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Abstract

In this paper, we study three connection games among the most widely played:
havannah, twixt, and slither. We show that determining the outcome of an
arbitrary input position is PSPACE-complete in all three cases. Our reductions
are based on the popular graph problem generalized geography and on hex
itself. We also consider the complexity of generalizations of hex parameterized
by the length of the solution and establish that while short generalized hex
is W[1]-hard, short hex is FPT. Finally, we prove that the ultra-weak solution
to the empty starting position in hex cannot be fully adapted to any of these
three games.
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1. Introduction

Since its independent inventions in 1942 and 1948 by the poet and mathe-
matician Piet Hein and the economist and mathematician John Nash, the game
of hex has acquired a special spot in the heart of abstract game aficionados. Its
purity and depth has lead Jack van Rijswijck to conclude his PhD thesis with
the following hyperbole [1].

Hex has a Platonic existence, independent of human thought. If
ever we find an extraterrestrial civilization at all, they will know hex,
without any doubt.

Hex not only exerts a fascination on players, but it is the root of the field
of connection games which is being actively explored by game designers and
researchers alike [2].
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A connection game is a kind of abstract strategy game in which players try
to make a specific type of connection with their pieces [2]. In many connection
games, the goal is to connect two opposite sides of a board. In these games,
players take turns placing or/and moving pieces until they connect the two sides
of the board. Hex, y, and twixt are typical examples of this type of game.
However, a connection game can also involve completing a loop (havannah),
connecting all the pieces of a color (lines of action), or forbidden patterns
(slither).

The focuses of research on abstract strategy games and on connection games
in particular include the design and programming of strong artificial players
and solvers [3, 4], as well as theoretical considerations on aspects specific to
connection games such a virtual connections and inferior cells [1, 5, 6, 7].

Developing an artificial player for a strategy game typically involves adapting
standard techniques from the game search literature, in particular the clas-
sical Alpha-Beta algorithm [8] or the more recent Monte Carlo Tree Search
paradigm [9, 3]. These algorithms which explore an exponentially large game
tree are meaningful when optimal polynomial time algorithms are impossible
or unlikely. For instance, tree search algorithms would not be used for nim and
Shannon’s edge switching game which can be played optimally and solved
in polynomial time [10].

Computational complexity is a theoretical tool used to gain formal intuition
on families of problems. It can indicate that a problem is unlikely to be solvable
in polynomial time and that exponential algorithms might be the best bet. The
complexity class PSPACE comprises those problems that can be solved on a Turing
machine using an amount of space polynomial in the size of the input. The
prototypical example of a PSPACE-complete problem is the Quantified Boolean
Formula problem (qbf) which can be seen as a generalization of sat allowing for
variables to be both existentially and universally quantified. Proving that a game
is PSPACE-hard shows that a variety of intricate problems can be encoded via
positions of this game. Additionally, it is widely believed in complexity theory
that if a problem is PSPACE-hard, then it admits no polynomial time algorithms.

For this reason, studying the computational complexity of games is also a
popular research topic. The complexity class of chess and go was determined
shortly after the very definition of the appropriate classes and other popular
games have been classified since then [11, 12]. More recently, we studied the
complexity of trick-taking card games which notably include bridge, skat,
tarot, and whist [13].

Connection games have received less attention. Besides Even and Tarjan’s
proof that Shannon’s vertex switching game is PSPACE-complete [14] and
Reisch’s proof that hex is PSPACE-complete [15], the only complexity results
on connection games that we know of are the PSPACE-completeness of virtual
connection detection [16] in hex, the NP-completeness of dominated cell detection
in Shannon’s vertex switching game [17], as well as an unpublished note
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showing that a problem related to twixt is NP-complete [18].1
The games that we study in this paper rank among the most notable connec-

tion games. The game of twixt by Alex Randolph [20] was first commercialized
in the 1960s and was short-listed for the prestigious Spiel des Jahres award in
1979. Notwithstanding hex, Christian Freeling’s havannah is the connection
game that has attracted the most interest from researchers and programmers.
This may be attributed to Freeling challenging programmers to build an AI able
to beat him in at least one game in a ten-game match before 2012. Of course,
Christian Freeling could not have foreseen the advent of the Monte Carlo Tree
Search algorithm and the prize money of the Havannah Challenge 2012 was
awarded after a man-machine match in October 2012.2 Slither is a more recent
addition to the connection game family as it was designed by Corey Clark in
2010. Nevertheless, the introduction of forbidden patterns mechanics in this
game has already proved quite influential in connection game design.3 The
two-player game slither that we study in this article should not be confused
with the Japanese single-player puzzle slither link which has been the object
of independent papers [21, 22].

The first two games were the main topic of multiple master’s theses and
research articles [23, 18, 24, 25, 26, 27, 4] and all three gave rise to competitive
play. High-level online competitive play takes place on www.littlegolem.net.
Finally, live competitive play can also be observed between human players at the
Mind Sports Olympiads where an international twixt championship has taken
place every year since 1997, as well as between havannah computer players at
the ICGA Computer Olympiad since 2009.4

Our main contributions in this paper are diverse.5

1. We establish that havannah, twixt, and slither are PSPACE-complete.
2. We study the parameterized complexity of hex with the length of a

solution as parameter and we show that while short generalized hex
is W[1]-hard, short hex is FPT.

3. We provide a formal proof that planar slither does not admit draws, as
claimed by its designer, but that it heavily depends on the topology of the
board.

4. We demonstrate that the John Nash’s ultra-weak solution approach for
hex can only be adapted to twixt, havannah, and slither to limited
extent.

1For a summary in English of Reisch’s reduction, see Maarup’s thesis [19].
2See the press release at http://mindsports.nl/index.php/arena/havannah/641.
3See for example the discussion at https://www.boardgamegeek.com/thread/1081423/

new-connection-games-slither-restriction.
4See www.boardability.com/game.php?id=twixt and www.grappa.univ-lille3.fr/icga/

game.php?id=37 for details.
5This article is based on two conference papers but improves upon them and extends our

previous work significantly [28, 29]. The PSPACE-completeness proof for havannah has been
simplified greatly. The parameterized complexity results are new. The discussion on ultra-weak
solutions has been detailed and extended to twixt and havannah.
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To the best of our knowledge, our result on short hex constitute the first
tractability result in the field of Connection Games since Bruno and Weinberg’s
result on the Shannon Switching Game in 1970 [10]. The other games we focus on
each add to or change important mechanics of hex, the quintessential connection
game. Indeed, from a connection perspective, twixt is played on a non-planar
graph6; havannah adds non-edge related winning conditions; and slither
allows moving previously placed pieces. Together, these contributions make for
a better understanding of the design decisions in connection games and their
theoretical implications.

The paper is organized as follows. After describing the rules of gg and hex,
we prove that twixt and slither are PSPACE-complete in Section 3 and that
havannah is PSPACE-complete in Section 4. We then address the parameterized
complexity of generalized hex and hex (Section 5). After having extensively
considered the computational complexity of solving arbitrary positions of these
games, Section 6 moves on to the problem of solving their starting, empty,
positions. A discussion and final remarks conclude the paper.

2. Previous Work

A staple in proofs of PSPACE-hardness for two-player games, generalized
geography (gg) is one of the first two-player games to have been proved
PSPACE-complete [30]. This problem has been used to show the intractability
of games as different as hex [15], othello [31], amazons [32], bridge [13],
and many more [12]. Our PSPACE-hardness proof for havannah is a reduction
from gg and the results for twixt and slither also rely on generalized
geography, albeit indirectly since we reduce from hex.

gg is a game played on a graph. In this section, we recall the rules of gg and
some of the assumptions that can be made on the input graph while preserving
PSPACE-completeness. We also present the rules of hex.

2.1. Generalized Geography
In gg, players take turns moving a token from vertex to vertex in a given

graph. If the token is on a vertex v, then it can be moved to a vertex v′

neighboring v provided v′ has not been visited yet. A player wins when it is
their opponent’s turn and the opponent has no legal moves. An instance of gg
is a graph G and an initial vertex v0, and asks whether the first player has a
winning strategy in the corresponding game.

We denote by P (v) the set of predecessors of the vertex v in G, and S(v)
the set of successors of v. A vertex with in-degree i and out-degree o is called
(i, o)-vertex. The degree of a vertex is the sum of the in-degree and the out-degree,
and the degree of G is the maximal degree among all vertices of G. If V is the

6Indeed, planar graphs have average degree smaller than 6, whereas a large board of twixt
has average degree close to 8.
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Figure 1: Example of an instance of gg with vertex 1 as initial vertex.

set of vertices of G and V ′ is a subset of vertices, then G[V \ V ′] is the induced
subgraph of G where vertices belonging to V ′ have been removed.

Lichtenstein and Sipser have proved that the game remained PSPACE-hard
even if G was assumed to be bipartite, planar, and of degree at most 3 [33]. We
will reduce from such a restriction of gg to show that havannah is PSPACE-hard.
To limit the number of gadgets we need to create, we will also assume a few
simplifications detailed below. Naturally, these simplifications do not impact
PSPACE-hardness. An example of a simplified instance of gg can be found in
Figure 1.

