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Abstract
We show that it is NP-hard to distinguish graphs of linear mim-width at most 1211 from graphs
of sim-width at least 1216. This implies that Mim-Width, Sim-Width, One-Sided Mim-Width,
and their linear counterparts are all paraNP-complete, i.e., NP-complete to compute even when
upper bounded by a constant. A key intermediate problem that we introduce and show NP-complete,
Linear Degree Balancing, inputs an edge-weighted graph G and an integer τ , and asks whether
V (G) can be linearly ordered such that every vertex of G has weighted backward and forward degrees
at most τ .

1 Introduction

While it was shown shortly after the inception of these parameters by Vatshelle in 2012 [14, 1]
that Mim-Width and Linear Mim-Width are W[1]-hard [12, 13], whether a slice-wise
polynomial (XP) algorithm1 can compute (or approximate) the (linear) mim-width of an
input graph has been raised as an open question repeatedly over the past twelve years [14,
13, 10, 9, 4, 3, 11, 2]. We give a negative answer to this question (at least for some too-good
approximation factor), and similarly settle the parameterized complexity of the related
sim-width and one-sided mim-width parameters, as well as their linear variants. Indeed we
show that all these parameters are paraNP-complete to compute, i.e., NP-complete even
when guaranteed to be upper bounded by a universal constant.

▶ Theorem 1. Mim-Width, Sim-Width, One-Sided Mim-Width, Linear Mim-Width,
Linear Sim-Width, and Linear One-Sided Mim-Width are paraNP-complete.

We show Theorem 1 with a single reduction.

▶ Theorem 2. There is a polynomial-time algorithm that takes an input φ of 4-Occ
Not-All-Equal 3-Sat and builds a graph G∗ such that

if φ is satisfiable, then G∗ has linear mim-width at most 1211,
if φ is unsatisfiable, then G∗ has sim-width at least 1216.

Theorem 2 indeed implies Theorem 1 as the linear mim-width upper bounds the other five
parameters, while the sim-width lower bounds the other five parameters. Our reduction is
naturally split into three parts, thereby going through two intermediate problems. The first
intermediate problem may be of independent interest (perhaps especially so, its unweighted
version), and we were somewhat surprised not to find it already defined in the literature. We
call it Linear Degree Balancing.

1 i.e., for any fixed integer k, a polynomial-time algorithm (whose exponent may depend on k) that
decides if the (linear) mim-width of the input graph is at most k.
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Linear Degree Balancing Parameter: τ

Input: An edge-weighted n-vertex graph H and a non-negative integer τ .
Question: Is there a linear ordering v1 ≺ v2 ≺ . . . ≺ vn of V (H) such that every
vertex vi has weighted degree in H[{v1, . . . , vi}] and in H[{vi, . . . , vn}] at most τ?

We call τ -balancing order of H a linear order over V (H) witnessing that H is a positive
instance of Linear Degree Balancing.

The three steps. Our reduction starts with a Not-All-Equal 3-Sat (Nae 3-Sat
for short) instance φ, and goes through an edge-weighted graph (H, ω), a vertex-partitioned
graph (G, P), and finally an instance G∗ of Mim-Width.

First we prove that Linear Degree Balancing is NP-complete even when τ is a con-
stant, and every edge weight is a positive integer. For our purpose, we in fact show something
stronger. The first step is a polynomial-time reduction from 4-Occ Nae 3-Sat that maps
satisfiable formulas to edge-weighted graphs admitting a τ -balancing order, and unsatisfiable
formulas to negative instances of Tree Degree Balancing, a tree variant of Linear
Degree Balancing, for the larger threshold of τ + γ, where γ can grow linearly in τ .

In Tree Degree Balancing, the vertices of H are bijectively mapped to the nodes of
a freely-chosen tree T such that for every node t of T and every edge e incident to t, the
vertex of H mapped to t has weighted degree at most the given threshold in the cut of H

defined by the two connected components of T − e. A formal definition is given in Section 3.5.
The second step turns the weighted degree into the maximum (semi-)induced matching

at the expense of mapping subsets of vertices of G to nodes of T , in a way that the nodes
of T jointly hold a prescribed partition P of V (G). In Tree Mim-Balancing (resp. Tree
Sim-Balancing), for every edge e of T , the size of a maximum semi-induced (resp. induced)
matching in the cut of G defined by e shall remain below the threshold. Their linear variants
force T to be a path. See Section 4.1 for formal definitions.

The third step erases the differences between Tree Mim-Balancing and Mim-Width,
and between their respective variants. Intuitively speaking:

for each part of P , the corresponding vertices of G∗ can be gathered in their own subtree,
T can be chosen ternary (i.e., every non leaf node has degree 3),
only the leaves of T need hold a vertex of G∗.
Figure 1 summarizes these three steps.

Nae 3-Sat

satisfiable

unsatisfiable

φ

Degree Balancing

τ -balancing order

no (τ + γ)-balancing tree

(H, ω)

•im-Balancing

linear mim-balancing ⩽ τ + 50

sim-balancing > τ + γ

(G, P)

•im-Width

lin. mim-width ⩽ 46
45 τ + 107

sim-width > τ + γ

G∗

Figure 1 Visual summary of our reduction, split into its three steps.

We now outline each step.

Nae 3-Sat to Degree Balancing. We actually reduce from the positive variant of Nae
3-Sat, where no literal is negated. We design a gadget called bottleneck sequence that, given
three disjoint sets X, Y, Z ⊂ V (H), forces all vertices of Y to appear in the order after all
the vertices of X, and before all the vertices of Z (or by symmetry after all the vertices of Z,
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and before all the vertices of X). Vertices of Y are in one-to-one correspondence with clauses
of φ. Similarly, we have a vertex for each variable of φ. Each variable vertex is forced to be
placed before X (where it represents being set to true), or after Z (where it represents being
set to false). The weights are designed so that a clause vertex can tolerate two but not three
of its variable vertices to be on the same side (before or after it); which exactly captures the
semantic of a not-all-equal 3-clause.

