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Abstract
We exhibit a new obstacle to the nascent algorithmic theory for classes excluding an induced minor.
We indeed show that on the class of string graphs—which avoids the 1-subdivision of, say, K5

as an induced minor—Induced 2-Disjoint Paths is NP-complete. So, while k-Disjoint Paths,
for a fixed k, is polynomial-time solvable in general graphs, the absence of a graph as an induced
minor does not make its induced variant tractable, even for k = 2. This answers a question of
Korhonen and Lokshtanov [SODA ’24], and complements a polynomial-time algorithm for Induced
k-Disjoint Paths in classes of bounded genus by Kobayashi and Kawarabayashi [SODA ’09]. In
addition to being string graphs, our produced hard instances are subgraphs of a constant power of
bounded-degree planar graphs, hence have bounded twin-width and bounded maximum degree.

We also leverage our new result to show that there is a fixed subcubic graph H such that deciding
if an input graph contains H as an induced subdivision is NP-complete. Until now, all the graphs H

for which such a statement was known had a vertex of degree at least 4. This answers a question
by Chudnovsky, Seymour, and the fourth author [JCTB ’13], and by Le [JGT ’19]. Finally we
resolve another question of Korhonen and Lokshtanov by exhibiting a subcubic graph H without
two adjacent degree-3 vertices and such that deciding if an input n-vertex graph contains H as an
induced minor is NP-complete, and unless the Exponential-Time Hypothesis fails, requires time
2Ω(

√
n). This complements an algorithm running in subexponential time 2Õ(n2/3) by these authors

[SODA ’24] under the same technical condition.
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discussions, and in particular for asking about the flow problem (as opposed to the linkage one).

1 Introduction

In k-Disjoint Paths, one is given a graph G, together with k pairs of vertices, often
called terminals, (s1, t1), . . . , (sk, tk), and has to decide if G admits k vertex-disjoint paths
P1, . . . , Pk such that for every i ∈ {1, . . . , k}, the endpoints of Pi are si and ti. This problem
is also called k-Linkage as the pairs to connect are prescribed. In the “flow variant” of
this problem, Disjoint S–T Paths, the input consists of a graph G and two disjoint vertex
subsets S, T ⊂ V (G) with |S| = |T |, and the question is whether there are |S| vertex-disjoint
paths, each with one endpoint in S and the other endpoint in T . These problems are
polynomial-time solvable in general graphs, respectively by the work of Robertson and
Seymour [27] (for k-Disjoint Paths), and simply by Menger’s theorem [24] (for Disjoint
S–T Paths).

In this paper, we are interested in their induced variants Induced k-Disjoint Paths
and Induced Disjoint S–T Paths, where the paths are further requested to be mutually
induced (i.e., no edge of the graph is incident to two of these paths). These problems are
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NP-complete for k = 2 and for |S| = |T | = 2, respectively, in general graphs [8, 1]. Note that
Induced Disjoint S–T Paths with |S| = |T | = k can be solved with k! calls to Induced
k-Disjoint Paths. So when k is constant, the former problem is in principle simpler than
the latter.

Kawarabayashi and Kobayashi give a linear-time algorithm for Induced k-Disjoint
Paths (for any fixed k) in planar graphs [18], and a polynomial-time algorithm in classes
of bounded genus [19]. The latter result is lifted to the model checking of the FO+SDP
logic (i.e., first-order with scattered disjoint paths predicates, which can natively express the
existence of a constant number of induced disjoint paths between some specified pairs of
terminals) in fixed-parameter tractable (FPT) time in classes of bounded genus [13]. It is
believed that the tractability of Induced k-Disjoint Paths (and perhaps even of FO+SDP
model checking) holds more generally in classes excluding a fixed minor, and could be shown
by combining the irrelevant-vertex techniques (developed for the planar and bounded-genus
cases) with the graph structure theorem of Robertson and Seymour [28]. However, to our
knowledge, this has not been proven yet (provided it indeed holds).

Induced k-Disjoint Paths is polynomial-time solvable on classes of bounded mim-
width on which mim-width can be efficiently approximated [17], which includes for instance
interval graphs and permutation graphs. In claw-free graphs (i.e., graphs excluding K1,3 as
an induced subgraph), Induced k-Disjoint Paths is solvable in polynomial time for any
fixed k [10], and even in FPT time in parameter k [11]. In graphs without asteroidal triple,
this problem is polynomial-time solvable even if k is part of the input [12]. Finally, in (theta,
wheel)-free graphs, there is a polynomial-time algorithm for Induced k-Disjoint Paths
[26], while its complexity in theta-free graphs is open.

