
Description of the thesis:

Study of classes of regular cost functions.

Denis Kuperberg

1 Brief Description

The goal of the thesis was to study the recent theory of regular cost functions.
This theory extends strictly the theory of regular languages by quantitative
features, hence allowing to de�ne functions instead of languages. These quanti-
tative features are of counting nature, for instance it is possible to count occur-
rences of letters, length of segments, etc, and to combine this quantities using
operators like minimum, maximum among others. Cost functions can be e�ec-
tively represented by means of logic (cost monadic logic), algebra (stabilisation
monoid), automata (B- and S-automata), or expressions.

An important and deep part of language theory is devoted to the analysis
and comparison of the expressiveness of various formalisms that capture frag-
ments of regular languages. In the thesis, prolongating this branch of research,
we characterized and compared classes of regular cost functions. The central
contributions of the thesis are the following.

Over �nite words, the fragment of �temporal regular cost functions� is char-
acterized in several ways and membership is shown to be decidable (this class
has no equivalent in the theory of regular languages). The second contribution is
to raise the deep classical Schützenberger-McNaughton-Papert-Kamp theorem
for languages to the level of cost functions. The study of these classes requires
the introduction of a new theoretical tool, the syntactic stabilization monoid.
Over in�nite words, the equivalence between weak and full cost monadic logic is
established. Over in�nite trees, we have studied the result of Rabin characteriz-
ing (non e�ectively) the weak fragment of monadic logic and shown, �rst, that
it was not extendable as itself to the framework of cost functions, and, second,
that it can be recovered if one introduces the new class of quasi-weak regular
cost functions. This class, that has no meaning in the theory of languages, is
strictly more expressive than weak cost functions. Finally, we showed that the
theory of cost functions can bring further insights to more classical problems,
by obtaining a new decidability result regarding languages of in�nite trees. This
result settles a particular case in the open problem of decidability of the level
in the Mostowski hierarchy for regular languages of in�nite trees.

The consequence of these contributions is that the theory of regular cost
functions is now much better understood. We now have a clear picture of
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the many similarities it has with regular languages, as well as the important
di�erences they have, both at a technical and result level.

2 Scienti�c context

The subject of the thesis is the study of regular cost functions. This theory gen-
eralizes the notion or regular languages in all their aspects (automata, algebraic,
logics temporal or not, games, etc). All these notions are now well understood
in the classical case of languages and the subject of a large body of works. In
this presentation of the scienti�c context, we will concentrate on the notion of
cost function, and try to avoid to spend too much time on the classical results
on regular languages.

Regular cost functions were introduced by Colcombet [Col09], thus unifying
several branches of research involving formal language theory and limitedness
related results. The principle of cost functions is to extend the notion of regular
languages with quantitative aspects. A language is a set of �nite words (or
by extensions of in�nite words, or trees, or in�nite trees, depending on the
context). Seen di�erently, a language can be seen as a function from words
(or in�nite words,. . . ) to two values, `inside' or `outside'. The subject of cost
functions is to consider instead of languages functions from words to N ∪ {∞}.
Under this view, 0 can be understood as `inside' and ∞ as `outside'. A range of
intermediate values becomes now available.

As for regular languages, that can be de�ned by means of automata, Kirsten
and then Colcombet and Bojanczyk [BC06] de�ne two dual notions of counter
automata, named B-automata and S-automata. These automata compute func-
tions from words to N ∪ {∞}. These automata can typically count events and
combine them in an intricated way involving non-determinism.

However, these two forms of automata are not equivalent as such, and even
worth, it is not possible to decide, given two B-automata, if the functions com-
puted are equal (this result, due to Krob, holds in fact for very weak forms of
such automata [Kro94]). This result, a priori, rules out all possibilities of e�ec-
tively manipulating such computational models and have meaningful decision
procedures for them. To achieve decidability, the precision has to be relaxed,
and functions are considered modulo an equivalence relation, as follows.

We de�ne the equivalence relation ≈ between function from words (or other
domains) to N ∪ {∞}, by

f ≈ g if f and g are bounded on the same sets of inputs.

Formally, a cost function is an equivalence class of functions, for the relation≈.
Once considered modulo this equivalence relations, the two models of B- and S-
automata become e�ectively equivalent, as well as equivalent with several other
formalisms (�nite stabilisation monoids, cost monadic logic, . . . ).