The gap between at most τ and at least τ + γ + 1 is obtained by carefully crafting ω.
We also add a padding gadget to raise the minimum degree of H, in such a way that only
two vertices have low-enough degree to be leaves of T . This forces T to be a path (the
only tree with at most two leaves), thus Linear Degree Balancing and Tree Degree
Balancing to coincide.

Degree Balancing to {Linear M, Tree S}im-Balancing. Every vertex u of H

becomes an independent set S(u) of G and a part of P of size the sum of the weights of edges
incident to u. Adjacencies in H become induced matchings in G, whereas non-adjacencies
in H become bicliques in G (with some additional twist, see Figure 5). The density of G

forces large induced matchings to be mainly incident to a single part S(u). Thus, roughly
speaking, the maximum induced matchings in G behave like the degree in H. As the parts
S(u) are independent sets, there is in effect no difference between Tree Mim-Balancing
and Tree Sim-Balancing. The indifference between the tree or the linear variants is
inherited from the previous reduction. The actual arguments incur a small additive loss
(of 50) in the induced matching size, which is eventually outweighed by γ.

{Linear M, Tree S}im-Balancing to {Linear M, S}im-Width. We design a part
gadget G(u) that simultaneously takes care of the three items above Figure 1. Essentially,
every part S(u) is transformed into the 1-subdivision Pu of a path on |S(u)| vertices, then
duplicated a large (but constant) number of times, concatenated into a single path, and every
pair of vertices in different copies are linked by an edge whenever they do not correspond to
the same vertex or neighboring vertices in Pu. On the one hand, this may only increase the
linear mim-width (compared to the linear mim-balancing) by an additive constant. Following
the “spine” of G(u), one gets a witness of low linear mim-width for G∗ from a witness of low
linear mim-balancing of (G, P).

On the other hand, the dense “path-like” structure of G(u) ensures that, in an optimal
decomposition of G∗, its vertices may as well be placed in order at the leaves of a caterpillar.
We thus devise a process that builds a witness of low sim-balancing for (G, P) from a witness
of low sim-width for G∗: We in turn identify an edge e of the branch decomposition of G∗

that can support V (G(u)), and in particular S(u), without increasing the width. We then
relocate the vertices of S(u) at a vertex subdividing e. Eventually each set S(u) is solidified
at a single node of the tree, and we reach the desired witness for Tree Sim-Balancing.

Remarks and perspectives. It can be noted that we had to develop completely new
techniques. Indeed, the known W[1]-hardness [12, 13] relies on the difficulty of actually
computing the value of a fixed cut, i.e., solving Maximum Induced Matching. In some
sense, the instances produced there are not difficult to solve (a best decomposition is, on
the contrary, suggested by the reduction), but only to evaluate. In any case, as Maximum
Induced Matching is W[1]-hard but admits a straightforward XP algorithm, we could not
use the same idea.

We believe that Linear Degree Balancing could be explored for its own sake. We
emphasize that our techniques could prove useful to show the paraNP-hardness of other
parameters based on branch decompositions such as those recently introduced by Eiben et
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al. [6], where the cut function can combine maximum (semi-)induced matchings, maximum
(semi-)induced co-matchings, maximum half-graphs (or ladders). One would then mainly
need to tune the gadgets of the second step (see Figure 5) to fit the particular cut function.

We notice that our reduction from 4-Occ Not-All-Equal 3-Sat is linear: n-variables
instances are mapped to Θ(n)-vertex graphs. Hence, unless the Exponential-Time Hypothesis
(ETH) [7] fails,2 no 2o(n)-time algorithm can decide if the mim-width (or any of the five
variants of mim-width) of an n-vertex graph is at most 1211. Indeed the absence of 2o(n)-time
algorithm for n-variable 4-Occ Not-All-Equal 3-Sat (even Positive 4-Occ Not-All-
Equal 3-Sat) under the ETH can be derived from the Sparsification Lemma [8] and classic
reductions.

Our focus was to handle all the variants of mim-width at once. This made the reduction
more technical and degraded the constant upper and lower bounds. Better bounds (than
1211) could be achieved if separately dealing with Mim-Width or with Linear Mim-Width.
For example, the latter problem essentially only requires the first two steps of the reduction.
Still, deciding if the (linear) mim-width of a graph is at most 1 (or any 1-digit constant)
remains open. In addition, the question whether an XP f(OPT)-approximation algorithm
for Mim-Width (and its variants) exists, for some fixed function f and OPT being the
optimum width, remains open.

2 Graph definitions and notation

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at most j.
For every integer i, [i] is a shorthand for [1, i].

2.1 Standard graph theory

We denote by V (G) and E(G) the vertex and the edge set, respectively, of a graph G. If
G is a graph and S ⊆ V (G), we denote by G[S] the subgraph of G induced by S, and use
G − S as a short-hand for G[V (G) \ S]. If e ∈ E(G), we denote by G − e the graph G

deprived of edge e, but the endpoints of e remain. More generally, if F ⊆ E(G), G − F is
the graph obtained from G by removing all the edges of F (but not their endpoints). For
X ⊆ V (G), we may denote by EG(X) the edge set of G[X]. We denote the open and closed
neighborhoods of a vertex v in G by NG(v) and NG[v], respectively. For S ⊆ V (G), we
set NG(S) :=

⋃
v∈S NG(v) \ S and NG[S] := NG(S) ∪ S. In every notation with a graph

subscript, we may omit it if the graph is clear from the context. A vertex set S ⊆ V (G)
covers an edge set F ⊆ E(G) if every edge of F has at least one endpoint in S.

A cut of a graph G is a bipartition (A, B) of V (G). The cut-set defined by a cut (A, B),
denoted by E(A, B), is {uv ∈ E(G) | u ∈ A, v ∈ B}. We denote by G[A, B] the bipartite
subgraph of G with edge set E(A, B). A matching is a set of edges that share no endpoints
and an induced matching of G is a matching M such that every edge of G intersects at most
one edge in M . If A, B ⊆ V (G) are two disjoint vertex subsets of G, a matching between A

and B is a matching where every edge has one endpoint in A and the other endpoint in B.
An induced matching in G[A, B] is called a semi-induced matching of G between A and B.