To understand better the tractability frontier of Induced k-Disjoint Paths, Korhonen
and Lokshtanov [20] ask if this problem is NP-hard in H-induced-minor-free graphs for some
fixed k and H. We resolve this question already in the case when k = 2 and H is equal to
the 1-subdivision of K5 (or of K3,3). Indeed string graphs (i.e., intersection graphs of curves
in the plane) exclude the 1-subdivision of any non-planar graph as an induced minor.

▶ Theorem 1. Induced 2-Disjoint Paths is NP-complete in string graphs that are
subgraphs of a constant power of bounded-degree planar graphs.

We actually show the stronger result that Induced Disjoint S–T Paths with |S| =
|T | = 2 is NP-complete in this subclass of string graphs. Note that subgraphs of constant
powers of bounded-degree planar graphs both have bounded twin-width [3, 2] and bounded
maximum degree. Thus Theorem 1 considerably limits the scope within which the existing
polynomial algorithms could be extended.

The Exponential-Time Hypothesis (ETH for short), a stronger assumption than P ̸= NP
but still widely believed, asserts that there is a real λ > 1 such that n-variable 3-SAT cannot
be solved in time O(λn) [15]. More quantitatively, Theorem 1, by providing a linear reduction
from a variant of Planar 3-SAT (see [23]), implies the following.

▶ Corollary 2. Induced Disjoint S–T Paths with |S| = |T | = 2 is NP-complete in string
graphs of bounded maximum degree and twin-width, and requires time 2Ω(

√
n) on n-vertex

such graphs, unless the Exponential-Time Hypothesis fails.

Our result has some consequences for the detection of induced subdivisions, which we
now turn our attention to.
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Detecting induced subdivisions and induced minors

Let H-Induced Subdivision Containment (H-ISC for short) input a graph G and ask
whether H is an induced subdivision of G. This problem has attracted some attention.
Chudnovsky and Seymour introduced the Three-In-A-Tree problem—whether there is an
induced subtree containing three given vertices—and showed how to solve it in polynomial
time via the so-called extended strip decompositions, in order to obtain a polynomial
algorithm for K2,3-ISC [4]. The first graphs H for which H-ISC is NP-complete came
from [22] where several examples are given: notably the complete graph K5 and some trees,
among other graphs. In the same paper, some other examples of tractable H-ISC were given,
all relying on the polynomial-time algorithm for Three-In-A-Tree. There are also some ad
hoc algorithms for H-ISC when H is the net (i.e., the graph obtained by adding a pendant
neighbor to each vertex of a triangle) [5], when H is K4 [21], or when H is the disjoint union
of a fixed number of triangles [25].

Despite this line of work, no subcubic graph H was known to make H-ISC NP-hard.
Actually, Chudnovsky, Seymour, and the fourth author [5] and Le [21] asked whether there
is a polynomial-time algorithm for H-ISC for any subcubic graph H. As a consequence
of Theorem 1, we answer this question by the negative by exhibiting a subcubic graph H

(the graph of Figure 1) for which H-ISC is NP-hard.

s
t

s′

t′

A1

A2

A3

A4

Figure 1 The subcubic graph H. Both H[A1] and H[A2] are the 1-subdivision of K3,3. Both
H[A3] and H[A4] are obtained from K3,3 by subdividing every edge once but one edge that is
subdivided twice. The vertices of H which are not in

⋃
i∈[4] Ai are labeled s, t, s′, t′. In total H has

66 vertices.

▶ Theorem 3. H-Induced Subdivision Containment is NP-complete for the subcubic
graph H of Figure 1.

Theorem 3 holds within subgraphs of a constant power of bounded-degree planar graphs
that are string graphs plus a constant number of (bounded-degree) apices, which are graphs
of bounded twin-width [3, 2] excluding a fixed induced minor. In other words, Theorem 3
holds in the graphs for which Theorem 1 holds augmented by a constant number of vertices
of bounded degree.
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Theorem 1 also has consequences for the detection of induced minors, topic that we now
briefly survey. Let H-Induced Minor Containment (H-IMC for short) input a graph G

and ask whether H is an induced minor of G. It was first shown by Fellows et al. [9] that
H-IMC can be NP-hard for a fixed graph H (unlike the minor containment). The latter
graph H was not planar, which prompted the authors to ask if there is a planar graph H for
which H-IMC is NP-hard, and whether H-IMC is always polynomial-time solvable when
H is a tree. Recently, Korhonen and Lokshtanov [20] answered both questions by showing
that H-IMC is NP-hard for some fixed tree H (whose number of vertices is not explicit,
and estimated to be larger than 2300 in [7]). Dallard et al. [6] show that K2,3-IMC can be
solved in polynomial time. Finding the disjoint union of a constant number of triangles as an
induced minor or as an induced subdivision is all the same, so for any natural t, tK3-IMC is
also in P [25]. For a more complete survey on the complexity of H-IMC, we refer the reader
to the introduction of [7]; the paper provides some polynomial-time algorithms for three
infinite families of graphs H, and notes that H-IMC is in P for every graph H on at most 5
vertices, except for three remaining open cases.