Notice that every language L ⊆ A∗ can be seen as the cost function χL,
de�ned by χL(u) = 0 if u ∈ L and χL(u) =∞ if u /∈ L. This allows to consider
cost function theory as a strict extension of language theory. Colcombet pushes
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the extension further by de�ning an extension of the notion of monoid (called
stabilisation monoid), and an extension of monadic second order logic, that
recognize functions instead of languages. He proves the equivalence between all
these formalisms (automata, logic, and stabilization monoid), yielding a clean
notion of regular cost function. In particular, questions of the form f ≈ g are
decidable in this framework.

Remark that with this de�nition, a function f is bounded (by a non-negative
integer) if and only if f ≈ 0. For this reason, this decision procedure subsume
every limitedness (aka, boundedness) problem know in the litterature ([Has82,
Kir05]).

This new theory allows to develop in a more general way some ideas intro-
duced to solve important decidability problems in language theory. Here are
three such problems, that were proved decidable by reducing to boundedness
problems for weighted automata:

• The �nite Power property (�nite words) [Sim78, Has79]:
Is there n such that (L+ ε)n = L∗?

• Fixed Point Iteration (�nite words)[BOW09]:
Can we bound the number of �xpoint iterations in a MSO formula ?

• Star-Height (�nite words/trees) [Has88, Kir05, CL10]:
Given a non-negative integer n: Does there exists a regular expression
recognizing L, and that uses at most n nesting of Kleene stars?

Indeed, every classical problem that can be reformulated in terms of exis-
tence of bounds for automata with counters can be solved using the cost function
theory. So we can see this new theory as a �toolbox� that allows us to show de-
cidability for a range of problems, for which other techniques were unsu�cient.
The more cost function theory develops, the more we can hope solving decidabil-
ity problems that were left open because we lacked the tools to approach them.
It is in particular likely to help with open problems related to regular languages
such as deciding the Mostowski hierarchy (this will be presented below).

Cost automata

To give some insight concerning the expressive power of regular cost functions,
we introduce below the formalism of B- and S-automata, that we call generally
cost automata. For the sake of keeping the description concise, we chose
not to present the other formalisms, that are necessary in the development of
the theory, at least in this part devoted to the scienti�c context. We will stay
general enough so that the de�nitions below can be used for any kind of input
structure, from �nite word to in�nite trees. That is we will not speak precisely
of the accepting condition, or the precise structure of the transition function.
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B-automata :

A B-automaton is a nondeterministic �nite automaton, with a �nite set of
counters. On each transition, actions on the counters can be performed. For
each counter, the following actions are allowed:

• Do nothing (ε),

• Increment (ic), and;

• Reset (r).

Typically, B-automata would be drawn as the following automata A and A′:

q0

A :

a : (ic, ε)

b : (ε, ic)

q1

A′ :
q2 q3

a, b : r

b : r b : r

a : ic a, b : r

The convention is that each transition is labelled a : (τ1, . . . ), where a is the
input letter for which the transition is allowed, and τi is the action (among ε, ic
and r) that should be performed on the ith counter when the transition is taken.
Ingoing edges without origin denote initial states, and outgoing edges without
destination denote �nal states. When writing, a, b : τ , this represents the two
transitions that are labelled a : τ and b : τ . We also remove the parentheses
from the notation when there is only one counter (case of the automaton A′).

The semantics of these automata is informally described as follows. The
counters start with value 0, and along a run, their values are updated according
to the transitions (ε leaves the value of the counter unchanged, ic adds 1 to its
value, and r sets it back to 0).

The semantic of a B-automaton A is the cost function [[A]]B from words to
N ∪ {∞} de�ned for all input words u by:

[[A]]B(u) = inf{n ∈ N : there is a valid run of A in which

no counter value ever exceeds n}.

In the above de�nition, the in�mum is considered in N ∪ {∞}. This means
that when there is no run of the automaton over some input, the corresponding
output value is ∞.

Let us remark that since this is considered as a cost function, replacing
�exceeds� by �exceeds or is equal� in the de�nition would not change the semantic
of A (up to ≈).

Example 2.1 Let us work on �nite words on alphabet {a, b}, and consider the
automata A and A' described above. On an input word u, the automaton A
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computes max(|u|a, |u|b), while A′ computes the size of the minimal block of
a's. The automaton A is deterministic and uses two counters: one for |u|a and
the other for |u|b. Since both counter have to stay below n, the optimal value
for n is the maximum of the two.

On the other hand, A′ is non-deterministic, and has only one counter. Each
run of this automaton counts a block of a's, so by using the best (i.e. minimal)
run, the automaton computes the minimal block of a's in the input word.