2 the assumption that there is a λ > 0 such that n-variable 3-Sat cannot be solved in time O(λn).
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2.2 Mim-width and its variants

A branch decomposition or tree layout (or simply layout) of a graph G is a pair (T, f) where
T is a ternary tree (i.e., every internal node of T has degree 3) and f is a bijection from
V (G) to the leaves of T . Given two disjoint sets X, Y ⊆ V (G), we denote by mimG(X, Y )
(resp. simG(X, Y )) the maximum number of edges in a semi-induced matching (resp. induced
matching) of G between X and Y , and may refer to it as mim-value (resp. sim-value). An
edge e of T induces or defines a cut (Ae, Be) of G, where Ae and Be are the preimages by f

of the leaves in the two components of T − e.
The mim-value (resp. sim-value) of (Ae, Be) is set as mimG(Ae, Be) (resp. simG(Ae, Be)).

The mim-value (resp. sim-value) of the branch decomposition (T, f) is the maximum of
mimG(Ae, Be) (resp. simG(Ae, Be)) taken over every edge e of T . Finally, the mim-width
(resp. sim-width) of G is the minimum mim-value (resp. sim-value) taken over every branch
decomposition (T, f) of G.

The upper-induced matching number of X ⊆ V (G) is the maximum size of an induced
matching of G − E(V (G) \ X) between X and V (G) \ X. The one-sided mim-width is defined
as above with the omim-value of cut (Ae, Be), omimG(Ae, Be), defined as the minimum
between the upper-induced matching numbers of Ae and of Be.

The linear variants of these widths and values impose T to be a rooted full binary tree
(i.e, every internal node has exactly two children) such that the internal nodes form a path.

3 Not-All-Equal 3-Sat to Degree Balancing

Given a graph H edge-weighted by a map ω : E(H) → N, the weight of a vertex v of H is
the sum of the weights of the edges incident to v. We say that a total order ≺ on V (H)
is τ -balancing, for some non-negative integer τ , if for every vertex v ∈ V (H) the left weight
of v,

∑
u∈N(v),u≺v ω(uv), and the right weight of v,

∑
u∈N(v),v≺u ω(uv), are both at most τ ,

i.e.,

∆≺(v) := max

 ∑
u∈N(v),u≺v

ω(uv),
∑

u∈N(v),v≺u

ω(uv)

 ⩽ τ.

Constants τ , γ, λ. Henceforth we will use τ and γ as global natural constants. The
reduction in this section will also use a constant positive integer λ. For the current section,
we need that the following conditions hold.

γ < λ, 3γ + 4 < τ, 2λ + γ < τ, 6λ ⩽ τ. (1)

We will not only prove that Linear Degree Balancing is paraNP-hard but we will
obtain a scalable additive gap. More specifically, we start by showing the following.

▶ Theorem 3. It is NP-hard to distinguish graphs having a τ -balancing order from graphs
having no (τ + γ)-balancing order.

Eventually we will need that τ and γ are multiples of a constant integer a (which is
defined and set to 45 in Section 5). This can simply be achieved by multiplying all edge
weights of the forthcoming reduction by a. We will finally set τ := 24a = 1080, λ := 4a = 180,
and γ := 3a = 135. One can quickly check that these values do respect Equation (1).
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3.1 First properties on balancing orders, and bottlenecks
Given a total order ≺ on a graph H, we say that a vertex set S is smaller (resp. larger)
than another vertex set U , denoted by S ≺ U (resp. U ≺ S), if for all s ∈ S, u ∈ U we have
s ≺ u (resp. u ≺ s). When a set S is neither larger nor smaller than a vertex u, we say that
S surrounds u. We also say that u is surrounded by S. Note that if S surrounds two vertices
u and v, it surrounds any vertex w with u ≺ w ≺ v.

We begin with a useful observation on the only possible τ -balancing order of a P3 (i.e.,
3-vertex path) with large total weight.

▶ Lemma 4. For any integer t, and any edge-weighted graph (H, ω) containing a P3 abc

such that ω(ab) + ω(bc) > t. Then in any t-balancing order of H, {a, c} surrounds b.

Proof. If {a, c} ≺ b is (resp. b ≺ {a, c}), then the left (resp. right) weight of b is more
than t. ◀

We also rely on the following observation, where the induced subgraph of an edge-weighted
graph (H, ω) is an induced subgraph of H edge-weighted by the restriction of ω to its edge
set.

▶ Observation 5. Every t-balancing order of (H, ω) is a t-balancing order of any induced
subgraph of (H, ω).

Our main ingredient here is called bottleneck.

▶ Definition 6. A (τ, γ)-bottleneck on terminals v1, . . . , vk is an edge-weighted caterpillar B

defined as follows.
1. Let P (B) be a 2k-vertex path, say a1b1a2b2 . . . akbk, called spine of B and for every

i ∈ [k], we set ω(aibi) := τ and ω(biai+1) := γ + 1.
2. We obtain B by adding to P (B) a leaf vi adjacent to ai, satisfying γ+1 ⩽ ω(viai) ⩽ τ−γ−1

for every i ∈ [k]. This edge is called the attachment of vi to B.
3. The caterpillar B is rooted in bk.

The vertex v1 is called first terminal of B. A (τ, γ)-bottleneck is depicted in Figure 2.

a1 b1 a2 b2 . . . ak bk
τ γ + 1 τ γ + 1 γ + 1 τ

v1

ω(a1v1) ∈ [γ + 1, τ − γ − 1]

v2

ω(a2v2)

vk

ω(akvk)

root

Figure 2 Illustration of a (τ, γ)-bottleneck.

A bottleneck ensures the following.

▶ Lemma 7. Let ≺ be a (τ+γ)-balancing order of a (τ, γ)-bottleneck B on terminals v1, . . . , vk.
Using the notation of Definition 6, if ak ≺ bk then a1 ≺ b1 ≺ a2 ≺ b2 ≺ · · · ≺ ak ≺ bk, and
vi ≺ ai for each i ∈ [k]. Hence symmetrically, if bk ≺ ak then bk ≺ ak ≺ bk−1 ≺ ak−1 ≺
· · · ≺ b1 ≺ a1, and ai ≺ vi for each i ∈ [k].