As a similar consequence to Corollary 2, we show a 2Ω(
√

n) lower bound for H-IMC
on n-vertex graphs, under the ETH. This can be put in perspective with a 2Õ(n2/3)-time
algorithm for H-IMC when every edge of H is incident to a vertex of degree at most 2 [20].
The authors ask if the mere NP-hardness of H-IMC can be shown for some graph H with
this property. Actually by subdividing eight edges in the graph of Figure 1, we obtain a graph
H ′ satisfying the property, and for which we can show the same lower bound.

▶ Theorem 4. There is a subcubic graph H ′ such that every edge of H ′ is incident to a vertex
of degree 2, and H ′-Induced Minor Containment is NP-complete, and requires time
2Ω(

√
n) on n-vertex graphs, unless the ETH fails.

We observe that it is not too difficult to show Theorems 3 and 4 with connected graphs H

and H ′ (having the extra properties of their respective statement). As this complicates a bit
their proofs without being a significantly stronger result, we opted against doing it explicitly.

Open questions

We suggest the following open questions, which come more or less directly from our work
and the literature. In light of the surveyed polynomial algorithms applying more generally to
Induced k-Disjoint Paths and the hardness proofs applying more generally to Induced
Disjoint S–T Paths with |S| = |T | = k, we wonder if there is a hereditary graph class in
which Induced k-Disjoint Paths is NP-complete but Induced Disjoint S–T Paths
with |S| = |T | = k is polynomial-time solvable; the case k = 2 is of particular interest.

The string graphs that our proof of Theorem 1 produces do not seem to be 1-string
graphs (i.e., realizable with strings every pair of which intersects at most once). We leave
open the complexity of Induced k-Disjoint Paths in 1-string graphs, and also in segment
intersection graphs (a further restriction to 1-string graphs).

A natural conjecture stems from our paper and existing algorithms, under P ̸= NP.

▶ Conjecture 5. For any subcubic graph H, H-ISC is in P if and only if H is planar.

2 Preliminaries

If i is a positive integer, we denote by [i] the set of integers {1, 2, . . . , i}.
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2.1 Subgraphs, induced subgraphs, neighborhoods, and some graphs
We denote by V (G) and E(G) the set of vertices and edges of a graph G, respectively.
A graph H is a subgraph of a graph G if H can be obtained from G by vertex and edge
deletions. Graph H is an induced subgraph of G if H is obtained from G by vertex deletions
only. A graph G is H-free if G does not contain H as an induced subgraph. For S ⊆ V (G),
the subgraph of G induced by S, denoted G[S], is obtained by removing from G all the
vertices that are not in S (together with their incident edges). Then G − S is a short-hand
for G[V (G) \ S]. A collection of paths P1, . . . , Ph in a graph G is said mutually induced if
G[

⋃
i∈[h] V (Pi)] is exactly the disjoint union of paths P1, . . . , Ph.

A set X ⊆ V (G) is connected (in G) if G[X] has a single connected component. A vertex
whose removal increases the number of connected components is called a cutvertex. Similarly,
a bridge is an edge whose removal increases the number of connected components. We denote
by Gr the r-th power of G, that is, the graph with vertex set V (G) and an edge between any
two vertices at (shortest-path) distance at most r in G. A constant power of G is Gr for
some constant r.

A subdivision of a graph G is any graph obtained from G by replacing each edge of G

by a path of at least one edge. In a subdivision of G the vertices of G are called branching
vertices, and the created vertices are called subdivision vertices. The s-subdivision of G is
the graph obtained from G by replacing each edge of G by a path of s + 1 edges.

We denote by NG(v) and NG[v], the open, respectively closed, neighborhood of v in G.
For S ⊆ V (G), we set NG(S) := (

⋃
v∈S NG(v)) \ S and NG[S] := NG(S) ∪ S. The degree

dG(v) of a vertex v ∈ V (G) is the cardinality of NG(v), and the maximum degree of G is
defined as maxv∈V (G) dG(v). A subcubic graph is a graph of maximum degree at most 3.

The t-clique, denoted by Kt, is obtained by making adjacent every pair of two distinct
vertices among t vertices, and the biclique Kt,t with bipartition (A, B) such that |A| = |B| = t

is obtained by making every vertex of A adjacent to every vertex of B. A theta is any
subdivision of K2,3. A wheel is any graph obtained by adding to a cycle of length at least 4,
a vertex with at least three neighbors on the cycle.

A string graph is the intersection graph of some collection of (non-self-intersecting) curves
in the plane (usually called strings), or equivalently the intersection graph of a collection of
connected sets of some planar graph. The collection of strings is called string representation.
We may see the string representation as a planar diagram with one vertex at each string
endpoint and at each intersection of two strings. For instance, any string representation
defines an infinite face (the infinite face of this planar diagram).