S-automata

As before, an S-automaton is a nondeterministic �nite automaton, with a �nite
set of counters which are updated at each transition. However, the set of atomic
counter actions is changed:

• Do nothing (ε),

• Increment (i),

• Reset (r).

• Check-Reset (cr).

As before, counters start with value 0, but this time only the checked values
(when action cr is performed) will be taken into account. The same expla-
nation justi�es the notation ic (short for increment-check) for increments in
B-automata.

The semantic of an S-automaton is the cost function de�ned by:

[[A]]S(u) = sup{n ∈ N : there is a valid run of A in which

every checked value is above n}.

This can be viewed as a dualization of B-automata : inf and sup have been
reversed in the de�nitions. Moreover, ifA is a classical automaton for a language
L, then [[A]]B = χL and [[A]]S = χL.

In this sense, switching B- and S- generalizes language complementation.

Example 2.2 We de�ne the two cost functions of Example 2.1, but this time
with S-automata:

5



p0

p2

p1

p3

a : i

b : ε

a, b : cr

a : ε

b : i

a, b : cr

q0 q1

a : i

b : cr

a : cr

The �rst automaton (union of the two on the left) is non-deterministic: on input
u, it guesses whether it will count |u|a or |u|b. Therefore, the S-semantic of the
automaton is max(|u|a, |u|b) by de�nition

The second automaton is (almost) deterministic: every block of a is counted
(the automaton is forced to guess the end of the word if it ends with a, to perform
a cr on the last block). This way, it computes the minimal size of these blocks,
since they all have to be bigger than the wanted n. Note that the last a can be
lost, but this does not change the semantic up to ≈.

Contributions of the thesis

The theory of regular languages is developed in many related, yet di�erent,
directions. In particular, the notion of regularity of languages is studied for usual
�nite words (the seminal works of Büchi, Elgot, Rabin, Scott, Trakhtenbrot,
. . . ), for in�nite words (the key results of Büchi, McNaughton and Safra), for
trees (Thatcher and Wright), and for in�nite trees (the famous result of Rabin
[Rab69]).

The thesis covers essentially this whole range of possibilities (but �nite trees).
The structure of the rest of the document follows this classi�cation. In Section 3,
the contribution for regular cost functions over �nite words are presented. The
case of in�nite words is the subject of section 4. Finally, Section 5 addresses the
case of in�nite trees.

3 Contributions : Finite words

As the theory of regular languages can be instantiated on various models of
words or trees, regular cost functions need to be considered in several such
situations. The thesis contributes to the theory of cost functions in all these
directions. In this �rst section, the contributions that are concerned with �nite
words are presented.
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What was known prior to the thesis was essentially decision procedures,
and procedures for e�ectively performing closure under certain operations, and
translation among various models of acceptors. For languages, another kind of
questions is the subject of intense research, the characterization of classes of
regular languages. The general question is of the form:

Can we characterize the regular languages that belong to a class
C? And if possible, can we decide whether a given regular language
belongs to the class?

where the class C can be the set of languages de�nable using a certain logic,
using a certain family of automata, etc. Such results witness usually a very
strong and deep understanding of the class under consideration.

In the thesis, the characterization of several classes of regular cost functions
over �nite words has been considered. The �rst one, the aperiodic fragment
generalizes a very famous result (in fact several) of Schützenberg, McNaughton,
Papert and Kamp. It is the subject of Section 3.1. In particular, the devel-
opment of this result requires the introduction of a not yet available notion,
the syntactic stabilisation monoid. The second class under consideration, tem-
poral cost functions has no equivalent for languages. This is the subject of
Section 3.2.

3.1 Aperiodic Class

The class of star-free languages o�ers a nice example of fruitful interaction be-
tween algebra and computer science. The original theorem by Schützenberger
[Sch65] states that languages expressible by star-free regular expressions are
exactly those recognizable by aperiodic monoids. This algebraic characteriza-
tion allows to show decidability of membership for this class. Later, Papert,
McNaughton and Kamp [MP71, Kam68] showed that this class is also char-
acterized by counter-free automata, �rst-order logic and linear temporal logic.
This extraordinary robustness of the class of �rst-order de�nable language made
of the Schützenberger-McNaughton-Papert-Kamp theorem the origin of a pro-
ductive branch of research.

I was attached to generalise these equivalences, starting with the di�erent
formalisms involved. In the remainder of this section, various (equivalent) for-
malisms are introduced, that represents the generalization of all the formalisms
involved in the classical result.