Let (G, v0) be an instance of gg with G bipartite, planar, and of degree
at most 3. We can assume that there is no vertex v with out-degree 0 in
G. Indeed, if v0 ∈ P (v) then (G, v0) is trivially winning for Player 1. Else,
(G[V \ ({v} ∪ P (v))], v0) is an equivalent instance, since playing in a predecessor
of v is losing.

All edges coming to the initial vertex v0 can be removed to form an equivalent
instance. So, v0 is a (0, 1)-, a (0, 2)-, or a (0, 3)-vertex. If S(v0) = {v′}, then
(G[V \ {v0}], v′) is a strictly smaller instance such that Player 1 is winning in
(G, v0) if and only if Player 1 is losing in (G[V \{v0}], v′). If S(v0) = {v′, v′′, v′′′},
then Player 1 is winning in (G, v0) if and only if Player 1 is losing in at least one
of the three instances (G[V \ {v0}], v′), (G[V \ {v0}], v′′), and (G[V \ {v0}], v′′′).
In those three instances v′, v′′, and v′′ are not (0, 3)-vertices since they had
in-degree at least 1 in G. Therefore, we can also assume that v0 is (0, 2)-vertex.

Finally, we may assume that there exist a bipartition G1, G2 of the graph
such that both G1 and G2 contain a (1, 2) choice vertex. Indeed, such vertices
can always be added to a new component of the graph disconnected from the
initial vertex without changing the outcome of the instance.

We call a gg instance with an initial (0, 2)-vertex, at least one (1, 2)-vertex per
partition and then only (1, 1)-, (1, 2)-, and (2, 1)-vertices a simplified instance.

2.2. Hex
In hex, two players alternate placing a stone of their color (black or white) in

an unoccupied cell of a parallelogram board paved by hexagons. Stones cannot
be taken or moved, so the length of any game is bounded by the number of cells.
To win, one player must connect together a specified pair of opposite sides of
the parallelogram. The other player must connect the other pair of opposite
sides. As an example, Figure 2 reproduces a hex puzzle from the graph theorist
Claude Berge, as cited by Hayward and van Rijswijck [34].

5



(a) Starting position of the puzzle.
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(b) A failed attempt by White.

Figure 2: A hex puzzle by Berge. White to play and win. White is trying to
connect the bottom left edge to the top right edge and Black is trying to connect
the top left edge to the bottom right edge.

In Section 6.1, we will see that a game cannot be drawn. We now formalize
what it means to connect two (opposite) sides of the board. Two cells are said
neighbors if they share an edge. In a parallelogram-shaped hexagonal paving,
cells have 6 neighbors if they are not on an edge of the parallelogram. On an edge,
they may have 2, 3, or 4 neighbors. A black (resp. white) group is a maximal
connected component in the graph whose vertices are black (resp. white) stones,
and edges represent the neighbor relation. Then, connecting two sides mean
having a group with at least one stone on each side.

3. Complexity of Twixt and Slither

3.1. Twixt
Alex Randolph’s twixt is one of the most popular connection games. It

was invented around 1960 and was marketed as soon as in 1962 [23]. In his
book devoted to connection games, Cameron Browne describes twixt as one
of the most popular and widely marketed of all connection games [2]. We now
briefly describe the rules of twixt and refer to Moesker’s master’s thesis for an
introduction and a mathematical approach to the strategy, and the description
of a possible implementation [24].

twixt is a 2-player connection game played on a go-like board. At their
turn, player White and Black place a pawn of their color in an unoccupied place.
Just as in havannah and hex, pawns cannot be taken, moved, nor removed.
When 2 pawns of the same color are spaced by a knight’s move, they are linked
by an edge of their color, unless this edge would cross another edge. At each
turn, a player can remove some of their edges to allow for new links. The goal for
player White (resp. Black) is to link top and bottom (resp. left and right) sides
of the board. Note that sometimes, a player could have to choose between two
possible edges that intersect each other. The pencil and paper version twixtpp
where the edges of a same color are allowed to cross is also famous and played
online.

As an illustration of the game rules, we reproduce here one of the original
twixt puzzles invented by Alex Randolph. A complete list of puzzles by
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Figure 3: Twixt puzzle 18 by Alex Randolph. White to play and win.

Randolph supplemented by new puzzles by Alan Hensel can be found on http:
//www.ibiblio.org/twixtpuzzles/. Figure 3 displays puzzle 18 in which
White is to play and win. The first natural observation, in this puzzle, is that
White has three groups of stones, two of which are connected to the top side,
and one is connected to the bottom side. A tentative approach could be to play
F5, bringing the top left group closer to the bottom group. Unfortunately that
attempt fails when Black answers F6, shutting the top group completely, and
the F5 move is wasted. The solution to the puzzle is, instead, for White to start
with move G7, which is connected to the bottom group. White threatens both to
connect the bottom group to the top left one via F5 and to connect the bottom
group to the top right group via I6. There is no way for Black to prevent both
threats at once and White wins the game.

As the length of a game of twixt is polynomially bounded, exploring the
whole tree can be done with polynomial space using a minimax algorithm.
Therefore twixt is in PSPACE.

Mazzoni and Watkins have shown that 3-sat could be reduced to single-
player twixt, thus showing NP-completeness of the variant [18]. While it
might be possible to try and adapt their work and obtain a reduction from
3-qbf to standard two-player twixt, we propose a simpler approach based
on hex. The PSPACE-completeness of hex has already been used to show the
PSPACE-completeness of amazons, a well-known territory game [32].

We now present how we construct from an instance G of hex an instance
φ(G) of twixt. We can represent a cell of hex by the 9 × 9 twixt gadgets
displayed in Figure 4. Let n be the size of a side of G, Figure 5 shows how a
twixt board can be paved by n2 twixt cell gadgets to create a hex board.

It is not hard to see from Figure 4a that in each gadget of Figure 5, move w
(resp. b) is dominating for White (resp. Black). That is, playing w is as good for
White as any other move of the gadget. We can also see that the moves that are
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bw

(a) Empty cell (b) White cell (c) Black cell

Figure 4: Basic gadgets representing hex cells in twixt.

not part of any gadget in Figure 5 are dominated for both players. As a result,
if player Black (resp. White) has a winning strategy in G, then player Black has
a winning strategy in φ(G). Thus, G is won by Black if and only if φ(G) is won
by Black. Therefore determining the winner in twixt is at least as hard as in
hex, leading to the desired result.

Theorem 1. Twixt is PSPACE-complete.

Observe that the proposed reduction holds both for the classic version of
twixt as well as for the pencil and paper version twixtpp. Indeed, the reduction
does not require the losing player to remove any edge, so it also proves that
twixtpp is PSPACE-hard.

3.2. Slither
Invented in 2010 by Corey Clark, slither is relatively new connection game

with an increasing popularity among online board game players. Unlike hex and
havannah which are played on a hexagonally-paved board, slither is played on
a grid and each player is trying to connect a pair of opposite edges corresponding
to their color by constructing connected groups of stones. Whereas moves in
most other connection games only involve putting down a new element on the
board, moves in slither also allow relocating previously played stones. Another
important difference between usual connections games and slither is that some
stone configurations are forbidden in the latter. Namely, a player is not allowed
to play a stone diagonally adjacent to a pre-existing stone of their color unless
one of their already placed stones would be mutually adjacent.

3.2.1. Rules
Slither is a two-player game starting on an empty n by n grid (or board).

Let us call the players Black (or B) and White (or W ). Black and White
alternate moves. Before stating what a move consists of, and what the winning
conditions are, we introduce some useful definitions.

As the game proceeds, squares of the board can be empty, or contain a black
stone, or contain a white stone. We refer to black (resp. white) stones as the
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Figure 5: Empty 3× 3 hex board reduced to a twixt board.
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Figure 6: Some examples of allowed and forbidden configurations. Forbidden
configurations are crossed.

stones of player B (resp. W ). We say that two squares of the board are adjacent
if they are in the same row and adjacent columns, or in the same column and
adjacent rows. They are king-adjacent if a chess king can move from one square
to the other, and diagonally-adjacent if they are king-adjacent but not adjacent.
Two stones are adjacent (resp. king-adjacent, diagonally-adjacent) if they are in
adjacent (resp. king-adjacent, diagonally-adjacent) squares. For P ∈ {W,B}, let
GP be the graph whose vertices are the stones of player P placed in the board,
and the edges encode the adjacent relation. That is, two vertices are linked by
an edge if and only if they represent adjacent stones. Like in the game of go, a
group for player P is a maximal connected component in GP .

A move for player P consists of an optional relocation of an existing stone of
P on a king-adjacent empty grid square, followed by a mandatory placement a
stone of P into an empty grid square (Figure 7). For a move to be legal, the
resulting position may not have two diagonally-adjacent stones of P that do not
also have an orthogonally-adjacent stone in common (Figure 6). In what follows,
we refer to this restrictive rule as the diagonal rule.

Black wins if they form a group with at least one stone in the first and in
the last column. White wins if they form a group with at least one stone in the
first and in the last row. Informally, Black wants to connect left-right and White
wants to connect top-bottom (Figure 7b).

As in most connection games, a swap rule is usually implemented. That is,
after the first move, the second player can decide either to play themself a move
and the game goes on normally, or to become first player with that very same
move.