Proof. Let i be the smallest index such that ai ≺ bi ≺ ai+1 ≺ bi+1 ≺ · · · ≺ ak ≺ bk. Assume
for the sake of contradiction that i ⩾ 2. Since ω(aibi) = τ and min(ω(aibi−1), ω(aivi)) ⩾ γ+1,
it holds that bi−1 ≺ ai and vi ≺ ai, by applying Lemma 4 on bi−1aibi and viaibi.
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We have ω(ai−1bi−1) + ω(bi−1ai) = τ + γ + 1, so, by Lemma 4 on the P3 ai−1bi−1ai,
ai−1 ≺ bi−1 ≺ ai. This contradicts the minimality of i; thus we have i = 1. And in particular,
we also have vi ≺ ai for every i ∈ [k]. ◀

Henceforth every bottleneck is a (τ, γ)-bottleneck. Thus we simply write bottleneck.

▶ Definition 8. Given three vertex sets S1, S2, S3, we call bottleneck sequence on S1, S2, S3
an edge-weighted graph B(S1, S2, S3) obtained by adding
1. for every i ∈ {1, 2}, a bottleneck B+

i with terminals Si ∪ {si} where si is the first terminal
of B+

i , and the attachment of si is of weight γ + 1,
2. for every i ∈ {2, 3}, a bottleneck B−i with terminals Si ∪ {si} where si is the first terminal

of B−i and the attachment of si is of weight γ + 1 such that
3. for every i ∈ {1, 2}, the roots of B+

i and of B−i+1 are identified as the same vertex, and
4. for every i ∈ {2, 3}, an edge sisi+1 of weight ⌊ τ+γ

2 ⌋ + 1,
with s1, s2, s3 three new vertices.

. . .
τ γ + 1 τ γ + 1 γ + 1

τ

s1

γ + 1

root

B+
1

. . .
τ γ + 1 τ γ + 1 γ + 1

s2

γ + 1

τ

B−2

γ + 1
τ τγ + 1

. . .
γ + 1 γ + 1

B+
2

s3

τ τ

γ + 1

. . .
γ + 1 γ + 1 γ + 1

B−3 τ

τ
root

⌊ τ+γ
2 ⌋ + 1

⌊ τ+γ
2 ⌋ + 1

Figure 3 Bottleneck sequence B(S1, S2, S3). Vertices of S1 ∪ {s1}, S2 ∪ {s2}, S3 ∪ {s3} are in red,
green, and blue, respectively. As in Figure 2, every edge with an unspecified weight get one in the
discrete interval [γ + 1, τ − γ − 1].

The next lemma yields the crucial property ensured by bottleneck sequences.

▶ Lemma 9. Any (τ + γ)-balancing order ≺ on a bottleneck sequence B(S1, S2, S3) is such
that S1 ≺ S2 ≺ S3 or S3 ≺ S2 ≺ S1.

Proof. We keep the notation of Definition 8. Applying Lemma 4 on the P3 s1s2s3, we get
that either s1 ≺ s2 ≺ s3 or s3 ≺ s2 ≺ s1.

For i ∈ {1, 2}, let ri be the common root of B+
i and B−i+1. Vertex ri has exactly two

neighbors: a vertex a+ ∈ V (B+
i ) and a vertex a− ∈ V (B−i+1). By construction ω(a−ri) =

ω(a+ri) = τ , and by Lemma 4 (since 2τ > τ + γ), either a− ≺ ri ≺ a+ or a+ ≺ ri ≺ a−. By
Lemma 7, this implies that Si+1 ∪ {si+1} ≺ Si ∪ {si} or Si ∪ {si} ≺ Si+1 ∪ {si+1}.

In particular, S1 ≺ S2 ≺ S3 (if s1 ≺ s2 ≺ s3) or S3 ≺ S2 ≺ S1 (if s3 ≺ s2 ≺ s1). ◀
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We conclude the section by defining τ -balancing orders for bottleneck sequences. A direct
order ≺→ of a bottleneck B with terminals v1, . . . , vk goes as follows:

{v1, . . . , vk} ≺→ a1 ≺→ b1 ≺→ a2 ≺→ b2 ≺→ · · · ≺→ ak ≺→ bk,

where a1b2 . . . akbk is the spine of B rooted in bk. Note that the order induced by {v1, . . . , vk}
is not specified (and so a given bottleneck on k terminals admits k! different direct orders).
A reverse order of B, denoted by ≺←, is simply defined as the reverse order of a direct
order ≺→.

A direct order ≺seq
→ of a bottleneck sequence B(S1, S2, S3) is a common (linear) extension

of direct orders on B+
1 and B+

2 and reverse orders on B−2 and B−3 . Note that on any
bottleneck sequence, at least one direct order exists since the direct and reverse orders
constrain disjoint vertex sets. In particular we have S1 ≺seq

→ S2 ≺seq
→ S3. We check that any

direct order of B(S1, S2, S3) is indeed τ -balancing.

▶ Lemma 10. A direct order ≺seq
→ of the bottleneck sequence B(S1, S2, S3) is τ -balancing.

Proof. Again we use the notation of Definition 8. For each i ∈ [3], and any vertex v ∈ Si,
v has at most two neighbors: a vertex t− ∈ V (B−i ) and a vertex t+ ∈ V (B+

i ). By construction,
t− ≺seq

→ v ≺seq
→ t+ and both ω(t−v) and ω(vt+) are at most τ − γ − 1 ⩽ τ . For each i ∈ [3],

the vertex si has at most four neighbors: si−1, si+1, a vertex t− ∈ V (B−i ), and a vertex
t+ ∈ V (B+

i ). By construction, the left weight of si is at most

ω(si−1si) + ω(t−si) =
(⌊

τ + γ

2

⌋
+ 1

)
+ (γ + 1) = τ

2 + 3γ

2 + 2 ⩽ τ.

The last inequality holds since 3γ ⩽ τ − 4. The right weight of si can be symmetrically upper
bounded by τ .