It is known (and easy to see) that the 1-subdivision of any non-planar graph is not a string
graph [29].

2.2 Induced subdivisions and induced minors
A graph H is an induced subdivision of a graph G if a subdivision of H is isomorphic to an
induced subgraph of G. An induced subdivision model of H in G is given by an injective map
ϕ : V (H) → V (G) and a collection of paths (Pe)e∈E(H) in G such that for every uv ∈ E(H),
Puv is a ϕ(u)–ϕ(v) path, and G[

⋃
e∈E(H) V (Pe)] has no more edges than the paths (Pe)e∈E(H)

themselves.
An induced minor model of H in G is a collection M := {X1, . . . , X|V (H)|} of pairwise-

disjoint connected subsets of V (G), called branch sets, together with a bijective map ϕ :
V (H) → M such that uv ∈ E(H) if and only if there is at least one edge in G between ϕ(u)
and ϕ(v). In which case, we may say that the branch sets ϕ(u) and ϕ(v) are adjacent. We
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then say that H is an induced minor of G (or otherwise that G is H-induced-minor-free).
Or equivalently, H can be obtained from G after a series of vertex deletions and edge
contractions.

An induced minor model ({X1, . . . , Xh}, ϕ) of an h-vertex graph H is minimal if for every
X ′

1 ⊆ X1, . . . , X ′
h ⊆ Xh, the fact that ({X ′

1, . . . , X ′
h}, ϕ′) is an induced minor model of H

with ϕ′(u) = X ′
i ⇔ ϕ(u) = Xi for every u ∈ V (H), implies that for every i ∈ [h], X ′

i = Xi.
With the second given definition of string graphs (see end of Section 2.1), it is easy to see

that the class of string graphs is closed under taking induced minors. Thus no string graph
admits the 1-subdivision of a non-planar graph as an induced minor.

2.3 Useful facts on twin-width
As we only mention twin-width in side remarks, we refrain from giving a definition. We list
the theorems useful in Section 3. This can be read in a black-box fashion.

It was first proven in [3] that the class of planar graphs has bounded twin-width. The
current best upper bound is 8 [14].

▶ Theorem 6 (Theorem 6.3 in [3], [14]). Planar graphs have bounded twin-width, more
precisely upper bounded by 8.

The constant powers of bounded twin-width graphs have bounded twin-width, as a special
case of so-called first-order transductions.

▶ Theorem 7 (Theorem 8.1 in [3]). There is a function f such that for any graph G of
twin-width d and for any positive integer r, Gr has twin-width at most f(d, r).

Among weakly sparse classes (excluding a Kt,t as a subgraph), the subgraph closure of
any class of bounded twin-width has bounded twin-width.

▶ Theorem 8 ([2]). There is a function g such that for any graph G of twin-width d

excluding Kt,t as a subgraph (or in particular, of maximum degree at most t − 1), then any
subgraph of G has twin-width at most g(d, t).

3 Hardness of Induced 2-Disjoint Paths in string graphs

In this section, we show that Induced 2-Disjoint Paths is NP-complete in (a proper
subclass of) string graphs.

▶ Theorem 1. Induced 2-Disjoint Paths is NP-complete in string graphs that are
subgraphs of a constant power of bounded-degree planar graphs.

Proof. We reduce from the NP-complete problem Clause-Linked Planar E3-Occ 3-SAT,
with variables x1, . . . , xn and clauses c1, . . . , cm where every clause cj is on at most three
variables, each variable appears three times, and the variable-clause incidence graph is planar
even when the cycle c1c2 . . . cmc1 is added. This problem has been proven NP-complete by
Fellows et al. [9], even in a restricted form with some additional constraint on the clauses, but
we will not need this restriction. We also do not absolutely need that every variable appears
exactly three times; at most three times is good enough. To get a unique representation of
the variable gadget, we nevertheless assume that every variable has exactly three occurrences:
two positive and one negative, or two negative and one positive. Indeed variables appearing
only positively (or only negatively) can be set to true (or to false). This means that we
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need to allow clauses on two variables, as E3-Occ E3-SAT is trivial (all its instances are
satisfiable). We refer the reader to [30] for the complexity of variants of Planar 3-SAT.

We present the variable gadgets, clause gadgets, and variable-clause incidences, which
assembled together form the graph G input to Induced 2-Disjoint Paths. The reader can
also refer to Figure 2 where these three elements are depicted.