3.2.2. Computational complexity
Here, we show that deciding if one player has a winning strategy from a given

position is intractable.
We present a reduction from hex which is PSPACE-complete [15]. A hexagonal

cell of hex is encoded by the gadgets depicted in Figure 8. More precisely,
an empty cell (resp. a cell containing a black stone, resp. containing a white
stone) is transformed into the portion of position of Figure 8a (resp. Figure 8b,
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(a) Black to play and win in one move. (b) The winning move for Black.

Figure 7: Illustration of a move and a winning group on a 7× 7 slither board.

A B C D E F G H
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e f

g h

a b

c d

(a) Empty cell

A B C D E F G H
(b) Black cell

A B C D E F G H
(c) White cell

Figure 8: Basic gadgets representing hex cells in slither.

resp. Figure 8c).

Observation 1. When a player places a stone in an empty cell gadget (that
is, on a square marked with letter a to h), they create a configuration which is
forbidden by the diagonal rule. Thus, they should also move one of their stone
in the same cell gadget.

Lemma 1. In a black cell (Figure 8b), White cannot prevent Black from having
a group containing stones in x, y, and z.

Proof. Black stones on x and y are already in the same group. Because of the
diagonal rule, White cannot place a stone in cell C and move a stone in another
cell gadget. By Observation 1 and the previous remark, if White moves a stone
in cell C, but decides to place a stone in another cell gadget, they can only do so
in a white cell, which turns out to be useless. Thus, White might as well place
a stone and move in cell C. After their move, White should occupy square c;
otherwise, Black places a stone on c and thereby connects their group containing
z to their group containing x and y.
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There are three ways for W to occupy square c: (1) move stone on B4 to c,
or (2) move stone on D3 to c, or (3) place a new stone on c. The first option
cannot be extended into a legal move. Indeed, the diagonal rule would impose
that a stone is placed on d, to connect the two diagonally-adjacent white stones
on c and D3. But then white stones on d and E5 would form a forbidden
configuration. In the second option, White cannot place a stone on D3 nor on d,
because of the diagonal rule. And Black’s next move would consist of moving
the stone on D2 to D3, and placing a stone on d, which connects z to x and
y. Finally, in the third option, White is forced to move their stone in D3 to a
square other than d. And Black connects in the same manner.

Since the cell gadget is symmetric, the following holds similarly.

Lemma 2. In a white cell (Figure 8c), Black cannot prevent White from having
a group containing stones on x′, y′, and z′.

The cell gadgets are glued together and attached to the edges of the board
as described in Figure 9. The empty squares which do not correspond to one
of the eight squares designated by letter a to h in Figure 8a can be filled with
black stones. For convenience, we do not represent those stones.

The following observation is outlined by Figure 9.

Observation 2. When playing in a empty cell gadget, Black cannot do more
than connecting x, y, and z, and White cannot do more than connecting x′, y′,
and z′.

From the empty cell gadget, Black can move stone E4 to b and place a stone
on a, resulting in the black cell configuration. By Lemma 1 and Observation 2,
it is the optimal play within this cell. Similarly, the optimal play for White in
a given empty cell, is to move stone D3 to c and place a stone on a, yielding
the white cell. Thus, having chosen the cell gadget where to play, the optimal
move is to connect six paths going from this cell to the six adjacent cells in
a hexagonal paving (Figure 9). Hence, the built slither position simulates a
game of hex, and so, slither is as hard as hex.

Theorem 2. It is PSPACE-complete to decide which player has a winning strategy
from a given slither position.

Proof. The membership of this problem to PSPACE boils down to noticing that
the length of a game is bounded from above by the number of empty squares.
Indeed, at each move, one stone is added to the board. Thus, a minimax
depth-first search uses a polynomial amount of space.

The gadgets in Figure 8 and their assembly as in Figure 9 provide a reduction
from hex, a PSPACE-hard problem.

4. Complexity of Havannah

havannah is a 2-player connection game played on a hexagonal board paved
by hexagons. White and Black place a stone of their color in turn in an

12



Figure 9: Empty 3× 3 hex board reduced to a slither position.
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Figure 10: havannah winning conditions on a size 6 board. Each black group
represents a winning pattern: from left to right, fork, ring, and bridge. White
groups are not winning, the left group does not constitute a fork because the
corner is not part of any edge and so the group only connects two edges; the right
group does not constitute a ring because it would need to enclose a non-empty
surface.

unoccupied cell. Stones cannot be taken, moved nor removed. Two cells are
neighbors if they share an edge. A group is a connected component of stones of
the same color via the neighbor relation. A player wins if they realize one of the
three following different structures: a circular group, called ring, with at least
one cell, possibly empty, inside; a group linking two corners of the board, called
bridge; or a group linking three edges of the board, called fork. With respect
to the fork winning condition, corner cells are not considered part of any edge.
Figure 10 presents a board in which all three winning conditions are met by
different group of stones.

4.1. Preliminary results
As the length of a game of havannah is polynomially bounded, exploring

the whole game tree with Depth-First Search can be done in polynomial space,
so havannah is in PSPACE.

In our reduction, the havannah board is large enough that the gadgets are
far from the edges and the corners. Additionally, the gadgets feature ring threats
that are short enough that the bridges and forks winning conditions do not have
any influence. Before starting the reduction, we define threats and make two
observations that will prove useful in the course of the reduction.

We call simple threat a move which threatens to realize a ring on the next
move. There are only two kinds of answers to a simple threat: either win on the
spot or defend by placing a stone in the cell creating this very threat.

Lemma 3. If a player is not threatened, playing a simple threat forces the
opponent to answer on the cell of the threat.

14



Proof. Placing a stone on the cell of the threat wins the game against any other
move of the opponent.

A double threat is a move which threatens to realize a ring on the next move
on at least two different cells. We will use threat as a generic term to encompass
both simple and double threats. To be more concise, we will denote byW : a1,a2;
a3,a4; . . . ; a2n−1(,a2n) a sequence of moves starting with White’s move a1,
Black’s answer a2, and so on. Similarly, B : a1,a2; a3,a4; . . . ; a2n−1(,a2n)
denotes the corresponding sequence of moves initiated by Black.

Lemma 4. If a player is not threatened, playing a double threat is winning.

Proof. The player is not threatened, so their opponent cannot win next turn.
Let u and v be two cells of the double threat. If the opponent plays in u, the
player wins by playing in v. If the opponent plays anywhere else, the player wins
by playing in u.

A second-order threat, or 2-threat, is a move which threatens to realize a
double threat on the next move. That is, after a 2-threat is played by a player
P , there is a set of cells {x, a, b} such that both P playing {x, a} as well as
P playing {x, b} would complete a ring. We call the three cells involved in a
2-threat carrier of the threat, and in particular the cell x is called the exit of the
threat. For example, in Figure 11a, move n is a 2-threat for Black with carrier
x, a, and b. Indeed, if Black follows up with x, then Black obtains a ring by
playing a or by playing b.

Lemma 5. If a player makes a 2-threat, then any opponent move that does not
belong to the following list is losing. 1) Immediately winning move 2) Simple
threat 3) Move inside the carrier of the threat.

In the following subsections we propose gadgets that encode the different
parts of a simplified instance of gg, as defined in Section 2.1. These gadgets
have starting points and ending points. The gadgets are assembled so that the
ending point of a gadget coincides with the starting point of the next one. The
resulting instance of havannah is such that both players must enter in the
gadgets by a starting point and leave it by an ending point otherwise they lose.
Wires and curves will enable us to encode the edges of the input graph. While
figures and lemmas are mostly presented from White’s point of view, all the
gadgets and lemmas work exactly the same way with colors reversed.

4.2. Vertex gadgets
Recall from Section 2.1 that simplified gg instances only feature four types

of vertices: (1, 1)-, (2, 1), (0, 2)-, and (1, 2)-vertices. Figure 11 depicts how
these four types of vertices are mapped into havannah gadgets. The diagrams
illustrate the White version of the gadgets, corresponding to vertices belonging
to the first player in gg. Each gadget can naturally by rotated by multiples of
60◦ and the colors can be swapped to obtain the Black gadgets.
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In Figure 11d and 11c, after Black plays n, White can elect to play c1 or
c2. In the former case, Black is forced to reply c2 which forces White to ex it
the gadget via x1. In the latter case, Black replies c1 and then White exits the
gadget via x2.

Let (G, v0) be a simplified instance of gg. G being bipartite, we denote by
V1 the side of the partition containing v0, and V2 the other side. Player 1 moves
the token from vertices of V1 to vertices of V2 and player 2 moves the token from
V2 to V1. We denote by φ the reduction from gg to havannah. Each of Player
1’s vertex is encoded by an instance of the corresponding gadget of Figure 11,
and each of Player 2’s vertex is encoded similarly with colors reversed. Wires
and curves are used to connect the gadgets. As an example, we provide the
reduction from the gg instance from Figure 1 in Figure 12.

4.3. Properties
We now establish a few properties that will help us prove that Player 1 wins

the gg instance if and only if White wins the corresponding havannah position.
The main idea of the reduction is that optimal play in the havannah position
consists of a sequence of White defending a 2-threat by making a 2-threat which
Black defends by making their own 2-threat and so on and so forth. Under
optimal play, the current 2-threat is in the gadget that corresponds to the token
vertex in the gg instance.