Cost Logics

We start our description of the models of computations involved in our descrip-
tion of the aperiodic case by the logical formalisms. There are two of them,
the temporal logic CLTL and the �rst order variant CFO. Let us introduce
successively their syntax, and then their semantics.

We will start with CLTL (for Cost Linear Temporal Logic), which generalises
LTL to the cost setting. Let us remind that LTL is a modal logic that is
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interesting from both pratictal and theoretical points of view. In particular, it
is well-suited for specifying a desired system behaviour, and its syntax without
variables is easy to handle, so it is often used for practical purpose in a context
of veri�cation. See for instance [GHR94] for an introduction to temporal logic.

We will directly give the grammar that describes the syntax of CLTL-
formulae over a �nite alphabet A:

ϕ := a ∈ A | Ω | ϕ ∧ ψ | ϕ ∨ ψ | Xϕ | ϕUψ | ϕU≤Nψ

Notice the absence of negations. However, any classical LTL-formula (where
negations are available) can still be represented, by pushing negations to the
leaves. The special symbol Ω stands for the end of the word. LTL is usually
used on in�nite words, where this symbol is not needed, but either negation
or the �Release� operation (dual of Until) is needed then. The other symbols,
except for U≤N are from classical LTL: a means that the current letter is a, ∧
and ∨ are conjunction and disjunction, Xϕ means that ϕ is true at the next
position, and ϕUψ stands for �ϕ Until ψ�, i.e. ψ is true somewhere in the future,
and ϕ is true until then.

The new construction ϕU≤Nψ is a slight modi�cation of the U operator. It
means that ψ is true somewhere in the future, and ϕ is false at most N times
in the meantime. The �Error variable� N is free and unique in the formula, i.e.
it is shared by all occurences of U≤N . We can also de�ne G≤Nϕ as ϕU≤NΩ,
meaning that ϕ is false at most N times in the future.

In the same way, we generalize �rst-order logic to CFO, de�ned with the
following grammar, where variables quantify over positions in the word:

ϕ := a(x) | x = y | x < y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ | ∀≤Nxϕ

The only di�erences with classical FO is the new operator ∀≤Nxϕ, and the
absence of negations. Again, since negations can be pushed to the leaves, this
logics embeds FO. As before, N is a unique free variable measuring a number
of errors. That is to say, ∀≤Nxϕ(x) means ϕ is false on at most N positions.

Semantics of Cost Logics

We will now describe how a formula of one of these logics can de�ne a cost
function. We start by extending the notion of a word being a model of a formula.
Here we additionally need to provide a value for the free variable N , in order to
be able to evaluate a formula over a word of A∗.

More formally, let ϕ be a CLTL or CFO formula. We write (u, n) |= ϕ to
signify that u ∈ A∗ satis�es the formula ϕ, with n ∈ N as value for N in ϕ (this
can be de�ned more rigorously by induction on the structure of ϕ).

Example 3.1 Let ϕ be the CLTL-formula G(aU≤N (b ∨ Ω)). This formula
requires that at any position of the input word, all positions but at most N until
the next b or the end of the word are labelled by a. Therefore, if we take as input
word u = aabbcbccacacbac, we have (u, 5) |= ϕ but (u, 3) 6|= ϕ, because of the
factor ccacacb which causes 4 errors.
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We now want to associate a cost function [[ϕ]] : A∗ → N∪{∞} to any formula
ϕ, of CLTL or CFO. This cost function is de�ned as follows:

[[ϕ]](u) = inf {n ∈ N : (u, n) |= ϕ} .

That is to say, we take the minimal value for N which makes the formula
true on the input word u. This value will contain information about quantitative
behaviours in u, since it is the threshold for u to be accepted by ϕ.

Example 3.2 • With ϕ and u from Example 3.1, we have [[ϕ]](u) = 4. The
function [[ϕ]] maps to any word u = v1bv2b . . . bvk, where each vi does not
contain any b, the value max1≤i≤k |vk|c.

• On alphabet A = {a, b}, we can represent the function f counting the
number of occurences of a in the word, with both CLTL and CFO: we have
f = [[G≤Nb]] = [[∀≤Nx b(x)]].

It is also important to notice that if ϕ is a classical formula for a language
L, then we can push negations to the leaves, and interpret ϕ as a cost logic
formula. It is easy to verify that [[ϕ]] = χL. Therefore, classical formulas and
languages are particular cases of cost functions, and all results we will show
inthe framework of cost functions can be in particular interpreted as theorem
on languages.