Variable gadget. For each variable xi, we now describe the variable gadget G(xi).
For each clause cj containing xi, we add to G(xi) two vertices wN

j (xi), wS
j (xi) if xi appears

positively in cj , and we add two vertices wN
j (¬xi), wS

j (¬xi) if, instead, xi appears negatively
in cj . We finally turn G(xi) into an induced biclique by adding every edge between pairs of
vertices wd

j (xi), wd′

j′ (¬xi) for d, d′ ∈ {N, S} and j, j′ may be equal or distinct. Observe that
every variable gadget is isomorphic to the bipartite complete graph K2,4.

Clause gadget. We describe the clause gadget G(cj) for each clause cj . Let ℓ1, ℓ2, ℓ3
be the three literals of cj (or ℓ1, ℓ2 if cj is a 2-clause). The gadget G(cj) has 16 ver-
tices (or 12 if cj is a 2-clause): four entry points uN

j , uS
j , uN

j+1, uS
j+1, and four vertices

vNW
j (ℓa), vNE

j (ℓa), vSW
j (ℓa), vSE

j (ℓa) for each a ∈ {1, 2, 3} (for each a ∈ {1, 2}). We add an
edge between a pair of vertices vd

j (ℓa), vd′

j (ℓa′), with d, d′ ∈ {NW, NE, SW, SE}, whenever
a ̸= a′. Thus those 12 vertices (8 vertices) form a tripartite complete graph K4,4,4 (bipartite
complete graph K4,4). For every d ∈ {N, S} and a ∈ {1, 2, 3} (a ∈ {1, 2}), we also add the six
(four) edges ud

j vdW
j (ℓa), and the six (four) edges vdE

j (ℓa)ud
j+1. This finishes the description

of G(cj). Note that G(cj) and G(cj+1) share two vertices: uN
j+1 and uS

j+1.

Variable-clause incidence. Finally for every clause cj and literal ℓ in cj , and each
d ∈ {N, S}, we add the edges vdW

j (ℓ)wd
j (ℓ) and wdE

j (ℓ)vd
j (ℓ).

The graph G, input of Induced 2-Disjoint Paths, is obtained by having a gadget for
each variable and each clause, and adding the edges as described in the previous sentence.
We set the first terminal pair to uN

1 , uN
m+1 and the second terminal pair to uS

1 , uS
m+1. This

finishes the construction; see Figure 2. The next two lemmas show the correctness of the
reduction.

▷ Claim 9. If c1 ∧ . . .∧cm is satisfiable, then G admits two uN
1 –uN

m+1 and uS
1 –uS

m+1 mutually
induced paths.

Proof of the Claim: We fix a truth assignment ℓ1, . . . , ℓn of the variables satisfying
c1 ∧ . . . ∧ cm, with ℓi ∈ {xi, ¬xi} for every i ∈ [n]. For each clause cj , we choose any literal
ℓ(cj) of cj such that ℓ(cj) = ℓi for some i ∈ [n]. For each d ∈ {N, S}, we build the path P d:

ud
1, vdW

1 (ℓ(c1)), wd
1(ℓ(c1)), vdE

1 (ℓ(c1)), ud
2, vdW

2 (ℓ(c2)), wd
2(ℓ(c2)), vdE

2 (ℓ(c2)), . . . ,

ud
m, vdW

m (ℓ(cm)), wd
m(ℓ(cm)), vdE

m (ℓ(cm)), ud
m+1.

Note that P N is a uN
1 –uN

m+1 path in G, P S is a uS
1 –uS

m+1 path, and P N , P S are vertex-disjoint.
We claim there is no chord between P N and P S . This is essentially because

within every G(cj), V (P N ) and V (P S) induce a 4K2 comprising four edges of P N ⊎ P S ,
apart from edges incident to entry points, there is no edge between two clause gadgets,
P N and P S enter each variable gadget on the same side of the induced biclique,

which concludes the proof of the claim. ♢

▷ Claim 10. If G admits two uN
1 –uN

m+1 and uS
1 –uS

m+1 mutually induced paths, then
c1 ∧ . . . ∧ cm is satisfiable.
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vNW
j

(xj1 ) vNE
j

(xj1 )

vSW
j

(xj1 ) vSE
j

(xj1 )

vNW
j

(¬xj2 ) vNE
j

(¬xj2 )

vSW
j

(¬xj2 ) vSE
j

(¬xj2 )

vNW
j

(xj3 ) vNE
j

(xj3 )

vSW
j

(xj3 ) vSE
j

(xj3 )

uN
j

uS
j

uN
j+1

uS
j+1

G(cj)

wN
j

(xj1 )

wS
j

(xj1 )

wN
j

(xj3 )

wS
j

(xj3 )

wN
j

(¬xj2 )

wS
j

(¬xj2 )

wN
j′ (xj1 )

wS
j′ (xj1 )

wN
j′′ (¬xj1 )

wS
j′′ (¬xj1 )

G(xj1)

vNW
j

(xj1 ) vNE
j

(xj1 )

vSW
j

(xj1 ) vSE
j

(xj1 )

vNW
j

(¬xj2 ) vNE
j

(¬xj2 )

vSW
j

(¬xj2 ) vSE
j

(¬xj2 )

vNW
j

(xj3 ) vNE
j

(xj3 )

vSW
j

(xj3 ) vSE
j

(xj3 )

Figure 2 The clause gadget G(cj) with cj = xj1 ∨ ¬xj2 ∨ xj3 , variables xj1 , xj2 in one face defined
by cycle c1c2 . . . cmc1 (above), and xj3 in the other face (below). We also drew the variable gadget
G(xj1 ) when xj1 appears positively in cj and cj′ , and negatively in cj′′ . Edges linking two rounded
boxes represent bicliques.