Lemma 6. If White plays the 2-threat in one of their (2, 1)-vertex gadgets
(Figure 13a) and Black has no winning sequence of simple threats elsewhere on
the board, then White can force a win.

Proof. With move 1 in Figure 13a, Player White makes four distinct 2-threats
with respective carriers: {k, l,m}, {k, l, n}, {k,m, n}, and {l,m, n}. The inter-
section of these carriers is empty, so no single Black move is inside the carrier of
all threats. By Lemma 5, the only non-losing Black moves would be those satis-
fying criterion 1) or 2). Since we assumed that Black had no winning sequence of
simple threats, no move satisfies criterion 1) nor criterion 2). Therefore, White
can force a win.

This 2-threat network remains valid even if the (2, 1) gadget has been entered
and exited before move 1 is played. Note also that there is no preemptive way
for Black to “break” the network: If Black was to play in 1, then White can play
the cell just beneath 1 and create a winning 2-threat network. Similarly, move
k to n from Black before 1 is played would let White create another 2-threat
network in the same gadget.

The dual result is true for Black’s (2, 1) gadget.

Corollary 1. A move by a player P that does maintain the existence of a
sequence of winning threats for P is a losing move.

Proof. Because we are reducing from a simplified gg instance, we know that each
player has at least one (2, 1)-vertex. Suppose that a player makes a move that

16



n

b

a
x

(a) (1, 1)-vertex gadget.
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n′1
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n′2

x

(b) (2, 1)-vertex gadget, also known as join.

n
c1

c2

x2
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f

(c) (0, 2)-vertex gadget, the start-
ing vertex.

nc1

c2

x1

x2

a1
b1

a2
b2

e
f

(d) (1, 2)-vertex gadget, also known as
split.

Figure 11: White gadgets before being used. Black enters the gadget by playing
n (either n1 or n2 in Figure 11b). In each case, optimal play leads White to
ex it the gadget via x (either x1 or x2 in the choice gadgets Figure 11d and 11c).
In both choice gadgets, exactly one of the sequences c1; c2 or c2; c1 is played
between the entry and the exit of the gadget, up to White’s decision.
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Figure 12: Havannah gadgets representing the gg instance from Figure 1. Black
to play first.

k
l m

n

1

(a) White’s 2-threats network in the (2, 1) gad-
get. Black cannot defend against this threat
locally and would need to find a winning se-
quence of simple threats elsewhere on the
board.
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13

(b) Main winning line for Black when White
does not exit the gadget with x in Figure 11b,
assuming Black had entered from n1 in Fig-
ure 11b. Move 2 and 8 are interchangeable
for White and are both losing.

Figure 13: Possible developments on a White (2, 1)-vertex gadget.
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leaves the board without a potential sequence of winning threat for them, then
the opponent can make the winning 2-threat network in one of their (2, 1)-vertices
and force a win by Lemma 6.

Corollary 1 ensures that not only should the players defend against the
opponent’s 2-threats, but that their defense should create 2-threats for the
opponent to defend.

Before showing that all the gadgets behave as expected, let us notice that
the exchange 3; 4; 5; 6 in Figure 13b can be played in any (2, 1) vertex previously
entered from n1, using Figure 11b’s notation. This exchange (or the symmetrical
one 9; 10; 11; 12 when the gadget has been entered from n2) does not harm Black
and the White moves are forced, so we will assume that the exchange always
takes place as soon as available, even if White correctly exits the gadget in x.

Lemma 7. If Black enters a White (2, 1)-vertex gadget via n1 or n2 (Figure 11b),
and White does not have a threat, then White is forced to play in the exit point
x.

Proof. When Black plays in n1, it creates a 2-threat with carrier {x, n2, n′2}.
Suppose that White plays in n2, then Black has a winning sequence of simple
threats as displayed in Figure 13b. If instead White plays in n′2, then the same
winning sequence is available for Black, simply swapping White move 2 for White
move 8 in Figure 13b. Invoking Lemma 5, we know that White needs to play in
the carrier, so we can conclude that White needs to play in x.

The proof when Black plays in n2 is symmetrical.

Lemma 8. If Black enters a White (1, 1)-vertex gadget in n (Figure 11a), and
White does not have a threat, then White is forced to play in the exit point x.

Proof. When Black plays in n1, it creates a 2-threat with carrier {x, a, b}. White
playing in a or in b does not create any new threat for Black, so by Corollary 1
these moves are losing. Invoking Lemma 5, we know that White needs to play
in the carrier, so we can conclude that White needs to play in x.

Lemma 9. If Black enters a White (1, 2)-vertex gadget in n (Figure 11d), and
neither player has a threat available elsewhere on the board, then optimal play
dictates that at most two sequences of moves are possible, c1; c2;x1 and c2; c1;x2,
up to White’s choice.

Proof. Let us first show that after Black n and White c1, the sequence c2;x1 is
forced. White’s c1 creates a 2-threat with carrier {c2, e, f}. Black playing in e
or in f does not create any new threat for White, so by Corollary 1 these moves
are losing. Invoking Lemma 5, we know that Black needs to play in the carrier,
so we can conclude that Black needs to play in c2. Black’s c2 creates a 2-threat
with carrier {x1, a1, b1}. White’s playing a1 or b1 does not create any new threat
for black, so by the same reasoning, we obtain that White is forced to play x1.

The same style of argumentation shows that if White starts with c2, then
Black needs to reply c1 and x2 is forced for White.
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b
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Figure 14: Reentering a White (2, 1)-vertex gadget. The moves n1 and x from
Figure 11b were played earlier, and Black reenters the gadget with n2 as move 1.
Move 2 wins the game for White.

Now suppose that after Black n, White plays a non-threat elsewhere on the
board. Black plays in c1, forcing White c2. Black then plays x2 creating a double
threat in a2 and b2 and White has lost.

Lemma 10. When Black initiates in a White (0, 2)-vertex gadget in n (Fig-
ure 11c), if neither player has a threat available elsewhere on the board, then
optimal play dictates that at most two sequences of moves are possible, c1; c2;x1
and c2; c1;x2, up to White’s choice.

Proof. The proof is virtually identical to that of Lemma 9.

From now on, whenever we consider choice gadgets, we simply write that
after Black enters in n, White plays in x1 or x2 to exit. That is, we omit the
intermediate sequences c1; c2 or c2; c1 and leave them implicit.

Lemma 11. If Black has no threat, then Black re-entering a White (2, 1) gadget
after it was visited before is a losing move (Figure 14).

Proof. When Black re-enters the gadget, the only new threat it creates is the
winning sequence for Black starting with a; b; c; d; 2. This sequence can be
defended against by White playing 2 in this gadget and creating the network of
2-threats seen in Lemma 6.

Theorem 3. Havannah is PSPACE-complete.

Proof. We have already mentioned that havannah ∈ PSPACE and the gadgets
presented in this Section constitute a polynomial time reduction from a PSPACE-
complete problem. We shall now prove that the reduction is sound, that is:
player 1 is winning in (G, v0) if and only if White is winning in φ((G, v0)) when
Black starts.
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The simulation of gg on havannah proceeds as follows. The initial position
has a single 2-threat, in the unique (0, 2) gadget and no potential simple threats
otherwise. Optimal play according to the prescription of Lemmas 7 through 10,
that is, entering a gadget with n (or n1 or n2) and exiting it with x (or x1 or x2)
maintains the invariant that the position has a single 2-threat up until a (2, 1)
gadget is re-entered, at which point the game ends.

Black’s first move is forced and is entering White’s (0, 2) gadget with n. On
the one hand, the havannah gadget containing the current 2-threat, i.e., the
one having most recently been entered, corresponds to the token vertex in gg.
On the other hand, a player re-entering a (2, 1) gadget in havannah loses, so it
cannot be part of a winning strategy for that player.

As a result, we can map any havannah winning strategy for White to a gg
winning strategy for Player 1 and any havannah winning strategy for Black
to a gg winning strategy for Player 2. Lemmas 7 through 10 together with
the “no threat elsewhere invariant” guarantee that exiting the most recently
entered gadget is the optimal havannah play for both players. Since the number
of vertices is finite, one player will be forced to re-enter a (2, 1) gadget under
optimal play. This means that the theoretical outcome of the translated instance
is not a draw, so one player has indeed a winning strategy in havannah and
finding it solves gg.

5. Parameterized Complexity of Short Generalized Hex

Generalized Hex. Shannon’s vertex switching game is more commonly
called generalized hex since it generalizes hex played on a hexagonal tiling to
any (potentially non planar) graphs. A generalized hex-instance is a graph G
with two specified vertices s and t, each containing a white pebble. White (Player
1) and Black (Player 2) alternate in playing pebbles of their color in unoccupied
vertices of the graph. White wins if he manages to create an (s, t)-path where
each vertex contains a white pebble. Black wins if he prevents White from doing
so. When a black pebble is played in a vertex, one can equivalently imagine that
this vertex has been removed from the graph. Any edge having a white pebble
at its two endpoints can be equivalently contracted to a single vertex containing
a white pebble. That way, White wins if s and t ends up within the same vertex.
In all generality, one can assume that the initial instance already contains white
pebbles in some other vertices than s and t.