Aperiodic stabilisation monoids

Although we will not describe in detail the de�nition of stabilisation monoids
here, we give a brief description of the idea behind this model. Stabilisation
monoids are classical monoids extended with an operator ], acting on idempo-
tents (i.e. elements e such that e · e = e). This operator intuitively describes
the e�ect of �repeating a lot of times� an element. In a nutshell, a stabilisation
monoid is a monoid with additional structure describing quantitative behaviour.

Describing how these stabilisation monoids can recognize cost functions is
a lot harder than in the classical case (i.e. correspondance between monoids
and languages). For instance unlike in the case of language, we need deep
combinatorics theorems to give a semantic to stabilisation monoids. So we do
not presetn further this part of the theory.

CFO and CLTL are strictly less expressive than regular cost functions. Hence
we restrict the power of stabilisation monoids to match their expressivity. We
take here the same de�nition as in the classical case: a stabilisation monoid M
is aperiodic if there exists n ∈ N such that for all x ∈M , we have xn = xn+1.
This means the monoid cannot contain any nontrivial group.

Myhill-Nerode Equivalence

Myhill-Nerode equivalence is a key tool in language theory. It allows to obtain
an algebraic description of a language, starting from any other description. The
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generalisation to cost function was not available and is one of the contributions
of the thesis.

Let us remind the de�nition of the classical Myhill-Nerode equivalence for a
language L: we have u ∼L v if for all words x and y,

xuy ∈ L⇔ xvy ∈ L.

Then the syntactic monoid of L is given by the quotient A∗/∼L. This
monoid is the smallest possible recognizing L, and divides any monoid rec-
ognizing L. When generalising to cost functions, the main obstacle was that
quotienting the set of words cannot work anymore.

The following table sums up the concepts needed to de�ne the generalised
equivalence relation:

Languages Cost functions

Words A∗ ]-expressions A∗] (example : (b]a)])
Word with a hole aab_bbaa Context (_]a)]

Membership of a word in L Boundedness of f on a sequence of words
Equivalence ∼L over A∗ Equivalence ∼f over A∗]
A∗/∼L syntactic monoid A∗]/∼f syntactic stabilisation monoid

Some additional di�culties occur: for instance we have to restrict ]-expressions
to the well-formed ones, relatively to the cost function f . Moreover, this rela-
tion cannot be properly de�ned if f is not regular, which was not the case with
languages. It turns out that some of the behaviours of cost functions on �-
nite words are more reminiscent of ω-languages than of �nitary languages. For
instance the analog of well-formed ]-expressions would be ultimately periodic
words.

Algebraic characterization of CLTL fragment

We now have an abstract description of the syntactic monoid for any regular
cost function. Therefore, it is possible to show, by induction on the structure of
a CLTL-formula ϕ, that [[ϕ]] is recognized by an aperiodic stabilisation monoid.
This part still poses technical di�culties, because we have to consider the be-
haviours of CLTL-formulae on sequences of words generated by ]-expressions,
and in particular �nd some uniformity in these behaviours.

Conversely, we generalized a proof from [Wil99] to go from an aperiodic sta-
bilization monoid M to a CLTL-formula ϕ. The proof goes by induction on
(|M |, |A|). If M contains an element b 6= 1, we show that we can use the induc-
tion hypothesis on the stabilization monoid 〈Mb ∩ bM, ◦, \〉, which is aperiodic
and stictly smaller than M . Again, we have to deal with di�culties inherent to
the quantitative setting, in addition to the technicalities of the original proof.

Finally, we obtain the following theorem:

Theorem 3.3 For a regular cost function f , it is equivalent to be recognized by

• a CFO formula,
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• a CLTL formula,

• aperiodic stabilisation monoid.

As a consequence, it is decidable whether a regular cost function f can be
described by a CLTL-formula: we can compute the minimal stabilization monoid
for f , and test for aperiodicity.

Other results on CLTL

Since LTL is a formalism used in practice for veri�cation purpose, we are inter-
ested in the computational complexity properties of CLTL. By generalizing the
classical approach, we can obtain the following results:

Theorem 3.4 Let ϕ be a CLTL-formula. We can build B- and S-automata (of
size exponential in |ϕ|) for [[ϕ]]. The boundedness problem for [[ϕ]] is PSPACE-
complete.

It is interesting to notice that generalizing from LTL to CLTL induces no cost
in terms of computational complexity, for the satis�ability problem (generalised
to boundedness in the framework of cost functions) .