It remains to check the degree property for the vertices in bottleneck spines. For each
i ∈ {1, 2}, let a1b1 . . . akbk be the spine P (B+

i ). For any j ∈ [k], vertex aj has at most
three neighbors: bj−1 (if it exists), bj , and some leaf ℓ ∈ Si ∪ {si}. By construction,
{ℓ, bj−1} ≺seq

→ aj ≺seq
→ bj . Hence aj has left weight at most (τ − γ − 1) + (γ + 1) = τ , and

right weight τ . Vertex bj is incident to at most two edges each of weight at most τ (even bk).
By construction, one neighbor of bj is smaller and its other neighbor is larger. Hence its left
and right weights are both upper bounded by τ .

The case of vertices of B−i with i ∈ {2, 3} is handled symmetrically. ◀

3.2 Encoding NAE 3-Sat in Linear Degree Balancing
We now describe the reduction from Nae 3-Sat to Linear Degree Balancing. We recall
that a not-all-equal 3-clause is satisfied if it has at least one satisfied literal and at least
one unsatisfied literal. The Nae 3-Sat remains NP-hard if each clause is on exactly three
distinct positive literals, and every variable appears exactly four times positively (and zero
times negatively) [5]. Let φ be any such n-variable Nae 3-Sat instance. As we will only
deal with not-all-equal 3-clauses, we say that φ is satisfiable whenever it admits a truth
assignment that, in each clause of φ, sets a (positive) literal to true and another (positive)
literal to false. We will build an edge-weighted graph H := H(φ) as follows.

Variables, clauses, and variable-clause incidence. For each variable x of φ, we add
a vertex vx (to H(φ)), the vertex of x. For each clause c of φ we add a vertex vc, the vertex
of c. For every clause c and every variable x in c, we add the edge vxvc of weight λ. We add
two sets of vertices T = {ti : i ∈ [n]} and F = {fi : i ∈ [n]}, for true and false. For each ti
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(resp. each fi), we add a vertex ti (resp. a vertex fi), and the edge titi (resp. fifi) of weight
τ − λ. For each i ∈ [n], let xi be the i-th variable of φ. We add a vertex vxi

, and the edges
vxi

ti, vxi
fi, vxi

ti, vxi
fi each of weight λ.

Bottleneck sequence B(T, C, F ). We then add a bottleneck sequence B(T, C, F )
where C := {vc : c is a clause of φ}, with weight τ − λ on every attachment incident
to T or F , and weight τ − 2λ on every attachment incident to C. (This is allowed since
γ + 1 ⩽ τ − 2λ ⩽ τ − λ ⩽ τ − γ − 1.) We remind the reader that every attachment of the first
terminals of the bottlenecks forming B(T, C, F ) has weight γ + 1. These three first terminals
are extra vertices not in T , C, and F .

This could end the construction of H, but we want to impose an extra condition, which will
later prove useful. Specifically, we want that all but two vertices have weight at least τ + γ + 1
(both having weight τ). Let us call H ′ the edge-weighted graph built so far.

Weight padding. For each vertex v ∈ V (H ′) of weight less than τ + γ + 1, the missing
weight of v is defined as τ + γ + 1 minus the weight of v. Let p be the sum of missing
weights of vertices of H ′. Let X and Y be two sets each comprising p new vertices. We
add a bottleneck BL with terminals the vertices of X, and a bottleneck BR with terminals
the vertices of Y . Every attachment to BL and BR with an unspecified weight gets weight
τ − γ − 1. We add a perfect matching between X and Y with every edge of weight 2γ + 2.
Finally, for each vertex v ∈ V (H ′), we link v by edges of weight 1 to t vertices of X, where t

is the missing weight of v. We do so such that every vertex in X has exactly one neighbor
in V (H ′).

This completes the construction of H; see Figure 4. We observe that H is triangle-free.
This fact will significantly simplify some proof in Section 5 (although is not in any way
crucial).

We check that the weight padding works as intended.

▶ Lemma 11. Every vertex of H has weight at least τ + γ + 1, except two vertices.

Proof. By construction, all the vertices with weight less than τ + γ + 1 in H ′ have weight
exactly τ + γ + 1 in H, while the vertices with weight at least τ + γ + 1 in H ′ have kept the
same weight in H. We shall just check the property for vertices in V (BL) ∪ V (BR).

Note that every vertex of the spines P (BR), P (BL) except the two roots have weight
at least τ + γ + 1. In particular, the last vertices of P (BR), P (BL) have weight 2τ − γ − 1
and this is bigger than τ + 2γ + 3 since 3γ + 4 < τ from Equation (1). Furthermore, the
vertices in X and Y have an attachment of weight τ − γ − 1 and are incident to an edge of
the matching between X and Y of weight 2γ + 2. Hence any vertex in X ∪ Y has weight at
least τ − γ − 1 + 2γ + 2 = τ + γ + 1.

In conclusion, every vertex of H has weight at least τ +γ +1, but the roots of BL and BR,
which have weight τ . ◀

3.3 Preparatory lemmas
We will make use of the following two lemmas.

▶ Lemma 12. For any (τ + γ)-balancing order ≺ of H(φ), for every clause c = x ∨ y ∨ z

of φ, {vx, vy, vz} surrounds vc.

Proof. Vertex vc has two attachments of weight τ − 2λ. Lemmas 7 and 9 imply that vc

is surrounded by the two vertices it is attached to in B(T, C, F ). Assume for the sake of
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τ
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τ

γ + 1

τ

γ + 1

γ + 1γ + 1
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τ − λτ − 2λ

τ − λτ − 2λ

⌊ τ+γ
2 ⌋ + 1⌊ τ+γ

2 ⌋ + 1

vx

vx

λ

λ

vy

vy

vz

vz

λ

BL BR

C

Variable vertices

1

1

1

2γ + 2

Figure 4 Illustration of (H, ω). Centered at the top is the bottleneck sequence B(T, C, F ). The
vertices of X are in purple (left), and the vertices of Y are in yellow (right). The edges incident to
the variable vertices that are drawn in blue, green, red all have weight λ. Not to overburden the
figure, we have only drew some edges of the construction. Only one edge of the matching between
X and Y is depicted, and the paddings of vx and of t2 are (partially) represented (weight-1 edges
toward X). The clause corresponding to the bottommost vertex of C contains x, y and some other
variable (not shown), while that of the second bottommost vertex of C contains z (and two other
variables). The roots of bottlenecks are in gray. The leftmost and rightmost gray vertices are the
only two vertices of weight less than τ + γ + 1 (namely τ).

contradiction that vx, vy, and vz are all smaller (resp. larger) than vc. Then the left weight
(resp. right weight) of vc is at least

(τ − 2λ) + ω(vxvc) + ω(vyvc) + ω(vzvc) = τ + λ ⩾ τ + γ + 1;

a contradiction. ◀

▶ Lemma 13. For any (τ + γ)-balancing order ≺ of H(φ), for any variable x of φ, we either
have vx ≺ C or C ≺ vx.