Proof of the Claim: Let P N , P S be two mutually induced paths in G such that P d is
a ud

1–ud
m+1 path for each d ∈ {N, S}. We think of P d as going from ud

1, its start, to ud
m+1,

its end. We first show the following invariant. For every j ∈ [m], there exists a literal ℓ of cj

such that for each d ∈ {N, S}, the path P d goes from ud
j to ud

j+1 via the 4-edge subpath
ud

j , vdW
j (ℓ), wd

j (ℓ), vdE
j (ℓ), ud

j+1.
Fix some j ∈ [m], and assume that the invariant holds for every j′ ∈ [j − 1] (with [0] = ∅).

The vertex following uN
j along P N cannot be in G(cj−1) as either j = 1 (and this gadget

does not exist) or it would create a chord between P N and P S , by the induction hypothesis.
Thus it has to be vNW

j (ℓ) for some literal ℓ of cj . To avoid a chord between P N and P S , the
vertex following uS

j along P S has to be vSW
j (ℓ). Then the next vertex along P N (resp. P S)

has to be wN
j (ℓ) (resp. wS

j (ℓ)). As the variable gadget of literal ℓ is an induced biclique,
the next vertices have to be back to the clause gadget G(cj): vNE

j (ℓ) along P N , and vSE
j (ℓ)

along P S . Finally the next vertices have to be uN
j+1 along P N , and uS

j+1 along P S . This
completes the proof that the invariant holds for every j ∈ [m].

Let A be the truth assignment setting xi to true if P N (resp. P S) does not contain any
vertex wN

j (¬xi) (resp. wS
j (¬xi)), and to false otherwise. As P N , P S are mutually induced,

in the latter case P N (resp. P S) does not contain any vertex wN
j (xi) (resp. wS

j (xi)). Thus,
for every clause cj , the vertex vNW

j (ℓ) ∈ P N is such that literal ℓ is satisfied by A. Hence A
is a satisfying assignment. ♢

Observe that the invariant in the first paragraph of the proof of Claim 10 still holds
under the weaker assumption that the endpoints of P N , P S are in {uN

m+1, uS
m+1} (but

are unspecified). Therefore finding two mutually induced paths between {uN
1 , uS

1 } and
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{uN
m+1, uS

m+1} in G (the induced flow problem) is equivalent to the induced linkage problem.
We now show that G is as advertised by the theorem statement. We start by giving

a string representation for G.

▷ Claim 11. G is a string graph.

Proof of the Claim: First, we draw a planar embedding P of the variable-clause incidence
graph augmented with the cycle c1c2 . . . cmc1. We refer to one face delimited by this cycle as
the upper face (drawn in the figures “above” the path c1c2 . . . cm), and the other face as the
lower face. Second, for every clause cj , draw G(cj), and the six (or four, if cj is a 2-clause)
vertices in variable gadgets that are adjacent to G(cj), as the intersection graph of strings
such that

the strings of uN
j , uS

j , uN
j+1, uS

j+1 protrude in the infinite face,1
as well as wN

j (ℓ) (resp. wS
j (ℓ)) if ℓ is a literal of cj whose variable is drawn in the upper

face (resp. lower face) in P,
these strings appear along the infinite face in the order prescribed by P, and
for each literal ℓ of cj , there is a face that contains a substring of wN

j (ℓ) and a substring
of wS

j (ℓ), one of which bounding the infinite face (as requested by the second item).
Such a string representation is given in Figure 3.

uN
j

uS
j

uN
j+1

uS
j+1

wN
j (xj1) wN

j (¬xj2)

wS
j (xj3)

upper face

lower face

Figure 3 String representation of the clause gadget of Figure 2 satisfying all four items. The
string intersections for the 3 · 42 = 48 adjacencies of the K4,4,4 occur in the dashed box with rounded
corners. It is also easy to check that no two strings of the same color intersect, so the K4,4,4 remains
induced. We kept “half” of the strings of uN

j , uS
j , uN

j+1, uS
j+1 uncrossed for the representation of

clause gadgets G(cj−1) and G(cj+1).

