condition $L(A)$.
Solving an ω-regular game

Input: G game with ω-regular winning condition $W \subseteq V^\omega$.

Question: Who wins G? How?

Solution:

1. Build Det Parity automaton A_{Det} for W,
2. Solve the parity game $G' = A_{\text{Det}} \circ G$.

Theorem

$A_{\text{Det}} \circ G$ has same winner as G.

Problem: Determinization is expensive. Maybe too strong?

Definition (Henzinger, Piterman 2006)

A is Good-for-Games (GFG) if $A \circ G$ has same winner as G, for any game G with winning condition $L(A)$.

Also works for composition with infinite trees.
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:

Adam plays letters:

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:
Adam plays letters: \(a \)
Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:
Adam plays letters: \(a \ a \)
Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a GFG game:
Adam plays letters: a a b
Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a GFG game:

Adam plays letters: a a b c

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:

Adam plays letters: \(a \ a \ b \ c \ c \)

Eve: resolves non-deterministic choices for transitions
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**:

Adam plays letters: \(a \ a \ b \ c \ c \ldots = w\)

Eve: resolves non-deterministic choices for transitions

Eve wins if: \(w \in L \Rightarrow\) Run accepting.
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**: Adam plays letters: \(a \ a \ b \ c \ c \ldots = w \)

Eve: resolves non-deterministic choices for transitions

\[\begin{array}{c}
\text{a, b, c} \\
\text{a} \\
\text{b, c} \\
\text{b} \\
\text{c} \\
\text{a, b, c}
\end{array} \]

Eve wins if: \(w \in L \Rightarrow \) Run accepting.

A **GFG** \(\iff \) Eve wins the GFG game on \(A \).
Definition of GFG via a game

A Parity automaton, we associate to it a **GFG game**: Adam plays letters: \(a\ a\ b\ c\ c\ \ldots = w\)

Eve: resolves non-deterministic choices for transitions

Eve wins if: \(w \in L \Rightarrow \text{Run accepting.}\)

\(A \text{ GFG} \iff \text{Eve wins the GFG game on } A.\)

\(A \text{ GFG} \Rightarrow \text{GFG means that there is a strategy } \sigma_{\text{GFG}} : A^* \rightarrow Q, \text{ for accepting all words of } L(A).\)
A few facts on GFG automata

Fact
Every deterministic automaton is GFG.
A few facts on GFG automata

Fact
Every deterministic automaton is GFG.

Fact
There are some non-GFG automata: $(a + b)^* a^\omega$

Diagram:

```
1 ---- a ----> 2
```

Adam plays aaa... until Eve goes to 2, then ba^ω.
A few facts on GFG automata

Fact
Every deterministic automaton is GFG.

Fact
There are some non-GFG automata:

Adam plays $aaa\ldots$ until Eve goes to 2, then ba^ω.

\[
\begin{array}{c}
\text{1} \\
\text{2}
\end{array}
\]

\[a, b \quad a \quad (a + b)^* a^\omega\]
A few facts on GFG automata

Fact

Every deterministic automaton is GFG.

Fact

There are some non-GFG automata:

Adam plays $aaa\ldots$ until Eve goes to 2, then ba^ω.

Fact

$\sigma_{\text{GFG}} \iff \text{Det automaton}$.
A few facts on GFG automata

Fact

Every deterministic automaton is GFG.

Fact

There are some non-GFG automata:

\[
\begin{array}{c}
1 \\
\end{array} \xrightarrow{a} \begin{array}{c}
2 \\
\end{array}
\]

Adam plays \(aaa\ldots\) until Eve goes to 2, then \(ba^\omega\).

Fact

\(\sigma_{GFG} \leftrightarrow \text{Det automaton.}\)

Theorem (Boker, K., Kupferman, Skrzypczak 2013)

\(GFG\ for\ L + GFG\ for\ \overline{L} \rightarrow \text{Det for}\ L\)
A few facts on GFG automata

Fact
Every deterministic automaton is GFG.

Fact
There are some non-GFG automata: $1 \xrightarrow{a} 2 \quad (a + b)^* a^\omega$

Adam plays $aaa \ldots$ until Eve goes to 2, then ba^ω.

Fact
$\sigma_{GFG} \iff \text{Det automaton.}$

Theorem (Boker, K., Kupferman, Skrzypczak 2013)
GFG for $L +$ GFG for $\bar{L} \rightarrow$ Det for L

Fact
If A is GFG, no need to know its strategy σ_{GFG} to solve $A \circ G$!
A few facts on GFG automata

Fact
Every deterministic automaton is GFG.

Fact
There are some non-GFG automata: \((a + b)^* a^\omega \).

Adam plays aaa... until Eve goes to 2, then \(ba^\omega \).

Fact
\(\sigma_{GFG} \leftrightarrow \text{Det automaton} \).