Proof. By Lemma 9, either T ≺ C ≺ F or F ≺ C ≺ T holds. Up to reversing the order, we
can assume without loss of generality that T ≺ C ≺ F .

For each i ∈ [n], vertex ti is incident to two edges of weight τ − λ: titi and its attachment
in B(T, C, F ). Since 2τ − 2λ > τ + γ, Lemma 4 ensures that ti is surrounded by the other
endpoints of both edges. We thus claim that {vxi , vxi} surrounds ti, where xi is the i-th
variable of φ. Indeed if {vxi

, vxi
} ≺ ti (resp. ti ≺ {vxi

, vxi
}), the left weight (resp. right
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weight) of ti is at least τ − λ + 2λ = τ + λ > τ + γ; a contradiction. Similarly {vxi , vxi}
surrounds fi.

As ti ≺ C ≺ fi, for {vxi , vxi} to both surround ti and fi, it holds that vxi is smaller
than ti or is larger than fi. Therefore we indeed have vxi

≺ C or C ≺ vxi
. ◀

3.4 Correctness of the reduction
We can now show that our reduction performs as announced.

▶ Lemma 14. If H(φ) admits a (τ + γ)-balancing order, then φ is satisfiable.

Proof. Let ≺ be a (τ + γ)-balancing order of H(φ). Let the valuation A set x to true if
and only if vx ≺ C. This is well defined by Lemma 13. By Lemma 12, for every clause
c = x ∨ y ∨ z, vertex vc is surrounded by {vx, vy, vz}. Hence A sets within {x, y, z} at least
one variable to true and at least one variable to false, thus satisfies c. ◀

▶ Lemma 15. If φ is satisfiable, then H(φ) admits a τ -balancing order.

Proof. We first give a fixed τ -balancing order ≺1 of H[V (BL) ∪ V (BR)] that does not rely
on φ being satisfiable. Then we give a τ -balancing order ≺2 of H − (V (BL) ∪ V (BR)). This
order is based on a truth assignment satisfying φ. It will remain to argue that there is
a τ -balancing order extending both ≺1 and ≺2. This is done by proving that any extension
of ≺1 to H keeps the left and right weights of vertices in V (BL) ∪ V (BR) small enough,
and by indicating in which order each vertex of X should appear relatively to their unique
neighbor in V (H) \ (V (BL) ∪ V (BR)).

Construction of ≺1. For ≺1 fix any reverse order on the bottleneck BL, followed
by any direct order on the bottleneck BR. Observe that, in H[V (BL) ∪ V (BR)], every
vertex v outside X ∪ Y satisfies ∆≺1(v) ⩽ τ (see the proof of Lemma 10, or Figure 2).
Consider the vertex x ∈ X. It has two neighbors: one in V (BL) and one, say, y in Y .
The left weight of x is that of its attachment τ − γ − 1 ⩽ τ , whereas the right weight of
x is ω(xy) = 2γ + 2 ⩽ τ . The situation is symmetric for the vertices of Y . Hence ≺1 is
a τ -balancing order of H[V (BL) ∪ V (BR)].

Construction of ≺2. Let A be a variable assignment satisfying φ. We build the
order ≺2 on H − (V (BL) ∪ V (BR)) in the following way:

we first have all vertices ti for i ∈ [n],
followed by all the vertices vx (resp. vx) such that x is set to true (resp. false) by A,
followed by any fixed direct order of B(T, C, F ),
followed by the vertices vx (resp. vx) such that x is set to false (resp. true) by A,
followed by all vertices fi for i ∈ [n].

We verify that ≺2 is a τ -balancing order in H − (V (BL) ∪ V (BR)). We let u be a vertex
of H − (V (BL) ∪ V (BR)), and prove that ∆≺2(u) ⩽ τ .

Case u of the form ti or fi for i ∈ [n]. The vertex u is incident to a single edge of
weight τ − λ ⩽ τ .

Case u of the form vx or vx for some variable x. Let xi be the i-th variable of φ

and c1, c2, c3, c4 be the four clauses of φ in which xi appears. Then u = vxi
(resp. u = vxi

) is
incident to six edges (resp. two edges) each of weight λ to ti, fi, vc1 , vc2 , vc3 , vc4 (resp. ti, fi),
thus ∆≺2(u) ⩽ 6λ ⩽ τ .
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Case u of the form ti or fi for some i ∈ [n]. The vertex ti has exactly four neighbors:
the vertex ti, the vertex v it is attached to in B(T, C, F ), and the two vertices vxi

and vxi
.

By definition of ≺2, we have ti ≺2 ti ≺2 v, and either vxi
≺2 ti ≺2 vxi

or vxi
≺2 ti ≺2 vxi

.
Since ω(titi) = ω(tiv) = τ − λ, and ω(tivxi) = ω(tivxi) = λ, the left weight and right weight
of ti are both equal to (τ − λ) + λ = τ . The situation is symmetric for fi.

Case u of the form vc for a clause c. Let c = x ∨ y ∨ z. The vertex vc is adjacent to
exactly five vertices: two vertices, say s1 and s2, it is attached to in the bottleneck sequence
B(T, C, F ) via an edge of weight τ − 2λ, and vx, vy, vz. We have s1 ≺2 vc ≺2 s2, and since
φ is satisfied by A, there is at most two vertices among vx, vy, vz to the right of vc, and at
most two to its left. Since ω(vcvx) = ω(vcvy) = ω(vcvz) = λ, the left weight and the right
weight of vc are at most (τ − 2λ) + 2 · λ = τ .