3.2 Temporal class

Another class of regular cost functions is studied: temporal cost functions.
Unlike the aperiodic class, this class is speci�c to cost functions in the sense that
it does not generalize a class of languages. Temporal cost functions are regular
cost functions in which one can only count consecutive events: for instance, over
the alphabet {a, b}, the maximal length of a sequence of consecutive letter a's is
temporal, while the number of occurrences of letter a is not. This corresponds to
the model of desert automata introduced by Kirsten and Bala [Kir04, Bal04].
This class can be of interest in the context of modelization of time.

We show that regular temporal cost functions admit various equivalent pre-
sentations. The �rst such representation is obtained as a syntactic restriction
of B-automata and S-automata. We show that for this class, it is enough for B-
or S-automata to have one counter to reach their full expressive power (this is
not the case for general regular cost functions).

Second, we provide an equivalent clock-based presentation, in which the tem-
poral cost function is represented as a regular language over words (called Uni-
form representation) labeled with the ticks of a clock as an extra information.
We show all the closure results for regular temporal cost functions (e.g., min,
max, etc...) using this presentation. As opposed to the general theory of regular
cost functions, all these results are obtained by a translation to the theory of
regular languages. These constructions are of better complexity, both in terms
of number of states of automata, and in terms of technicality of the constructions
themselves.
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Like in the aperiodic case, we show an algebraic characterization of the
temporal class. Since the corresponding property of stabilization monoids can
be e�ectively tested, we obtain decidability of membership in the temporal class,
for arbitrary regular cost functions as input.

The big picture

Finally, we take a look at the intersection between the aperiodic class and the
temporal class. We show that this intersection is characterized by the logic
Prompt-LTL. This logic has been introduced independently in a context of
veri�cation [KPV09] with the idea of bounding time intervals, but it can be seen
as a restriction of CLTL where the operator ϕU≤Nψ is replaced by ⊥U≤Nψ.

Some of the results on �nite words can be summarized by the following
picture:

Prompt-LTL
Aperiodic
CLTL
CFO

B-temporal (with 1 counter)
S-temporal (with 1 counter)

Temporal monoid
Uniform

Regular cost functions
B/S automata

Stabilisation monoids

4 Contributions: In�nite words

Cost functions can be de�ned on in�nite words in the same way as for �nite
words. Automata now have in�nitary condition, like Büchi (accepting states
must be seen in�nitely often in an accepting run) or Parity (each state has an
integer rank, and the higher rank appearing in�nitely often in an accepting run
must be even).

4.1 Regular cost functions on in�nite words

Since switching between B- and S-automata is the cost function analog of com-
plementation, the Büchi complementation theorem (stating that the class of
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ω-languages recognizable by nondeterministic Büchi automata is closed under
complement) is generalized in the following way:

Theorem 4.1 On in�nite words, B-Büchi automata and S-Büchi automata are
e�ectively equivalent (in terms of recognized cost functions). Cost functions rec-
ognized by such automata will be called regular. Equivalence and boundedness
are decidable for regular cost functions on in�nite words.

We are also interested in a special form of automata: weak B-alternating
automata. The weakness describe a condition on the structure of the automata:
every strongly connected component in its transition graph is either accepting
or rejecting. Therefore, any in�nite play of such an automaton stabilizes either
in accepting states, or in rejecting states. The semantic of such automata is
de�ned as a game between two players, one trying to minimize the counter value
while satisfying the acceptance condition, and the other trying to maximize the
counter value, or to force a failure of the acceptance condition. This model has
been introduced in [VB11] in the more general context on in�nite trees.

On the logical side, let CMSO (for Cost Monadic Second-Order logic) be
CFO extended with quanti�cation over set of positions. We also de�ne the
weak variantWCMSO where second-order quanti�cation is restricted to �nite
sets. This last logic is equivalent to the model of weak B-alternating automata
[VB11]. In the classical setting, weak alternating automata and weak MSO
have received a lot of attention, because these formalisms o�er a good trade-o�
between expressivity and simplicity of computational properties and procedures
(like complementation or model-checking).

We show the following theorem:

Theorem 4.2 For a cost function on in�nite words, it is equivalent to be

• regular,

• recognized by a CMSO formula,

• recognized by a WCMSO formula,

• recognized by a weak B-alternating automaton.

In the classical setting, equivalence between MSO and Weak MSO is usually
proved by using deterministic parity automata. Such automata do not
always exist in the framework of cost functions (deterministic B-automata are
strictly weaker than nondeterministic ones), so we have to follow another route
to prove this theorem. We �rst show a normal form for B-Büchi automata:
for all regular cost function, there is a B-Büchi automaton recognizing it, such
that all transitions leaving Büchi states perform a reset of all counters. This
allows to simplify the interaction between counter behaviour and acceptance
condition, and to generalize a proof from Kupferman and Vardi [KV01], going
from nondeterministic Büchi automata to weak alternating automata.
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4.2 Kamp Theorem

We continued the study of CLTL, this time on in�nite words. Kamp Theorem
states that FO and LTL have same expressive power in terms of recognized
language.