Parameterized complexity. In a nutshell, parameterized complexity aims at
solving hard problems (be it NP-hard, PSPACE-hard, etc.) in time f(k)nO(1),
called FPT time, (for fixed-parameter tractable), where n is the size of the
instance, f is a computable function, and k is a parameter of the problem.
The parameter can take various forms: size of the solution for optimization
problems, treewidth or maximum degree for graph problems, size of the alphabet
for word problems, to name a few. Assuming the problem we are trying to solve
is NP-hard, function f has to be superpolynomial, unless P = NP. When such
an FPT algorithm exists, f is usually exponential. However, if our parameter k
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is small compared to the size of the instance n, we gain that the exponential
blow-up is limited to the small value k. Some problems, like finding a clique
of size k in a graph having n vertices, does not admit an algorithm running in
time f(k)nO(1) for any computable function f , unless 3-sat can be solved in
subexponential-time which is believed unlikely. Phrased with the terminology of
parameterized complexity, clique is unlikely to be FPT parameterized by the
size of the solution. There is a whole hierarchy of problems highly suspected
of not being FPT: W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT ] ⊆ W [P ] ⊆ AW [?]. For our
purpose here, we do not need to define formally all those classes. Instead, we only
say that clique is W [1]-complete for FPT reductions, where an FPT reduction
may blow-up the size of the instance n only polynomially but the new parameter
can be any computable function of the old parameter. As an easy exercise, one
can check that if there is an FPT reduction from a problem A to a problem B
and B admits an FPT algorithm, then so does A. The interested reader is also
referred to two recent and extensive textbooks on parameterized complexity
[35, 36].

Short games. In their introductory book to parameterized complexity [37],
Downey and Fellows devotes a small section to k-move games. The k-move (or
short) variant of a two-player game consists of deciding if Player 1 can win in at
most k moves. More formally, if one identifies a strategy to a decision tree, one
needs to determine if Player 1 has a winning strategy of depth at most k. The
problem is parameterized by k. The PhD thesis of Allan Scott [38] is dedicated
to short games. The problem short chess was shown AW [?]-complete [39].
Pursuit-evasion games (also known as cops and robber games) have been studied
within the framework of short games [40] as well as infinite two-player games on
graphs [41].

The parameterized complexity of short generalized hex was first asked
in the book of Downey and Fellows [37] and is still open [42, 36]. We answer
partially this question by showing that short generalized hex is unlikely to
be FPT. More precisely, we prove that short generalized hex is W [1]-hard.
Nevertheless, this problem could be higher on the intractability hierarchy. It is
conjectured AW [∗]-complete and Allan proved that it belongs to AW [∗]. From a
purely practical perspective, our partial answer is already satisfactory in asserting
that we should not expect to find an FPT algorithm solving short generalized
hex.

Multicolored clique. In multicolored clique, one is given a graph where the
vertices are partitioned into k sets called color classes and the goal is to find a
clique of size k that intersects each color class exactly once. The multicolored
clique is also W [1]-complete and it is often more convenient to design FPT
reductions from this variant than from clique.

Theorem 4. Short generalized hex is W [1]-hard.

Proof. From an instance G = (V = V1 ] V2 ] . . . ] Vk, E) of the W [1]-hard
multicolored clique, we build an equivalent instance (H, s, t) of short
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Figure 15: The selector gadgets with k = 3.

generalized hex in the following way. For each vertex v ∈ V , we add four
vertices v0, v1, v2, v3 to H and a path sv0v1v2v3t. For every i ∈ [k], we add a
vertex ti, and we link ti to t and to all the vertices v2 such that v ∈ Vi. Similarly,
we add a vertex si that we link to s and to all the vertices v1 such that v ∈ Vi.
That finishes the construction of the selector gadgets (see Figure 15).

Then, we add two copies of an almost complete binary tree (i.e., all levels
except the last are completely filled) with

(
k
2

)
leaves, and link both of their root

to a new vertex r, itself linked to t. For each leaf of the second to last level,
we replace the edge incident to it by two parallel paths of length 2. This has
the same effect of weighting the edge by 2 (see Figure 16), so that each leaf is
at the same distance of the root. We make the slight abuse of still calling the
whole structure a tree. Within the b-th copy of the two binary trees, each leaf
represents a distinct set Eij := E(Vi, Vj) with i 6= j, and is denoted by li,j(b).

For each edge e = uv ∈ E and a, b ∈ [2], we add three vertices we(a, b),
we,u(a, b) and we,v(a, b). We link we(a, b) to we,u(a, b) and we,v(a, b). We also
link we,u(a, b) to u1 and we,v(a, b) to v1. Finally, for any b ∈ [2], we link li,j(b)
to all the vertices we(a, b) such that e ∈ Eij and a ∈ [2] (see Figure 16). For
each b ∈ [2], we denote by Tb the b-th binary tree together with all the vertices
we(a, b) and wu(a, b), for a ∈ [2], e ∈ E and u ∈ V . We observe that T1 and T2
are disjoint trees. The tree induced by T1, T2, and r is denoted by T , and is
seen as rooted in r.

This ends the construction of H which has O(|V (G)|+ |E(G)|+ k2) vertices.
We ask if there is a winning strategy for White whose depth is at most q :=
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Figure 16: Edge gadgets for k = 3 (only one edge uv ∈ E1,2 is represented).

2(2k + dlog
(
k
2

)
e+ 4)− 1 = O(k). First, if there is a multicolored clique in G, we

will exhibit a strategy for White that forces a win in at most q moves. Second,
if there is no multicolored clique, we will give a winning strategy for Black.

Normal play. If there is a multicolored clique C in G, then White can win in
q moves in H. Here, move corresponds to what is usually called a ply or a
half-move in games such as chess (where a move is actually a "move" from White
plus a "move" from Black). Let C = {c1, c2, . . . , ck} with ci ∈ Vi for each i ∈ [k].
The first 4k moves are the following. For each i ∈ [k], White plays in c1i . If Black
does not answer in {si, ti, c0i , c2i , c3i }, White plays in c2i and wins in four more
moves; indeed, s and c1i can be connected via c0i or si, while c2i and ti can be
connected via c3i or ti. To win some time, Black plays in si and White answers
in c0i . Then Black is forced to play in {c2i , c3i , ti}.

On move 4k + 1, White plays in r and will play the child in T of his last
move in a subtree where Black has not played until he plays in li,j(b) for some
i 6= j ∈ [k] and b ∈ [2]. As C is a clique, there is an edge e between ci and cj . By
construction, the six vertices we(1, b), we(2, b), we,ci(1, b), we,ci(2, b), we,cj (1, b),
and we,cj (2, b) are still empty. White’s next move is we(a, b) where a is such that
Black has not played in {we(a, b), we,ci(a, b), we,cj (a, b)}. Then, White’s final
move is either we,ci(a, b) or we,cj (a, b), finishing a white path from t all across T
to a vertex of the clique to s. One can check that it does not exceed q moves.
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Proper defense. If there is no multicolored clique in G, we give a winning strategy
for Black: not only White cannot force a win in at most q moves but he cannot
win at all. A (y, z)-cut S of a graph J is a set of edges of J whose removal
makes that y and z are in two different connected components. We say that S
separates y and z. The following lemma presents a situation where Black can
easily block his opponent.

Lemma 12. If there is an (s, t)-cut M of H such that no vertex of M contains
a white pebble and M is an induced matching, then Black wins, even if it is
White to play.

Proof. Whenever White plays a vertex u inM , Black answers the other endpoint
of the unique edge of M which touches u.

If White plays in some vertex v2, then Black plays in v1 and White has
not achieved anything. If White plays in some vertex v0, v3, si, or ti, then
Black plays r and wins by Lemma 12, since the induced matching

⋃
v∈V {v1v2}

separates s from t. If White plays in a vertex v1 such that v ∈ Vi, Black plays
in si. Then, White should play in v0 (indeed, it is pointless for White to play
in ud for some d ∈ {0, 1} and u ∈ Vi, since Black can answer in u1−d) and
Black plays in ti. Now, if White plays in another vertex u1 with u ∈ Vi (for
the same i), then Black plays r and wins by Lemma 12 with the separator⋃

v∈V \{u}{v1v2} ∪ {u2u3}.
So far, we showed that, for each i ∈ [k], White can play in at most one vertex

of the form v1 with v ∈ Vi, and then has to play in r. We distinguish two cases:
(a) for each i ∈ [k], White has played in a vertex v1 with v ∈ Vi when he plays
in r (b) there is some i ∈ [k] such that White has not yet played in a vertex v1
with v ∈ Vi when he plays in r.