Theorem (Boker, K., Kupferman, Skrzypczak 2013)
GFG for \(L \) + GFG for \(\overline{L} \) \(\rightarrow \) Det for \(L \)

Fact
If \(A \) is GFG, no need to know its strategy \(\sigma_{GFG} \) to solve \(A \circ G \)!
\(\rightarrow \) we can ignore the strategy and still use \(A \) as GFG in algorithms.
GFG versus Deterministic

Lemma: For Reachability/Safety conditions, \(\text{GFG} \approx \text{Det} \).
GFG versus Deterministic

Lemma: For Reachability/Safety conditions, $\text{GFG} \approx \text{Det}$.

Theorem (K., Skrzypczak 2015)

GFG parity automata can be exponentially more succinct than deterministic ones.
GFG versus Deterministic

Lemma: For Reachability/Safety conditions, $\text{GFG} \approx \text{Det}$.

Theorem (K., Skrzypczak 2015)

GFG parity automata can be exponentially more succinct than deterministic ones.

$$L_n = \{ w \mid \text{Graph}(w) \text{ contains an } \infty \text{ path}\}.$$
GFG versus Deterministic

Lemma: For Reachability/Safety conditions, $\text{GFG} \approx \text{Det.}$

Theorem (K., Skrzypczak 2015)

GFG parity automata can be exponentially more succinct than deterministic ones.

$$w: \quad a \quad b \quad \# \quad a \quad \# \quad a \quad b \quad \# \quad \ldots$$

Graph(w):

$$\begin{align*}
0 & \quad 0 & \quad 1 & \quad 1 & \quad 2 & \quad 2 & \quad 3 & \quad 3 & \quad 4 & \quad 4 & \quad 5 & \quad 5 & \quad \ldots \\
1 & \quad \ldots \\
2 & \quad \ldots \\
3 & \quad \ldots & \quad \ldots
\end{align*}$$

time: 0 1 2 3 4 5 6 7 8 \ldots

$$L_n = \{w \mid \text{Graph}(w) \text{ contains an } \infty \text{ path} \}.$$

Any Det Parity automaton for L_n needs $\frac{2^n}{n+1}$ states!
A small GFG automaton for L_n

GFG coBüchi automaton:

Idea: Try paths one after the other.
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Theorem (Löding)
The GFGness problem is in P for reachability/safety automata.

Theorem (K., Skrzypczak 2015)
The GFGness problem is in P for coBüchi automata.
Parity Games \equiv GFGness for universal Parity automata.
Recognizing GFG automata

GFGness problem: input A_{ND}, is it GFG?

Theorem (Löding)
The GFGness problem is in P for reachability/safety automata.

Theorem (K., Skrzypczak 2015)
The GFGness problem is in P for coBüchi automata.
Parity Games \equiv GFGness for universal Parity automata.

This talk:
Theorem (Bagnol, K. 2018)
The GFGness problem is in P for Büchi automata.
Via the GFG game

Recall: \mathcal{A} is GFG \iff Eve wins the GFG game on \mathcal{A}.

[Diagram description]

- Start state labeled a, b, c
- Transitions:
 - From a, b, c to a
 - From a to b
 - From b to c
 - From c back to a, b, c

Acceptance condition of the form "$u \in L \Rightarrow$ run accepting"
Via the GFG game

Recall: \(A \) is GFG \(\iff \) Eve wins the GFG game on \(A \).

Solve the GFG game?
Via the GFG game

Recall: A is GFG \iff Eve wins the GFG game on A.

Solve the GFG game?
Acceptance condition of the form “$u \in L \implies$ run accepting”
Via the GFG game

Recall: A is GFG \iff Eve wins the GFG game on A.

Solve the GFG game?
Acceptance condition of the form "$u \in L \Rightarrow$ run accepting"

→ We need a GFG automaton for L!
Via the GFG game

Recall: A is GFG \iff Eve wins the GFG game on A.

Solve the GFG game?

Acceptance condition of the form “$u \in L \Rightarrow \text{run accepting}$”

\rightarrow We need a GFG automaton for L!

Upper bound: EXPTIME (by computing A_{Det})
Abstracting the GFG game

The game G_2:

Adam plays letters:

Eve: moves one token Adam: moves two tokens

Eve wins if:

1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
- **Adam** plays letters: a
- **Eve**: moves one token
 Adam: moves two tokens

Eve wins if:
1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins G_2 if and only if Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
Adam plays letters: a
Eve: moves one token Adam: moves two tokens

\begin{center}
\begin{tikzpicture}[node distance=1.5cm,auto,thick]
 \node (A0) {a, b, c};
 \node (A1) [right of=A0] {a};
 \node (A2) [right of=A1] {b};
 \node (A3) [right of=A2] {c};
 \node (A4) [right of=A3] {a, b, c};

 \path[->, bend left=30, red]
 (A0) edge (A1)
 (A1) edge (A2)
 (A2) edge (A3)
 (A3) edge (A4);
 \end{tikzpicture}
\end{center}
Abstracting the GFG game

The game G_2:
Adam plays letters: a, a
Eve: moves one token Adam: moves two tokens

Eve wins if:
1. or
2. accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

Adam plays letters: $a \ a$

Eve: moves one token Adam: moves two tokens

Eve wins if:

1 or 2 accepts \Rightarrow accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
Adam plays letters: $a \ a \ b$
Eve: moves one token Adam: moves two tokens

Eve wins if:
1 or 2 accepts \Rightarrow accept.

