Two leg spin ladders under magnetic field

Edmond Orignac

CNRS and Physics Laboratory of ENS-Lyon, France

11 juin 2009
Collaboration

- Grenoble, France: C. Berthier, M. Horvatic, M. Klanjsek
- Toulouse, France: D. Poilblanc, S. Capponi
- Salerno, Italy: R. Citro
The antiferromagnetic spin-1/2 two-leg ladder

\[H = \sum_{n} J_{\parallel} (\vec{S}_{n,1} \cdot \vec{S}_{n+1,1} + \vec{S}_{n,2} \cdot \vec{S}_{n+1,2}) + J_{\perp} \vec{S}_{n,1} \cdot \vec{S}_{n,2} \]

Ground state is a spin singlet. Excited states are spin 1 triplets, separated from the ground state by a gap.
Experimental realizations

The \(\text{Cu}^{2+} \) ions are carrying the spins 1/2. Superexchange is mediated through the \(\text{O}^{2–} \) or \(\text{Br}^{–} \) ions.
Structure of the ladder material SrCu_2O_3

Dots : Cu^{2+} ions ; Corners of squares : O^{2-} ions.
Magnetic susceptibility of the ladder material \(\text{SrCu}_2\text{O}_3 \)

\[
\chi(T) = \frac{\alpha}{\sqrt{T}} e^{-\Delta/(k_B T)} \quad \text{with} \quad \Delta/k_B = 420 \text{ K}.
\]
Two leg ladder under a magnetic field

Case $J_{||} = 0$

$S^z = -1$

$S^z = 0$

$S^z = 1$

⇒ Beyond a critical field, ground state = triplets with $S^z = 1$.

$J_{||} \neq 0$ ⇒ broadening of the transition
Pseudospin description of the low energy subspace

- $\tau_z = -1/2 \Rightarrow$ singlet on the rung
- $\tau_z = +1/2 \Rightarrow$ triplet $S^z = 1$ on the rung

\[
S_{n,p}^+ \rightarrow \frac{(-)^p}{\sqrt{2}} \tau_n^+; \quad S_{n,p}^z \rightarrow (1 + 2\tau_n^z)/4
\]
Effective Hamiltonian

\[
H_{\text{eff.}} = \frac{J_{\|}}{2} \sum_n (\tau^+_n \tau^+_n + \tau^-_n \tau^-_n + \tau^z_n \tau^z_{n+1}) \\
- (h - J_{\perp} - J_{\|}) \sum_n \tau^z_n
\]

XXZ spin-1/2 chain ⇒ Luttinger liquid state.
Exact magnetization curve can be obtained.
Two leg spin ladders under magnetic field

E. Orignac

Introduction

Coupled ladders

Dzyaloshinskii-Moriya interactions in ladders

Theoretical magnetization curve at zero temperature

\[M \propto (H - H_{c1})^{1/2} \]

\[H_{c2} \]

\[H_{c1} \]

\[M \]

\[\frac{1}{2} \]
Luttinger liquid description of the magnetized state

\(\mathcal{H} = \int \frac{dx}{2\pi} \left[u(H)K(H)(\pi \Pi)^2 + \frac{u(H)}{K(H)}(\partial_x \phi)^2 \right] \),

\([\phi(x), \Pi(x')] = i\delta(x - x')\)

\(S_{n,p} = (-)^p \lambda_x(H) e^{i \pi \int_{x-2\pi n}^{x} dx' \Pi(x')}\)

\(S_{n,p} = -\frac{a}{\pi} \partial_x \phi + \lambda_z(H) \cos(2\phi(2\pi n) - (1 - 2m(H))\pi n)\)
Magnetization curve for \((5\text{IAP})_2\text{CuBr}_4 \cdot 2\text{H}_2\text{O}\)

What is the effect of interladder coupling?

1. on the zero field spin gap state?
2. on the Luttinger liquid state for applied field?
Coupled ladders

\[
H = \sum_{n,m} J_{\perp} \vec{S}_{n,m,1} \cdot \vec{S}_{n,m,2} + J_{\parallel} (\vec{S}_{n+1,m,1} \cdot \vec{S}_{n,m,1} + \vec{S}_{n+1,m,2} \cdot \vec{S}_{n,m,2})
+ J'_{\perp} \sum_{n,m} S_{n,m,2} \cdot S_{n,m+1,1}
\]

\[J_{\perp}, J_{\parallel} \gg J'_{\perp}.\]
Stability of the gapful state

A Bond Operator Theory mean field treatment lead to a stable spin gap for $J'_\perp < 0.12J_\perp$.

More generally, the presence of the spin gap in the isolated ladder implies that its ground state is stable in the presence of weak perturbations.
Two leg spin ladders under magnetic field

E. Orignac

Introduction

Coupled ladders

Dzyaloshinskii-Moriya interactions in ladders

Stability of the magnetized state

Interladder coupling gives a term:

\[\frac{J'_\perp}{4} \sum_{n,m} \left(-\tau^+_n m \tau^-_{n,m-1} - \tau^-_{n,m} \tau^+_n m_{-1} + \tau^z_{n,m} \tau^z_{n,m-1} \right) \]

This term can stabilize a phase with \(\langle \tau^+_n m \rangle \neq 0 \) i.e. an antiferromagnetic order in the plane perpendicular to the applied magnetic field.
Another interpretation of antiferromagnetic order

\[b_i \leftrightarrow \tau_i^- \; ; \; n_i = b_i^\dagger b_i \rightarrow \tau_i^z \quad \text{with constraint} \quad (b_i^\dagger)^2 = 0 \]

(forbidden double occupancy).