We start with case (a). Let A = {d11, d12, . . . , d1k} be the vertices which now
contain a white pebble, with d1i ∈ Vi for each i ∈ [k]. As, S := {d1, d2, . . . , dk} is
not a clique in G, there are two vertices di and dj such that didj /∈ E. Black plays
in the root of T2, forcing White to play in the root of T1. Then, Black will system-
atically block the path which does not go to the leaf li,j(1). At this point, M ′ :=⋃

v∈V \S{v0v1} ∪
⋃

v∈S{v2v3} ∪
⋃

a∈[2],xy∈Eij ,x∈{di,dj}{wxy(a, 1)wxy,x(a, 1)} sep-
arates s and t. Also, there is no white pebble in any of the endpoints of
M ′. Finally, M ′ is an induced matching. That observation is based on the
key argument that

⋃
a∈[2],xy∈Eij ,x∈{di,dj}{wxy(a, 1)wxy,x(a, 1)} cannot contain

both wxy(a, 1)wxy,x(a, 1) and wxy(a, 1)wxy,y(a, 1) since that would imply that
{x, y} = {di, dj}, contradicting that didj /∈ E. Therefore, Black wins by
Lemma 12.

Now, we consider case (b). Black plays si where i is such that White has
not played in any vertex v1 with v ∈ Vi yet. Now, whenever White plays in
u1 ∈ Vi, Black plays in u0. This way, White cannot connect any vertices of Vi to
s. When White goes back to playing in T , Black forces him to the leaves li,j(1)
(and/or li,j(2)) for some arbitrary j ∈ [k] and wins by Lemma 12 similarly to
case (a).
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Under the Exponential Time Hypothesis (ETH) that asserts that 3-sat has
no subexponential algorithm, multicolored clique cannot be solved in time
f(k)(n+m)o(k) for any computable function f [43]. As our reduction linearly
preserves the parameter, we have shown that short generalized hex cannot
be solved in the same running time f(k)(n+m)o(k) unless the ETH fails, where
n and m are the number of vertices and edges of the graph. A simple procedure
solving short generalized hex in time O∗(nk) would consist of expanding
all the continuations of length up to k and decide if Player 1 wins in this game
subtree.

A class C of graphs has bounded local treewidth if there is a function FC such
that for any G ∈ C, tw(G) 6 FC(diam(G)) where tw(G) is the treewidth of G
and diam(G) its diameter.

Theorem 5. Short generalized hex is FPT in every class of graphs with
bounded local treewidth and closed by edge contractions.

Proof. As we said above, we can contract the maximal connected components
of vertices containing white pebbles (white connected components) into a single
vertex containing a white pebble. By doing so, we obtain an equivalent graph
where initially the white connected components have all size 1. Let W be the
set of vertices containing initially a white pebble in this new graph. After
at most k moves, the length of a potential (s, t)-path with white pebbles is
bounded by 2dk2 e+ 1 6 k + 2. Indeed, White plays at most dk2 e new pebbles
and the path can contain at most dk2 e+ 1 initially placed white pebbles (every
other two). It implies that the problem is expressible in first-order logic by the
formula

∨
k′6k[∃v1∀v2∃v3∀v4 . . . ∃vk′

∧
i6=j∈[k′] vi 6= vj ∧

∨
l6k+2[∃u1, u2, . . . , ul ∈

W ∪ {v1, v3, . . . , vk′} u1 = s∧ ul = t∧E(u1, u2)∧E(u2, u3)∧ . . .∧E(ul−1, ul)]].
Frick and Grohe showed that any graph problem expressible in first-order logic
can be solved in linear time in classes of graph with local bounded treewidth
[44]. Yet, this algorithm is far from practical since its dependence in the formula
is an exponential tower of height the number of quantifier alternations, so in our
case height Θ(k).

Corollary 2. Short generalized hex is FPT in planar graphs.

Proof. Planar graphs are closed by edge contractions and have bounded local
treewidth [45].

Corollary 3. Short hex is FPT.

Proof. The underlying graph of hex is planar.

6. Ultra-weak Solutions of Connection games

In Allis’s game solving hierarchy [46, Section 1.5], a game is said to be
ultra-weakly solved if the game-theoretic value of the initial position has been
determined. Hex is unusual among strategy games in that an ultra-weak solution
is known for any board size.
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In this section, we first recall how hex can be ultra-weakly solved to prove
that the starting position is a theoretical first-player win. We then consider
twixt, havannah, and slither, and show that although some of the arguments
carry over, it is impossible to ultra-weakly solve these games with the same
method.

6.1. Hex
When John Nash discovered/invented the game hex, one of his motivations

was to find a non-trivial game with a non-constructive proof that the first player
has a winning strategy in the initial position. The proof has two steps, prove
that the initial position is not a draw, then prove that the initial position is not
a second-player win.

The outcome of the initial position is not a game-theoretical because no hex
position can end in a draw. This is a well-known fact but the proof is non-trivial.
We refer to Bogomolny [47] for a discussion of the issue and further references.

Lemma 13. Draws cannot occur in hex.

To derive the second step, Nash developed a strategy-stealing argument which
can be summed up as follows [1]. Suppose for a contradiction that the second
player has a winning strategy σ in the initial position. Then a winning strategy
for the first player can be obtained as: start with a random move, then apply σ
pretending that the initial move did not occur. If σ ever recommends to play
on the location of the initial move, then play another random move and carry
on. Given that having an additional random stone on the board cannot hurt the
first player, then we have developed a winning strategy for the first player too.
Since the second and first player cannot both have a winning strategy at the
same time, we can conclude that our hypothesis does not hold. Therefore the
initial hex position is not a second-player win when the swap rule is not used.

Lemma 14. Hex is not a theoretical second-player win.

The strategy-stealing argument applies to hex for two reasons. First, it is a
symmetrical game, i.e., for any position, there is a map from moves that legal
for the second player to moves that are legal for the first player. Second, there
are no zugzwangs: having an additional move never hurts.

This leads to the ultra-weak solution for hex.

Theorem 6. On any board size, the initial position in hex is a theoretical
first-player win.

Proof. Hex is a turn-taking finite two-person game of perfect information with
no chance. Zermelo’s Theorem states that any such game is either a first-player
win, a second-player win, or a draw. Lemma 13 and 14 rule out two possibilities
and hex can thus only be a first-player win.
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6.2. Twixt and havannah
Twixt and havannah admit draws in theory but they occur very rarely in

practice. The fact is relatively well-known in the game community, for instance
Ewalds [4, Section 3.4.5] states that draws are possible for havannah sizes above
3 [4, Section 3.4.5]. Yet, to the best of our knowledge, a proof for arbitrary sizes
has not appeared in the related literature. We give here a general construction
for both games illustrated in Figure 17.

Proposition 1. It is possible to reach a drawn position from an empty twixt
board of any size, and from an empty havannah board of any size strictly larger
than 3.

Proof. For twixt, any position on size 3 and 4 is a draw, and an example of
draw for size 5 is given in Figure 17a. For larger sizes, if both players keep
placing pegs in a checkered layout, no connection can ever go past two rows
away from any border. This construction ensures a draw on board from size 6.
Figure 17b and Figure 17d display the pattern for size 6 and 12 respectively.

In case of havannah, if both players keep placing pegs in a striped layout,
no winning condition is ever met. Figure 17c and 17e displays the pattern for
size 4 and 6.

Lemma 15. Twixt (resp. havannah) is not a theoretical second-player win.

Proof. Zugzwangs are not possible in twixt (resp. havannah), and the game
is symmetrical, therefore, the strategy-stealing argument applies to twixt
(resp. havannah).

Although the initial positions of twixt or havannah are no second-player
wins, draws are possible for board sufficiently large, and so we cannot conclude
that either is first-player win.

6.3. Slither
We now present some observations on and properties of slither. Some of

the observations made in this section have independently been pointed out earlier
in the abstract game community, especially on BoardGameGeek.7 However, we
prove for the first time that the standard slither variant cannot end in a draw,
thereby settling an open-problem often raised in this community.

The concept of zugzwang appears in chess and denotes a position in which
the current player has no desirable move and would rather pass and have the
opponent act. A mutual zugzwang is a position in which both players would
rather have the opponent play. Although zugzwangs are virtually unheard of in
typical connection games, where additional moves can never hurt you, things
are different in slither.

Proposition 2. Zugzwangs and mutual zugzwangs can occur in slither.

7http://boardgamegeek.com/thread/692652/what-if-there-no-legal-move
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(a) Twixt on size 5. (b) Twixt on size 6. (c) havannah on size 4.

(d) Twixt on size 12. (e) havannah on size 6.

Figure 17: Drawn twixt and havannah positions. The twixt positions would
also be drawn under the twixtpp variant.
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A B C D E

1
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4
5

a b c

(a) Mutual zugzwang: no good move
for Black and no good move for White.

A B C D

1
2
3
4
5

(b) No move allowed for Black,
only White has legal moves.

Figure 18: slither positions with a shortage of moves.

Proof. In Figure 18a, if it is White (resp. Black) to play, only one move is
available, moving stone on C2 (resp. C4) to a and placing a stone on c or
equivalently moving to c and placing on a. Then Black (resp. White) wins by
placing a stone on C2 (resp. moving stone B5 to C4 and placing a stone on
b).

As we have seen, the strategy-stealing argument can be applied to many
other games including twixt, havannah, and games of the connect(m,n, k)
family [48]. Unfortunately, the argument cannot be applied to slither.

Proposition 3. Nash’s strategy-stealing argument does not apply in slither.