Case u in one of the spines of B(T, C, F ). Since u has no neighbors outside of the
bottleneck sequence, the order ≺2 acts as ≺seq

→ , and we conclude by Lemma 10.

Extending ≺1 and ≺2. Note that every vertex of X has right weight and left weight
at most τ − 1 in ≺1, and is adjacent to exactly one vertex outside of V (BL) ∪ V (BR)
with an edge of weight 1. Hence if ≺ is any total order extending ≺1 to V (H), every
v ∈ V (BL) ∪ V (BR) satisfies ∆≺(v) ⩽ τ . Indeed, vertices in (V (BL) ∪ V (BR)) \ X have no
neighbors outside V (BL) ∪ V (BR).

Let u ∈ V (H) \ (V (BL) ∪ V (BR)), and let s be its weight towards H − (V (BL) ∪ V (BR)).
If s ⩾ τ + γ + 1, then u is not adjacent to V (BL) ∪ V (BR), so any extension ≺ of ≺2 to
H keeps ∆≺(u) ⩽ τ . Otherwise, let sL and sR be the left weight and right weight of u,
respectively (w.r.t. ≺2). Note that sL + sR = s. The vertex u has exactly τ + γ + 1 − s

neighbors in X, x1, . . . , xτ+γ+1−s via edges of weight 1.
If sR > γ + 1, we simply set xi ≺ u for every i ∈ [τ + γ + 1 − s]. The left weight of u in

H ordered by ≺ is at most sL + τ + γ + 1 − s = τ + γ + 1 − sR ⩽ τ . If instead sR ⩽ γ + 1,
we set xi ≺ u for every i ∈ [1, τ − sL], and u ≺ xi for every i ∈ [τ − sL + 1, τ + γ + 1 − s].
This is well defined since τ − sL ⩽ τ + γ + 1 − s. The left weight of u in H ordered by ≺ is
at most sL + (τ − sL) ⩽ τ , and its right weight is sR + (γ − s + sL + 1) = γ + 1 ⩽ τ . ◀

Theorem 3 is a direct consequence of Lemmas 14 and 15. The reason we “padded the
degree” in H(φ) will become apparent in the next section. We will observe that when φ is
unsatisfiable, not only no linear order can “balance” the degrees, but no tree can either.

3.5 From linear orders to trees

As mim-width is defined via branch decompositions, we adapt the balancing order problem to
trees. Consider an edge-weighted graph (H, ω), and a tree T such that there exists a bijective
map f : V (H) → V (T ). Note that (T, f) is not a branch decomposition of H for two reasons:
vertices of H are mapped to all nodes of T and not merely its leaves, and T is not necessarily
a ternary tree (nor a rooted binary tree).

Each edge e of T defines a cut of H, which we denote (Ae, Be), where Ae is the preimage
by f of one connected component of T − e, and Be, of the other component. We say that
(T, f) is a τ -balancing tree of (H, ω) if for any vertex v ∈ V (H), for any edge e ∈ E(T )
incident to f(v), the sum of the weights of edges (in E(H)) incident to v in the cut (Ae, Be)
is at most τ .
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Tree Degree Balancing Parameter: τ

Input: An edge-weighted graph (H, ω) and a non-negative integer τ .
Question: Does (H, ω) admit a τ -balancing tree?

Note that any graph with a τ -balancing order also admits a τ -balancing tree, with T

being the path of length |V (H)|, and f mapping the vertices of H along T in the τ -balancing
order.

▶ Theorem 16. Given an edge-weighted graph (H, ω) promised to satisfy either one of
(H, ω) admits a τ -balancing order or
(H, ω) does not admit a (τ + γ)-balancing tree,

deciding which outcome holds is NP-hard.

Proof. In the previous reduction, since all the vertices of H(φ) but two have degree at least
τ + γ + 1, any (τ + γ)-balancing tree (T, f) is such that T has at most two leaves, and
so T is a path. So in the case when H(φ) has no (τ + γ)-balancing order, H(φ) has no
(τ + γ)-balancing tree. ◀

4 Degree Balancing to Linear Mim-Balancing/Tree Sim-Balancing

In this section, we show how to transfer the degree requirement of Degree Balancing to
the induced-matching requirement of Mim- and Sim-Balancing.

4.1 The Mim-Balancing and Sim-Balancing problems
A partitioned graph is a pair (G, S) where G is a graph and S is a partition of V (G). A tree
mapping of a partitioned graph (G, S) is a pair (T, f) where T is a tree and f : S → V (T ) is
a bijection from the parts of S to the vertices of T . When T is a path, we may call (T, f)
a path mapping of S.

We say that a cut (A, B) of G is an S-cut if each set in S is included in either A or B. Each
edge e ∈ E(T ) in a tree mapping (T, f) of (G, S) defines an S-cut (Ae, Be) of G: the union
of the parts mapped to each component of T − e. The sim-value (resp. mim-value) of a tree
mapping (T, f) of (G, S) is the maximum taken over every edge e ∈ E(T ) of the maximum
size of an induced (resp. semi-induced) matching between Ae and Be. The sim-balancing
(resp. mim-balancing) of (G, S) is the minimum sim-value (resp. mim-value) among all
possible tree mappings of (G, S). Similarly, the linear sim-balancing (resp. mim-balancing)
is the minimum sim-value (resp. mim-value) among paths mappings.

Tree Sim-Balancing (resp. Tree Mim-Balancing) Parameter: τ

Input: A partitioned graph (G, S) and a non-negative integer τ .
Question: Does (G, S) admit a tree mapping (T, f) of sim-value (resp. mim-value) τ?

Note that even when S is the finest partition {{v} : v ∈ V (G)}, this problem is not
exactly Mim-Width, as f also maps vertices to internal nodes of T , and T has no degree
restriction. Linear Mim-Balancing (or Linear Sim-Balancing) is defined analogously
except T is forced to be a path. We may use Mim-Balancing to collectively refer to Linear
Mim-Balancing and Tree Mim-Balancing; and similarly with Sim-Balancing.