\[\mathcal{H} = -\sum_{i,j} t_{ij} b_i^\dagger b_j + \sum_{i,j} V_{ij} n_i n_j, \]

⇒ Bose Einstein condensation of magnons.
Two leg spin ladders under magnetic field

E. Orignac

Introduction

Coupled ladders

Dzyaloshinskii-Moriya interactions in ladders

Phase diagram in T-H plane

- Critical
- Quantum
- Spin Gap
- BEC

T_N

T

h_c

h

T_{N}

Gap

Spin BEC
Experiments

Materials:
- TiCuCl$_3$, KCuCl$_3$ (3D dimer network)
- BaCuSi$_2$O$_6$ (2D dimer network)
- BPCP (coupled ladders)

Probes:
- magnetization measurements
- Neutron scattering
- NMR, ESR
Coupled ladders with $J_\perp \gg J_\parallel$

Each ladder is the Luttinger liquid state

$$\mathcal{H} = \int dx \sum_m \left[u(H) K(H) (\pi \Pi_m)^2 + \frac{u(H)}{K(H)} (\partial_x \phi_m)^2 \right]$$

$$- J_\perp \lambda_x^2 \sum_{\langle m, m' \rangle} \cos(\theta_m - \theta_{m'})$$

$\theta_m = \pi \int x \Pi(x')$

Mean field theory:

$\cos(\theta_n - \theta_{n'}) \rightarrow \langle \cos \theta_n \rangle \cos \theta_{n'} + \cos \theta_n \langle \cos \theta_{n'} \rangle$

Transition temperature from mean field theory

$$1 = zJ' \lambda_x^2 \chi \cos \theta(\vec{Q}, H, T_N(H))$$

Camel-Shaped $T_N(H)$ for $J_\perp \gg J_\parallel$.

-3.00 -1.00 1.00 3.00
0.02 0.03 0.04 0.05 0.06 0.07
Γ_c

\tilde{h}

Two leg spin ladders under magnetic field
E. Orignac

Introduction
Coupled ladders
Dzyaloshinskii-Moriya interactions in ladders

E. Orignac
Two leg spin ladders under magnetic field
$J_\perp/k_B = 12.9 K$, $J_\parallel/k_B = 3.6 K$.
More complete theory needed

\[J_\perp \gg J_\parallel \] not satisfied. Mapping on effective XXZ chain not applicable, but Luttinger liquid description still valid.

- accurate determination of \(u(H), K(H), \lambda_x(H) \) from DMRG
- determination of order parameter at \(T = 0 \) from sine-Gordon model.
Two leg spin ladders under magnetic field

E. Orignac

Introduction

Coupled ladders

Dzyaloshinskii-Moriya interactions in ladders

NMR measurements on BPCP

Two leg spin ladders under magnetic field

E. Orignac

Introduction

Coupled ladders

Dzyaloshinskii-Moriya interactions in ladders

NMR measurements on BPCP

Dzyaloshinskii-Moriya interaction

\[H_{DM} = \vec{D} \cdot (\vec{S}_1 \times \vec{S}_2) \]

results from relativistic spin-orbit interactions.
A transverse staggered magnetization that does not break the lattice symmetry is seen in NMR measurements.

Dzyaloshinskii-Moriya interactions seem to explain this observation.
Ladder with Dzyaloshinskii-Moriya interactions

\[H = \sum_n \left[J_\parallel (\vec{S}_{n,1} \cdot \vec{S}_{n+1,1} + \vec{S}_{n,2} \cdot \vec{S}_{n+1,2}) + J_\perp \vec{S}_{n,1} \cdot \vec{S}_{n,2} \right. \\
- h(S_{n,1}^z + S_{n,2}^z) \left] + H_{DM} \right. \\
H_{DM} = \sum_n (-)^n \vec{D} \cdot (\vec{S}_{n,1} \times \vec{S}_{n,2}) \\
\]

where \(\vec{D} = D\hat{y} \).
Two leg spin ladders under magnetic field

Numerical study

Introduction
Coupled ladders
Dzyaloshinskii-Moriya interactions in ladders

E. Orignac
Strong coupling approach

\[H_{\text{DM,eff.}} = \frac{D}{\sqrt{2}} \sum_n (-1)^n \tau_x^n. \]

Can be mapped to the quantum sine-Gordon model.

\[H = H_{\text{LL}} - \frac{D\lambda_x}{a\sqrt{2}} \int dx \cos \theta \]

Solitons and breathers in the classical sine-Gordon

The equations of motions of the classical sine-Gordon model possess soliton and antisoliton solutions.

solitons and antisolitons can form bound states called breathers.
Breather energies are quantized:

\[M_n = 2M_0 \sin \left(\frac{\pi n}{2 \cdot 8K(H) - 1} \right), \]

where \(M_0 \) is soliton energy, \(n \) is integer and \(1 \leq n < 8K - 1 \). Breathers excitations will give peaks in Raman scattering measurements.
Conclusions

- Two leg spin-1/2 ladders under magnetic field behave as a Luttinger liquid for field larger than the spin gap.
- At sufficiently low temperature, the Luttinger liquid is unstable to antiferromagnetic ordering.
- A *quantitative* comparison of theory with experiment is possible in the case of the organic ladder BPCP.
- Dzyaloshinskii-Moriya interactions can spoil the Luttinger liquid state under field.
- A signature of Dzyaloshinskii-Moriya interaction in the ladder is the presence of breathers in the partially magnetized state.
Perspectives

- Other 1D spin gap materials (Haldane gap, dimerized chains...)
- Field induced ordering in 2D/3D materials (TlCuCl$_3$...)
- Effect of disorder (Mg$^{2+}$, Zn$^{2+}$ non-magnetic impurities)