1 In all these items, the faces are those of the planar diagram of the string representation of G(cj), except
the upper and lower faces, which are defined above.
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The figure illustrates the case when no three variables of the clause lie on the same face.
However it is easy to mirror the green strings to draw the other case. For 2-clauses, one can
simply remove four strings of the same color (red, blue, or green) from Figure 3.

At this point, the string representation of G has all the desired edges (intersections)
except for those of the K2,4 in variable gadgets. It has no extra edge, due to the planarity
of P. Figure 4 finally shows how to edit the strings wN

• (•) and wS
• (•) to add these edges,

without incurring any other edges.

wN
j (xi)

wN
j′ (xi)wN

j′′(¬xi)
−→

wN
j (xi)

wN
j′ (xi)wN

j′′(¬xi)

Figure 4 How to realize the K2,4 of the variable gadget G(xi) without creating any other string
intersections. The black strings represent vertices of G(xi), and the red strings, vertices in clause
gadgets. In this example, xi is in the upper face, and has two positive occurrences and one negative
occurrence.

After editing every string of the variable gadgets, we obtain a string representation for G.♢

We finally show the following property of G.

▷ Claim 12. There is a subcubic planar graph H such that G is a subgraph of H16.

Proof of the Claim: In the planar drawing P (see proof of Claim 11), replace every
clause vertex by a path of length 16, and every variable vertex by a cycle of length 12, in such
a way that the obtained graph H is subcubic, still planar, and the variable-clause incidences
are preserved. It is then easy to see that G is a subgraph of H16. ♢

This finishes the proof of the main theorem. ◀

We then derive the following.

▶ Corollary 2. Induced Disjoint S–T Paths with |S| = |T | = 2 is NP-complete in string
graphs of bounded maximum degree and twin-width, and requires time 2Ω(

√
n) on n-vertex

such graphs, unless the Exponential-Time Hypothesis fails.

Proof. By Theorem 6, planar graphs have bounded twin-width. By Theorem 7, constant
powers of planar graphs have bounded twin-width. Constant powers of bounded-degree
graphs have themselves bounded maximum degree, and in particular, no Kt,t subgraph for
some constant t. Thus by Theorem 8, the graphs produced by the previous reduction have
bounded twin-width. Besides, they are bounded-degree string graphs.

The previous reduction also works for Induced Disjoint S–T Paths as the invariant
shown in Claim 10 can be established in the same way under the weaker assumption that G

admits two mutually induced paths between uN
1 and {uN

m+1, uS
m+1}, and between uS

1 and
{uN

m+1, uS
m+1}, respectively. In particular, the invariant shows that (if there is at least one

clause) there cannot be uN
1 –uS

m+1 and uS
1 –uN

m+1 paths that are mutually induced in G.
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The reduction from Clause-Linked Planar E3-OCC 3-SAT of the proof of Theorem 1
is linear. Indeed it creates a constant number of vertices for each variable and for each
clause. By the Sparsification Lemma of Impagliazzo, Paturi, and Zane [16] and classic linear
reductions (see [9, 30]), n-variable Clause-Linked Planar E3-OCC 3-SAT requires
time 2Ω(

√
n), under the ETH. We conclude that Induced Disjoint S–T Paths with

|S| = |T | = 2 requires time 2Ω(
√

n) on n-variable string graphs of bounded twin-width and
maximum degree. ◀

4 Hardness of detecting a subcubic graph as an induced subdivision

As a consequence of the previous section, we can prove Theorem 3, which we recall.

▶ Theorem 3. H-Induced Subdivision Containment is NP-complete for the subcubic
graph H of Figure 1.

Proof. We reduce from Induced 2-Disjoint Paths in string graphs. Given any input
(G′, s1, t1, s2, t2), we construct a graph G as follows. Take the disjoint union of G′ and H,
remove the edges st and s′t′ (of H), and identify s1 with s, t1 with t, s2 with s′, and t2
with t′. For the sake of clarity, for any i ∈ [4], vertex set Ai (in H) is renamed Bi in G.
Hence V (G) = V (G′) ∪

⋃
i∈[4] Bi. One can observe that if (G′, s1, t1, s2, t2) is a positive

instance of Induced 2-Disjoint Paths, then H is an induced subdivision of G. We show
that the converse also holds, hence this linear reduction is correct.

Let (ϕ : V (H) → V (G), (Pe)e∈E(H)) be an induced subdivision model of H in G. We say
that a vertex of H is mapped to its image by ϕ.

▷ Claim 13. For any i ∈ [4], no vertex of Ai can be mapped to a vertex of V (G′).