Proof. Consider the White zugzwang position in Figure 18a. Had the A4 square
not been occupied with a White stone, White would have a winning move:
move B4 to b and place a stone on c. Since there are positions where having
one too many stones on the board can make a player lose the game, Nash’s
strategy-stealing argument does not apply.

Therefore, there is no theoretical indication yet that slither is not a second-
player win on an empty board. However, in practice it is a huge advantage to play
first, so much that if the swap rule is used, it is recommended to swap no matter
where the first move is played, including corner locations. The slither-specific
intuition behind this practical advice is that the game is dynamic and a player
can bring back a stone from a corner towards the center, moving it closer every
turn.

Draws would occur in slither if there were position where no player has a
legal move and yet no player connects their own sides. The slither community
had indeed identified non-terminal positions in which one of the player had no
legal moves, but the opponent always had at least one move possible. In that
case, the player with no legal moves would simply skip their turn.

Proposition 4. There exist positions in which a player has no legal moves.

Proof. For instance, Black has no legal move in the position Figure 18b.
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(a) Cylinder board: left and
right edges are connected.

(b) Torus board: left and right
edges are connected and top and
bottom edges are connected.

Figure 19: Drawn slither positions on non-planar boards.

The designer of slither has long claimed that the game did not admit any
draw. Since there were no formal proofs, many members of the community were
left unconvinced and attempted to find counter-examples. They would submit
positions on forums dedicated to slither, and Corey Clark or some slither
players would point out that the counter-example was not valid, usually because
the diagonal rule was not respected or because a legal move actually existed
for one of the players. Before settling this question formally, let us point out
that draws can actually occur when the board topology is not restricted to be
rectangular.

Proposition 5. Draws are possible when slither is played on a cylinder or
on a torus.

Proof. In Figure 19a (resp. Figure 19b), if black (resp. black and white) sides
are connected, then both players have no legal moves.

That draws are possible for some exotic boards should enhance the accidental
aspect of our result on classical boards. There is probably no fundamental
reasons why the following result is true, and the proof, which we defer to the
appendix, consists of a large case analysis on the consequences of forbidding
diagonal configurations and the possibility of moving stones.

Theorem 7. Draws are not possible in slither on rectangular boards.

Proof. This theorem relies on two properties of slither. First, if a slither
board is filled, then at least one player has a winning group. Second, if a board
is not filled, then at least one player has a legal move. As as a result, the game
always continues, possibly with a player passing, until one player has a winning
group Since each move adds a stone to an empty intersection, these properties
ensure that the game is bound to end after a finite number of turns with a
winner. The Appendix proves the two essential properties mentioned above.
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7. Discussion and Conclusion

Unlike chess, checkers, and go, the game of hex is not played on a grid
board but uses a hexagonal paving. The simplest connection game on a grid,
using hex rules on a checkered board where each cell is connected to the 4
vertically and horizontally adjacent ones, easily leads to draws in almost all
cases and is not interesting for players. Designing an interesting connection
game played on the usual grid board is challenging and twixt and slither can
be seen as two different solutions. Other solutions include João Pedro Neto’s
gonnect and Mark Steere’s crossway, and Browne’s book provides many more
examples [2]. Each come with its own set of mechanics and trade-offs.

Twixt eschews adjacent connections in favor of Knight’s move connections.
In a sense, this changes the topology of the board fundamentally as, contrary to
hex and most other connection games, the graph of all possible direct connections
is not planar anymore. Another consequence is that twixt allows draws, but
this difference is mainly of theoretical interest as draws remain extremely rare in
competitive play.

Slither keeps the grid topology intact but addresses draws by adding
forbidden patterns and stone movement. Forbidding patterns alone would not
be sufficient to prevent draws: for instance Figure 18a, 18b, and 9 would all
be drawn if it was not for the possibility of moving existing pieces. Not only
does moving pieces significantly changes the dynamics of the game, but it also
adds the theoretical possibility of zugzwangs. Again, this remains mainly of
theoretical interest as zugzwangs virtually never seem to happen in practice.

Havannah keeps the convenient hexagonal paving of hex but explores a new
dimension in the realm of connection game design by adding the ring winning
condition. A board could in principle support a ring or more from both players,
except for the fact that the game ends as soon as the first one is completed.
This leads to winning races where both players attempt to satisfy their own ring
patterns, possibly non-intersecting, while disrupting the opponent’s strategy by
more immediate threats.

The hexagonal versus grid paving issue is of some importance in game design.
It could seem, at first sight, that this difference would make reductions from
hex easier for havannah than for twixt and slither. On the contrary, we
only presented a hex-based reduction for twixt and slither, and in both
reductions, the size of the resulting game is only linearly larger than the size of
the input instance.

As a matter of fact, the ring winning condition in havannah makes obtaining
a PSPACE-hardness proof by direct reduction from hex quite difficult. Attempts
by other authors and ourselves at finding a Hex-based reduction centered
around the bridge or the fork winning conditions proved unfruitful.8 Instead,
disregarding bridges and forks, a sequence of ring threats allowed us to reduce
from generalized geography, the problem used in Reisch’s proof for hex.

8Fabien and Olivier Teytaud, personal communication and [49].
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On the other hand, if the havannah rules were changed to drop the ring
winning condition, a direct simulation of hex on the havannah board would be
possible, just like it is for y, and PSPACE-completeness of this new game would
be straightforward.

In terms of future work, settling the complexity of other notable connection
games remains a natural direction. In particular, gonnect and lines of action
are good candidates. In lines of action, each player starts with two groups of
pieces and tries to connect all their pieces by moving these pieces and possibly
capturing opponent pieces [50]. While the goal of lines of action clearly
makes it a connection game, the mechanics distinguishes it from more classical
connection games as no pieces are added to the board and existing pieces can be
moved or removed. Gonnect is best described as a mix between hex and go.
Each player is trying to connect the opposite sides of a grid board, but captures
are possible following the rules of go. Both these games are quite different from
the usual connection games and from the games studied in this paper in that
the game length is not polynomially bounded. As a result, these games may
very well not be PSPACE-complete.

Future work could also examine havannah, slither, and twixt under a
closer eye with the goal of obtaining theoretical results of practical relevance.
For instance, a seemingly reasonable heuristic in slither consists of playing
the first move of a shortest sequence leading to victory, assuming the opponent
passes. We leave as an open question whether such a shortest sequence can
be efficiently computed. In fact, determining if such a sequence exists at all
might not necessarily be easy and is reminiscent of Mazzoni and Watkins [18]
NP-completeness result on single-player twixt. Another possible bridge towards
actual game playing and solving is provided by parameterized complexity. Our
FPT result on short hex indicates that solving algorithms need not depend
exponentially on the board size, but only on the search depth. Could this result
be turned into a practical algorithm for solving hex endgames on large board
sizes?

We find it remarkable that both twixt and slither PSPACE-hardness proofs
are direct reductions from hex. It is quite rare indeed that an actually played
game constitutes the basis of a computational complexity reduction. This is a
new testimony to the special place that hex occupies among strategy games, it
combines being a relatively popular abstract game and a theoretical problem
fundamental enough to reduce from.
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Figure A.20: 6× 4 hex board represented on a rectangular slither board.

Appendix A. Draws are impossible in slither

Stating that slither does not feature any draw actually corresponds to
the following three more elementary statements: each filled slither board has
winning groups for at least one player, each filled slither board has winning
groups for no more than one player, and each non-filled slither board has at
least one legal move for one of the two players. The first two statements can be
obtained rather directly from the equivalent ones in hex, thanks to the diagonal
rule. The third statement is much more involved and requires a careful case
analysis on non-filled boards.

Lemma 16. If a slither board is filled, then exactly one of the two players
wins.

Proof. Recall that hex can be played on a rectangular board provided we add
a link between each pair of king-adjacent squares along one specified diagonal
direction, as in Figure A.20. The forbidden configuration rule ensures that this
king-adjacent diagonal connection is respected in slither, although it is indirect.
Therefore, any filled m× n slither board can be mapped onto an equivalent
m×n hex board such that any pair of slither squares is connected if and only
if the corresponding pair of hex cells is connected. Since any filled hex board is
won by exactly one player, we have the desired slither result.

Theorem 8. On a rectangular board, as long as there is at least one empty
square, at least one of the two players has a legal move.

Proof. We adopt the following proof technique.9 We assume for a contradiction
that we have a non-filled position with no legal moves for any players. We start
from an empty square and make deduction concerning its surrounding so as to
constrain the occupancy of the nearby squares. Each constraint is deduced based
on the established occupancies and from the no legal moves assumption or from
the diagonal rule. We may perform a split case analysis on squares that are not
constrained enough to have a definite status. In each case, however, we finally
arrive at a position with a legal move that cannot be prevented by adding any
further constraints.

9No part of the argument will rely upon the color of the board edge.
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(a) Two edges.
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(b) A white stone
and an edge.

A B C
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3

(c) A black stone and
two white stones.

A B C
1
2
3

(d) Three
white stones.

Figure A.21: Case analysis for the bottom left surroundings of the empty square.

As we add constraints to forbid legal moves from either player, we liberally
extend the size of the pattern around the empty square. If any such extension
was not possible because we would have reached the limit of the board, then
it would not be possible to forbid the desired legal move and our case would
be proved. We can therefore disregard the possibility of inadvertently meeting
an edge of the board as we extend our patterns, at least for the sake of this
argument.