The corresponding theorem on cost functions has been shown in the thesis:

Theorem 4.3 For a regular cost function on in�nite words, it is equivalent to
be recognized by

• CFO-formula,

• CLTL-formula,

• CLTL-formula with both future and past operators.

Going from CLTL-formula to CFO-formula is straightforward: it su�ces to
express all operators of CLTL by means of CFO-formulas.

The converse is a lot harder, and is proved here by generalizing a proof in
[GPSS80], which starts by enriching temporal logic with past operators. One
key argument of the proof is to show separability of such formulas, i.e. that any
formula with future and past operators can be transformed into an equivalent
formula which is a boolean combination of past formulas and future formulas.
The technical di�culty of this lemma is increased in the framework of cost
functions, because quantitative behaviours interact with temporal operators in
unexpected ways.

5 Contributions: In�nite trees

All models of cost automata on in�nite words can be generalized to in�nite
trees. That is, automata now take as input in�nite binary trees, with their nodes
labelled by letters from A. We will not detail here the precise de�nitions of such
automata. As before, they come in several variants: B or S, nondeterministic
or alternating, with acceptance condition Weak, Büchi or Parity.

This new framework brings several new di�culties, for instance witnessed
by the fact that decidability of the boundedness problem for B-Büchi automata
is still open on in�nite trees.

The starting point of the work on in�nite trees in the thesis was to generalize
the following theorem:

Theorem 5.1 [Rab70, KV99] Let L be a language of in�nite trees. The follow-
ing statements are equivalent:

• L is described by a weak MSO formula,

• L is recognized by a weak alternating automaton,

• Both L and its complement are recognized by nondeterministic Büchi au-
tomata.
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This can be summarized by the following picture:

Weak automata
Weak MSOBüchi Büchi

The generalizations of these classes were already de�ned for cost functions:
complementing corresponds to switching between B and S, and weak cost

functions, i.e. cost functions de�nable by WCMSO or weak B-alternating
automata equivalently, were studied in [VB11]. Therefore, we conjectured (in
joint work with Michael Vanden Boom) that this picture could be lifted to cost
functions, i.e. that cost functions de�nable by both nondeterministic B- and
S-Büchi automata were exactly weak cost functions.

But it turns out that the class lying at the intersection of B-Büchi and S-
Büchi strictly contains the weak class. Indeed, this new class, that we call quasi-
weak is speci�c to cost functions (since its restriction to languages coincides
with the weak class, by the above theorem). As for the weak class, quasi-weak
cost functions can be de�ned by a syntactical restriction on automata recogniz-
ing them: a quasi-weak automaton is an alternating B-Büchi automaton, such
that any cycle which contains both accepting states and rejecting states must
increment one of the counter without resetting it.

Weak automata
WCMSO

B-Büchi S-Büchi

Quasi-weak

To establish this picture, we have to show in particular that if a cost function
f is de�nable by both non-deterministic B- and S-Büchi automata, then it is
de�nable by a quasi-weak automaton. The proof of this fact is very technical
and new kind of objects and notions were introduced to tackle it. In particular,
we introduce cost tree automata equipped with both kind of counters: B and S.
With suitable semantics, we show that is is possible to obtain a normal form
for these automata, were counters behave with respect to a global hierarchy.

This allows us to generalize the proof from [KV99], where a weak alternating
automaton counted �blocks� on two simultaneous runs of Büchi automata, in
order to build a �trap� leading to a contradiction. We have generalized to the
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cost setting the notions of blocks and trap, and the new de�nitions can yield a
proof, provided we �rst convert the product of the B- and S-Büchi automaton
to its equivalent normal form described above.

The other way around is obtained by studying the shape of strategies in
quasi-weak B-games, and to convert these games into di�erent ones where
classical results can be applied. From this, we show that is is possible to sim-
ulate a quasi-weak automaton by a non-deterministic B- or S-Büchi one. The
simulation by S-automata allows us to describe a decision procedure for bound-
edness of cost functions de�nable by quasi-weak automata. In fact, if f and g
are de�ned by quasi-weak automata, we show that f ≈ g is decidable. This
class of cost functions is currently the largest one such that the boundedness
(or equivalence) problem is known to be decidable on in�nite trees.