Proof of the Claim: No subdivision of K3,3 has a bridge. However, any induced
subdivision in G whose branching vertices intersect both V (G′) and

⋃
i∈[4] Bi contains

a bridge. This is because any of s, t, s′, t′ is a cutvertex in G. Thus for every i ∈ [4],
ϕ(Ai) ⊂

⋃
i∈[4] Bi or ϕ(Ai) ⊂ V (G′). We now simply have to rule out the latter. Observe

that there is no path in G between two vertices in V (G′) that exits V (G′). Thus, if
ϕ(Ai) ⊂ V (G′), G′ would contain an induced subdivision of the 1-subdivision of K3,3, which
does not hold as G′ is a string graph. ♢

Claim 13 implies that ϕ(
⋃

i∈[4] Ai) =
⋃

i∈[4] Bi. Again, the absence of cutvertices in
each H[Ai] and G[Bi] implies that for every i ∈ [4] there is some j ∈ [4] such that ϕ(Ai) =
Bj . As |A1| = |A2| ≠ |A3| = |A4| and ϕ is injective, {ϕ(A1), ϕ(A2)} = {B1, B2} and
{ϕ(A3), ϕ(A4)} = {B3, B4}. Now for the induced subdivision model of H to be completed,
there has to be in G′ two mutually induced paths between s1 and t1, and between s2 and t2.
Thus (G′, s1, t1, s2, t2) is indeed a positive instance. ◀

The previous reduction also works for H-Induced Minor Containment. However, the
proof is slightly more involved. We tune H a little bit such that it is still subcubic but has
no two adjacent vertices of degree 3 (so that the forthcoming result answers a question of
Korhonen and Lokshtanov). We call the resulting graph H ′; see Figure 5.

▶ Theorem 4. There is a subcubic graph H ′ such that every edge of H ′ is incident to a vertex
of degree 2, and H ′-Induced Minor Containment is NP-complete, and requires time
2Ω(

√
n) on n-vertex graphs, unless the ETH fails.
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s
t

s′

t′

A1

A2

A3

A4

Figure 5 The graph H ′ obtained from H of Figure 1 by subdividing in each Ai the two edges
incident to the vertex with a neighbor in {s, t, s′, t′}. In total H ′ has 74 vertices.

Proof. Again, we reduce from Induced 2-Disjoint Paths in string graphs and build
from any input (G′, s1, t1, s2, t2), a graph G in the following way: Take the disjoint union
of G′ and H ′, remove the edges st and s′t′ (of H ′), and identify s1 with s, t1 with t, s2
with s′, and t2 with t′. For any i ∈ [4], vertex set Ai (in H ′) is renamed Bi in G. Thus
V (G) = V (G′) ∪

⋃
i∈[4] Bi. If (G′, s1, t1, s2, t2) is a positive instance of Induced 2-Disjoint

Paths, then H ′ is an induced subdivision, and hence an induced minor of G. Again, we
show that the converse also holds.

Let h := |V (H ′)| = 74, and (M := {X1, . . . , Xh}, ϕ : V (H ′) → M) be a minimal induced
minor model of H ′ in G. First, assume that there is an i ∈ [4] and x ∈ Ai such that
ϕ(x) ∩ V (G′) ̸= ∅. As G′ is a string graph (but H ′[Ai] is not), there is also some y ∈ Ai and
j ∈ [4] such that ϕ(y) ∩ Bj ̸= ∅. Let u be the vertex of {s1, t1, s2, t2} with a neighbor in Bj .
As u is a cutvertex in G that disconnects Bj from the rest of G, there is a z ∈ Ai such that
u ∈ ϕ(z).

As every branch set is connected, for every z′ ∈ Ai \ {z}, either ϕ(z′) ⊂ Bj or ϕ(z′) ⊂
V (G − Bj). Furthermore, as H ′[Ai] has no cutvertex (in particular z is not a cutvertex of
H ′[Ai]), either for every z′ ∈ Ai\{z}, ϕ(z′) ⊂ Bj , or for every z′ ∈ Ai\{z}, ϕ(z′) ⊂ V (G−Bj).
The latter would contradict the minimality of (M, ϕ) as the (non-empty subset of) vertices
of Bj could then be removed from every branch set; and in particular ϕ(y) would strictly
decrease.

Therefore, for every z′ ∈ Ai \ {z}, ϕ(z′) ⊂ Bj . Moreover, it should hold that z has
a neighbor in {s, t, s′, t′}, say s. Now, one can change the induced minor model by moving
ϕ(z) ∩ V (G − Bj) to the adjacent branch set ϕ(s). This indeed still works as an induced
minor model of H ′ in G, and can greedily be made minimal (if need be).

After at most three more similar steps, we obtain a (minimal) induced minor model
(M′, ϕ′) such that for every x ∈

⋃
i∈[4] Ai, ϕ′(x) ⊆

⋃
i∈[4] Bi. We may then conclude as in

the proof of Theorem 3. The ETH lower bound is a direct consequence of Corollary 2 and of
the fact that the present reduction is linear. ◀
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