CR 13: Graph Decompositions
Homework 1

Date: 28/09/2021, to hand in by 26/10/2021
Total Marks: 20

• You can handwrite or type your composition.
• The 3 exercises are independent. You may tackle them in any order.
• For each question, you may of course consider the statements of the previous questions as true even if you could not prove them.
• We encourage you to draw figures whenever you feel that they will be useful for your reader.

1 Treewidth of a particular family of planar graphs (3 marks)

Let us consider the planar graph G_n on $3 \cdot 2^n - 2$ vertices obtained from two full binary trees with height n, hence 2^n leaves, by identifying pairs of homologous leaves and adding a path linking the identified leaves, in a planar way. See figure 1 for an illustration of G_3.

![Figure 1: The planar graph G_3.](image)

Q.1) Show that for every integer $n \geq 2$, the treewidth of G_n is at least 3 and at most 4. Bonus point, if you show that for every integer $n \geq 4$, the treewidth of G_n is precisely 4. 3+1 marks

2 Maximum k-Coverage in planar graphs (9 marks)

Maximum k-Coverage generalizes the k-Vertex Cover problem by asking whether k vertices touching at least p edges exist. Note that if one sets p to $|E(G)|$, Maximum k-Coverage is indeed equivalent to k-Vertex Cover. In particular, Maximum k-Coverage is NP-complete.

<table>
<thead>
<tr>
<th>Maximum k-Coverage</th>
<th>Parameter: k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph G and two positive integers k and p.</td>
<td></td>
</tr>
<tr>
<td>Question: Is there a set $S \subseteq V(G)$ such that $</td>
<td>S</td>
</tr>
</tbody>
</table>
Importantly we consider \(k \) as the parameter, and not \(p \), nor a combination of \(p \) and \(k \). Contrary to \textit{k-Vertex Cover}, \textit{Maximum \(k \)-Coverage} does \textit{not} admit a fixed-parameter tractable (FPT) algorithm in general graphs, i.e., one with running time \(f(k)|V(G)|^{O(1)} \) for some computable function \(f \). The goal of this exercise is to design FPT algorithms for \textit{Maximum \(k \)-Coverage} when restricted to planar graphs.

\textbf{Q.2)} Present an algorithm solving \textit{Maximum \(k \)-Coverage} in time \(2^{|V(G)|^{O(1)}} \) when the (non-necessarily planar) input \((G,k,p)\) comes with a nice tree decomposition of \(G \) of width \(t \). Detail the correctness only in the case of the introduce node. \hfill 2.5 marks

\textbf{Q.3)} Using the previous question show that \textit{Maximum \(k \)-Coverage} admits a \(2^{O(k)}|V(G)|^{O(1)} \) time algorithm in planar graphs. \hfill 2 marks

We will now find a faster algorithm with running time \(2^{O(\sqrt{k})}|V(G)|^{O(1)} \).

\textbf{Q.4)} Explain why the bidimensionality technique (small treewidth or large grid as minor or as edge contraction) does not work \textit{as is} for the \textit{Maximum \(k \)-Coverage} problem. \hfill 0.5 marks

We recall that \(X \subseteq V(G) \) is a dominating set of \(G \) whenever \(N[X] = V(G) \), that is, \(X \) and its neighborhood spans the entire vertex set of \(G \).

\textbf{Q.5)} Given any graph \(G \), find a polytime-computable ordering of its vertices, say, \(v_1, v_2, \ldots, v_{|V(G)|} \), such that if the input \((G,k,p)\) of \textit{Maximum \(k \)-Coverage} has a solution, then it has one solution, \(S \), such that there is an integer \(r \) satisfying both \(S \subseteq \{v_1, \ldots, v_r\} \) and \(S \) is a dominating set of the graph \(G'[\{v_1, \ldots, v_r\}] \), i.e., the subgraph of \(G \) induced by \(\{v_1, \ldots, v_r\} \).

\textit{Hint: the adequate ordering is not proper to planar graphs, and can break ties arbitrarily.} \hfill 2 marks

For the next question, you can use without a proof that, there is a polytime algorithm that, given any planar graph \(G \) and positive integer \(k \), outputs a nice tree decomposition of \(G \) of width \(20k \) or an edge contraction of \(G \) isomorphic to the \(k \)-by-\(k \) triangulated grid.

\textbf{Q.6)} Deduce an algorithm solving \textit{Maximum \(k \)-Coverage} in planar graphs in \(2^{O(\sqrt{k})}|V(G)|^{O(1)} \). \hfill 2 marks

\section{3 Breakable permutations (8 marks)}

Let \(\sigma \) be a permutation of the set \([n] : = \{1, \ldots, n\} \), that is a bijection of \([n] \) into itself. If \(S \) is a subset of \([n] \), we denote by \(\sigma(S) \) the set of images of elements of \(S \). Let \(n \leq m \) be two positive integers. A permutation \(\tau \) of \([n] \) is a \textit{subpermutation} of \(\sigma \) of \([m] \) if there is an increasing injective function \(f \) from \([n] \) into \([m] \) such that for all pairs of distinct \(i, j \) in \([n] \) we have \(\tau(i) < \tau(j) \) if and only if \(\sigma(f(i)) < \sigma(f(j)) \). If such an \(f \) exists then we write \(\tau \prec_s \sigma \).

\textbf{Q.7)} Show that \(\prec_s \) is a partial order. \hfill 0.5 marks

We say that \(\sigma \) of \([n] \) is \textit{breakable} if \(n = 1 \) or if there exists \(i \in [n - 1] \) such that \(\sigma([i]) = [i] \) or \(\sigma([i]) = [n] \setminus [n - i] \), and if this property also holds for all subpermutations of \(\sigma \).

\textbf{Q.8)} Find all permutations of \([4] \) which are not breakable. \hfill 1.5 marks

\textbf{Q.9)} Propose an \(O(n^2) \) algorithm which tests if a permutation of \([n] \) is breakable or not. \hfill 2 marks

\textbf{Q.10)} Show that \(\prec_s \) is a well-quasi-order on the set of breakable permutations. \hfill 4 marks