Back to languages

The Mostowski index problem is a di�cult open problem about regular
language on in�nite trees: given a language L and an interval of integers [i, j],
is there a non-deterministic parity automaton for L using parity ranks [i, j]?

The most signi�cant advance on this problem has been made by Niwinski
and Walukiewicz [NW05]: they showed that the problem is decidable if L is
given by a deterministic tree automaton. Since regular tree languages cannot
always be recognized by deterministic automata, this is not enough to answer
the general question.

A special case of this problem, which has drawn interest, is the weak de�n-
ability problem: given a regular tree language L, can we decide whether L is
weak?

By using quasi-weak automata, we showed that a special case of this problem
can be solved: if the input automaton is Büchi, then it is decidable whether the
language is weak.

This is done by reducing this problem to the boundedness of quasi-weak
B-automata, which we showed decidable.

Colcombet and Löding showed [CL08] that for any [i, j], there is a reduction
from [i, j]-de�nability to boundedness of [i, j]-parity B-automata, but this last
problem remains open, except for intervals [2n, 2n + 1] (corresponding to co-
Büchi condition).

6 Conclusion

The theory of regular cost functions is a new and promising �eld of research in
automata theory. This theory at the same time extends many key classical lan-
guage theoretic theorems, and provides new techniques and decidability results.
In this thesis, several new results for cost functions are developed. These go in
several directions:

• The central notion of the syntactic monoid of a language, was gener-
alized to the framework of cost functions. This object plays the same
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important rôle for cost functions.

• Following the long line of research in automata theory devoted to the
analysis of fragments of regular languages, several classes of regular cost
functions have been e�ectively characterized. This includes a gen-
eralization of the deep Schützenberger-McNaughton-Papert-Kamp

theorem for languages, as well as the characterization of new classes,
such as temporal cost functions.

• Over in�nite words and trees, the relationship between between cost monadic
and weak cost monadic logic is analysed. On in�nite words, once more,
these two logics are of same expressive power, but the proofs are radically
di�erent from the language case. On in�nite trees, these two logic dif-
fer, as for languages, but this time, the result of Rabin stating that weak
monadic logic de�nes exactly the languages that are both Büchi and of
Büchi complement fails for cost functions. This motivates the introduc-
tion of a new class of regular cost functions over in�nite trees, quasi-weak
cost functions that corresponds to the characterization of Rabin.

• These last results over in�nite trees paved the way to the e�ective decision
of some classes of the Mostowski hierarchy.

Overall these results showed that a large part of automata theory can be raised
to the level of cost functions. This is obtained at the price of introducing many
new ideas, and yields new insights, even for classical automata theory itself.

Several aspects of this thesis were particularly challenging, for di�erent rea-
sons:

• The objects manipulated sometimes become a lot more complicated than
their classical analogs (for instance the semantics of stabilisation monoids,
or automata on in�nite trees).

• Some of the theorems that are generalized were already technically chal-
lenging in the classical theory. Since cost function theory embeds language
theory, the proofs described in the thesis must contain in particular clas-
sical proofs for these hard theorems.

• A lot of new intuitions had to be developed to be able to understand
deeply the di�erent objects of cost functions theory. The interplay be-
tween quantitative behaviours and other constraints raised new problems,
that could not be solved with ideas taken from existing proofs. The tech-
nical machineries that were required to tackle these di�culties often were
completely speci�c to cost functions, with no analog from language theory.

7 Publications relative to the thesis

The publications corresponding to the thesis are the following:
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1 Regular temporal cost functions, with Thomas Colcombet and Sylvain
Lombardy, ICALP 2010 [CKL10]

2 Linear temporal logic for regular cost functions, STACS 2011 [Kup11]

3 Quasi-weak cost automata: a new variant of weakness, with Michael Van-
den Boom, FST&TCS 2011 [KV11].

4 On the expressive power of cost logics over in�nite words, with Michael
Vanden Boom, ICALP 2012 [KV12].

Several paper are also resulting from the work of the thesis.

5 Linear temporal logic for regular cost functions, Submitted to Logical
Methods in Computer Science.

6 Deciding the weak de�nability of Büchi de�nable tree language, with
Thomas Colcombet, Christof Löding and Michael Vanden Boom, to be
submitted to CSL.

6 Two-Way Cost Automata and Cost Logics over In�nite Trees, with Achim
Blumensath, Thomas Colcombet, and Michael Vanden Boom, to be sub-
mitted.
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