In addition to the regular three types of squares, white stone, black
stone, and empty, we add the following ones: no constraints yet, cannot
hold a white stone, and cannot hold a black stone.

Consider a rectangular board. If there is at least an empty square on the
board, then there is at least an empty square s such that one of the following
4 conditions on the bottom and left neighbors of s is satisfied. Either s is in
the bottom-left corner (Figure A.21a), or s is on the bottom edge and its left
neighbor is occupied (Figure A.21b), or s has three neighboring stones of different
colors (Figure A.21c), or these stones are all of the same color (Figure A.21d).
We can assume w.l.o.g. that a majority of the bottom-left neighboring stones
are white.

The first two cases are treated in Section Appendix B, the third case is
treated in Section Appendix C, and the last case in Section Appendix D. In each
case, we arrive to the conclusion that at least one player can move.

Appendix B. A square in a corner or on the edge of the board

If there is an empty square in a corner, as depicted in Figure A.21a, then
placing a stone on that very square is a legal move for at least one player.

If there is an empty square on an edge, we start from the situation in
Figure A.21b and use the following reasoning to constrain the surrounding and
obtain Figure B.22. C2 needs a white stone to forbid White’s move B1, and C1
cannot be white. A2 needs a black stone to forbid Black’s move B1. B2 needs to
be empty to forbid White’s and Black’s move B1. C1 cannot be empty to forbid
White’s move C1. A3 needs a white stone to forbid White’s move A1B1-B2, and
B3 cannot be white. C3 needs a black stone to forbid Black’s move C1B1-B2,
and B3 cannot be black. Similarly, A4 needs a black stone, C4 needs a white

39
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Figure B.22: The case in Figure A.21b with a few deducible constraints filled in.

A B C
1
2
3

Figure C.23: The case in Figure A.21c with a few deducible constraints filled in.

stone, and B4 needs to be empty, so as to forbid White’s move A1B2-B3 and
Black’s move C1B2-B3.

But then, C3B2-B1 is a legal move for Black.

Appendix C. A square with two white stones and a black stone

We start from the situation in Figure A.21c and use the following reasoning
to constrain the surrounding and obtain Figure C.23. The C2 square cannot
contain a white stone, otherwise B2 is a legal move for White. Similarly, B3
cannot contain a black stone, otherwise B2 is a legal move for Black. To forbid
White’s move B2, there should be a white stone on C1 or on C3 (Figure C.24).

Appendix C.1. Figure C.24a
C2 cannot contain a black stone due to the diagonal rule (since B2 is empty

by assumption), and has to be empty. Now, we distinguish two subcases: either
B3 is white, or it is empty (Figure C.25).

A B C
1
2
3

(a) Assume C1 is white.

A B C
1
2
3

(b) Assume C3 is white.

Figure C.24: Case analysis for Figure C.23, either C1 is white or C3 is white.
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(a) Assume B3 is white.

A B C D E
1
2
3
4

(b) Assume B3 is empty.

Figure C.25: Case analysis for Figure C.24a: B3 is either white or empty.
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(a) Assume C3 is black.

A B C D E
1
2
3
4

(b) Assume C3 is empty.

Figure C.26: Case analysis for Figure C.25b: C3 is either black or empty.

Appendix C.1.1. Figure C.25a
A3 contains a white stone, by the diagonal rule. C3 needs a black stone to

forbid Black’s move B2. D1 needs a black stone to forbid Black’s move B1B2-C2.
D3 needs a white stone to forbid White’s move C1B2-C2. D2 needs to be empty,
by the diagonal rule on stones C1 and C3. E3 needs a black stone to forbid
Black’s move B1C2-D2.

But, in that situation, D3C2-B2 is a legal move for White.

Appendix C.1.2. Figure C.25b
To forbid White’s move C2, D3 needs a white stone and C3 and D2 cannot

contain a white stone. To forbid White’s move D3C2-B2, there should be
white stones on E3 and D4 and E4 should not contain a white stone. Now, we
distinguish two subcases: either C3 is black, or it is empty (Figure C.26).

Appendix C.1.2.1. Figure C.26a. A3 cannot contain a black stone to forbid
Black’s move B3. D1 needs a black stone to forbid Black’s move C3B2-C2. D2
cannot contain a black stone by the diagonal rule, and has to be empty.

But then, move B1C2-D2 is legal for Black.

Appendix C.1.2.2. Figure C.26b. B4 needs a white stone to forbid White’s move
C3. D2 needs a black stone to forbid Black’s move C3.

But then, B1C2-C3 is legal for Black.
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(a) Assume C2 is black.

A B C D
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(b) Assume C2 is empty.

Figure C.27: Case analysis for Figure C.24b: C2 is either black or empty.
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(a) Assume A4 is black and C4 is white.

A B C
1
2
3
4
5

(b) Assume A4 is white and C4 is black.

Figure C.28: Case analysis for Figure C.27a: the contents of A4 and C4 is white.

Appendix C.2. Figure C.24b
A3 needs a black stone to forbid Black’s move B2. B3 cannot contain a white

stone by the diagonal rule (with A2) and has to be empty. Now, we distinguish
two subcases: either C2 is black, or it is empty (Figure C.27).

Appendix C.2.1. Figure C.27a
To forbid White’s move C3B2-B3 and Black’s move A3B2-B3, there should

be at least one white stone and one black stone in {A4, C4}. So, we distinguish
further between {A4 black, C4 white} and {A4 white, C4 black} (Figure C.28).

Appendix C.2.1.1. Figure C.28a.. D2 needs a black stone to forbid Black’s move
C2B2-B3, and C0 needs a black stone to forbid Black’s move C1B2-B3.

But then, B1B2-B3 is a legal move for Black.

Appendix C.2.1.2. Figure C.28b.. By the diagonal rule, square B4 has to be
empty. C5 (as well as D4) needs a black stone to forbid Black’s move C4B3-B2.
Symmetrically, A5 needs a white stone to forbid White’s move A4B3-B2.

But then, C3B2-B4 is a legal move for White.

Appendix C.2.2. Figure C.27b.
To forbid White’s move C2, there should be a white stone on D1 but no

white stones on C1 nor D2. We distinguish two subcases: C1 contains a black
stone, or it is empty (Figure C.29).
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(a) Assume C1 is black.

A B C D E
0
1
2
3

(b) Assume C1 is empty.

Figure C.29: Case analysis for Figure C.27b: C1 is either black or empty.

A B C
1
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3

Figure D.30: The case in Figure A.21d with a few deducible constraints filled in.

Appendix C.2.2.1. Figure C.29a.. D3 needs a black stone to forbid Black’s move
C2 (since B3 is empty). Then, by the diagonal rule, square D2 can only be
empty. E3 needs a white stone to forbid White’s move C3D2-C2. E1 needs a
black stone to forbid Black’s move D3C2-D2.

But then, D1C2-B2 is a legal move for White.

Appendix C.2.2.2. Figure C.29b.. The only way to forbid White’s move D1C2-B2
is to add two white stones on D0 and on E1. To forbid White’s move C1, there
should be a white stone on B0 (and a white stone on A0, by the diagonal rule),
and no white stones on C0. C0 cannot contain a black stone because of the
diagonal rule

But then, C0 is a legal move for White.

Appendix D. A square with three white stones

We start from the situation in Figure A.21d. To forbid White’s move B2,
there should be a white stone on C3, but no white stones on B3 nor C2. To
forbid Black’s move B2, there should be a black stone on C1 or A3, say C1
w.l.o.g. (see Figure D.30).

Therefore, B3 and C2 are empty or contain a black stone. They cannot both
contain a black stone since B2 is empty. We thus distinguish three cases: B3
and C2 are empty, B3 contains a black stone, and C2 contains a black stone
(Figure D.31).

Appendix D.1. Figure D.31a
D3 needs a black stone to forbid Black’s move C2. D1 needs a white stone to

forbid White’s move C3B2-C2. E3 needs a white stone to forbid White’s move
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(a) Assume B3 and C2
are empty.

A B C
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(b) Assume B3 is empty
and C2 is black.

A B C
1
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3

(c) Assume B3 is black and
C2 is empty.

Figure D.31: Case analysis for Fig D.30: the contents of B3 and C2.

C3B2-D2. E1 needs a black stone to forbid Black’s move D3C2-D2.
But then, D1C2-B2 is legal for White.

Appendix D.2. Figure D.31b
A3 needs a black stone to forbid Black’s move B2. This case is equivalent to

the case of Figure C.27a under color and spatial symmetry.

Appendix D.3. Figure D.31c
Let us consider cases for the contents of A3. If A3 contains a black stone,

then we obtain a position equivalent to Figure C.27a under color and spatial
symmetry.

If A3 is empty or white, then a similar proof to Figure D.31a still holds.
Indeed, D3 needs a black stone to forbid Black’s move B3B2-C2 and D1 needs a
white stone to forbid White’s move C3B2-C2. The same way, E3 needs a white
stone to forbid White’s move C3B2-D2, and then E1 needs a black stone to
forbid Black’s move C1B2-D2.

But then, D1C2-B2 is legal for White.
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