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

Adam plays letters: a, a, b

Eve: moves one token **Adam**: moves two tokens

\[a, b, c \]

\[a \]

\[a, b, c \]

\[b \]

\[b, c \]

\[c \]
Abstracting the GFG game

The game G_2:
Adam plays letters: $a \ a \ b \ c$
Eve: moves one token Adam: moves two tokens

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Abstracting the GFG game

The game G_2:
- **Adam** plays letters: a, a, b, c
- **Eve**: moves one token
 Adam: moves two tokens

Eve wins if:
1. or 2. accepts \implies accepts.

Goal: Show that Eve wins G_2 \iff Eve wins the GFG game.
Abstracting the GFG game

The game G_2:

- **Adam** plays letters: a a b c $\ldots = w$
- **Eve**: moves one token
 Adam: moves two tokens

Eve wins if:
1 or 2 accepts \Rightarrow 1 accepts.

Eve wins if: □₁ or □₂ accepts \Rightarrow □ accept
Abstracting the GFG game

The game G_2:

Adam plays letters: $a\ a\ b\ c\ \ldots\ =\ w$

Eve: moves one token Adam: moves two tokens

\[a, b, c \quad \quad a \quad \quad b \quad \quad a, b, c \]

\[b, c \quad \quad c \]

Eve wins if: \square_1 or \square_2 accepts \Rightarrow \bigcirc accepts.

Goal: Show that Eve wins $G_2 \iff$ Eve wins the GFG game.
Proof sketch

Lemma

\(Eve\ wins\ G_2 \iff Eve\ wins\ G_k\ for\ all\ k.\)

Proof sketch: \(G_2 \implies G_3\)

- Play a virtual token \(\bullet\) against the first 2 \(\square\)
- Play \(G_2\) strategy against \(\bullet\) and last \(\square\)
Main proof sketch for $G_2 \iff \text{GFG}$

Assume:

- Adam wins the GFG game with finite-memory strategy τ_{GFG}.
- Eve wins $G_2 \Rightarrow$ wins G_k with strategy σ_k, for a big k.
Main proof sketch for $G_2 \Leftrightarrow \text{GFG}$

Assume:

- Adam wins the GFG game with finite-memory strategy τ_{GFG}.
- Eve wins $G_2 \Rightarrow$ wins G_k with strategy σ_k, for a big k.

Build strategy for Eve against τ_{GFG}:

- move k virtual tokens \bigcirc against τ_{GFG}
- play σ_k against these k tokens

$\text{at most } M \text{ steps}$

$\geq N \text{ tokens}$

Büchi state

initial state
Building GFG automata

From a language L, how to obtain A_{GFG} for L?
Building GFG automata

From a language L, how to obtain A_{GFG} for L?

Incremental construction [K., Majumdar 2018]:
Partial k-Determinization of A_{ND}
Increase k until A is GFG.
Worst case: $k = |A|$, reach the full determinization construction.
Building GFG automata

From a language L, how to obtain A_{GFG} for L ?

Incremental construction [K., Majumdar 2018]:
Partial k-Determinization of A_{ND}
Increase k until A is GFG.
Worst case: $k = |A|$, reach the full determinization construction.

For **efficiency**: solution to the GFGness problem is needed !
So for now only efficient for coBüchi (and Büchi)
Building GFG automata

From a language L, how to obtain A_{GFG} for L?

Incremental construction [K., Majumdar 2018]:
Partial k-Determinization of A_{ND}
Increase k until A is GFG.
Worst case: $k = |A|$, reach the full determinization construction.

For efficiency: solution to the GFGness problem is needed!
So for now only efficient for coBüchi (and Büchi)

Directly from LTL formula φ [losti, K. (unpublished)]
Adapted for Church Synthesis
For now: Fragment of coBüchi languages
Worst-case blowup result: GFG is doubly exponential in $|\varphi|$.

Heuristic and modular, can be combined with other approaches.
Conclusion

Results

- **GFG** automata are intermediate between **Det** and **ND**.
- They are useful to solve complex games.
- They can bring an exponential advantage compared to determinism.
- For Büchi and coBüchi conditions, they are recognized efficiently.

Perspectives

- $G_2 \iff$ GFG for Parity automata ?
- Complexity of the Parity GFGness Problem ?
- New ways to build **GFG** automata ?
- Generalization to other models (alternating, pushdown, . . .) ?