At the end of this section, we will have established the following.
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▶ Theorem 17. Let τ, γ be natural numbers satisfying Equation (1) and γ > 50. Given
partitioned graphs (G, S) such that:

the linear mim-balancing of (G, S) is at most τ + 50, or
the sim-balancing of (G, S) is at least τ + γ,

deciding which of the two outcomes holds is NP-hard.

4.2 Encoding Degree Balancing in Mim/Sim-Balancing
Let (H, ω) be an instance of Tree Degree Balancing with positive and integral weights.
We build an instance of Tree Mim-Balancing G := G(H, ω), S := S(H, ω), as follows.

Construction of (G, S). For every vertex u ∈ V (H) and every v ∈ NH(u), we add an
independent set I(u, v) of size ω(uv) to G. For each vertex u ∈ V (H), we set

S(u) :=
⋃

v∈NH (u)

I(u, v).

Each S(u) will remain an independent set in G. The partition S is simply defined as
{S(u) : u ∈ V (H)}.

We finish the construction by adding two kinds of edges in G, matching edges and dummy
edges. For every pair of disjoint edges uv and xy of H, we add an edge between every
vertex of I(u, v) and every vertex of I(x, y). All these edges are called dummy. For every
uv ∈ E(H), we add a maximum (perfect) induced matching between I(u, v) and I(v, u).
All these edges are called matching edges. Observe that ω(uv) = ω(vu) (H is undirected),
hence |I(u, v)| = |I(v, u)| and the matching between I(u, v) and I(v, u) is indeed perfect.
This concludes the construction of (G, S); see Figure 5 for an illustration of the adjacencies
between some S(u) and S(v).

I(u, v)

I(u, v1)

I(u, v2)

I(u, v3)

S(u)

I(v, u)

I(v, v3)

I(v, v4)

S(v)

Figure 5 Adjacencies between S(u) and S(v). In this example, u has four neighbors v, v1, v2, v3,
and v has three neighbors u, v3, v4. The matching edges are in blue, the dummy edges are in black
(edges between two boxes represent bicliques). Notice the non-edges between I(u, v3) and I(v, v3).

We notice that the configuration of the figure actually implies that uvv3 is a triangle
in H, which does not happen in graphs H produced by the previous reduction. However, we
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will not use that H is triangle-free in the current section, and Figure 5 shows the general
behavior between S(u) and S(v). (For triangle-free graphs H, if uv ∈ E(H), then there
would instead be a biclique between S(u) \ I(u, v) and S(v) \ I(v, u), and if uv /∈ E(H),
I(u, v), I(v, u), and the matching edges in between them would simply not exist.)

4.3 Preparatory lemmas
We will now prove some facts about the (semi-)induced matchings of the S-cuts of G.

▶ Lemma 18. Let (A, B) be an S-cut of G. If there is no dummy edge between a vertex of
I(u, v) ⊆ A and one from I(x, y) ⊆ B, then u = y or v = x or v = y.

Proof. If there is no edge between I(u, v) and I(x, y) in G, then by construction u = x or
u = y or v = x or v = y. But since (A, B) is an S-cut that separates I(u, v) from I(x, y), we
have u ̸= x. ◀

▶ Lemma 19. Let (A, B) be an S-cut of G. Assume there exists a semi-induced matching
M := {e1, . . . , em} in G between A and B containing matching edges only. Then a single
part of S covers all the edges of M .

Proof. Let us denote by ai ∈ A, bi ∈ B the two endpoints of ei. Since the edges of M are
matching edges they are between pairs of sets of the form I(u, v) and I(v, u). Hence, we
denote by I(ui, vi) ⊆ A the set containing ai and by I(vi, ui) ⊆ B the set containing bi.
Recall that I(ui, vi) ⊆ S(ui) and I(vi, ui) ⊆ S(vi). Thus, as (A, B) is an S-cut, S(ui) ⊆ A

and S(vi) ⊆ B.

▷ Claim 20. For every i, j ∈ [m], we have ui = uj or vi = vj .

Proof: Since M is semi-induced, the vertex ai is not adjacent to bj , thus aibj is not a dummy
edge. By Lemma 18, we have ui = uj , vi = uj or vi = vj . Since uj ∈ A and vi ∈ B, we have
vi ̸= uj . Hence, either ui = uj or vi = vj . ♢

Applying Claim 20 to every pair e1, ei for i ∈ [m], we get that ui = u1 or vi = v1 for
every i ∈ [m]. If ui = u1 for all i ∈ [m], or vi = v1 for all i ∈ [m], then S(u1) or S(v1) covers
M and the lemma holds. Hence, assume there exist i, j ∈ [m] such that ui = u1 and uj ̸= u1
and vi ̸= v1 and vj = v1. Applying Claim 20 to ei, ej we get that ui = uj or vi = vj . This
implies that uj = u1 or vi = v1; a contradiction to the fact uj ̸= u1 and vi ̸= v1. ◀

▶ Lemma 21. Let (A, B) be an S-cut of G. If M := {a1b1, . . . , atbt} is a semi-induced
matching in G between A and B only made of dummy edges, and all the vertices ai lie in the
same part of S included in A, then t ⩽ 6.

Proof. Let S(u) be the part of S including {a1, . . . , at}. Let us denote by I(u, vi) ⊆ A the
set containing ai and by I(xi, yi) ⊆ B the set containing bi. By definition of the dummy
edges, for every i ∈ [t], we have

vi ̸= xi and u ̸= yi and vi ̸= yi. (2)

Let AM = {a1, . . . , at} and BM = {b1, . . . , bt}. Observe that for every i ̸= j ∈ [m], since
M is a semi-induced matching aibj is not a edge of G, by Lemma 18, we have u = yj or
vi = xj or vi = yj , but from Condition (2) we know that u ≠ xj . Thus, for every i ≠ j ∈ [m],
we have

vi = xj or vi = yj . (3)
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We first prove that any part of S contains at most two vertices of BM . Indeed, assume (without
loss of generality) that b1, b2 and b3 are all in a single part of S, i.e., x := x1 = x2 = x3.
From (3), we have vi = x or vi = yj , for every i ̸= j ∈ [3]. However, by Condition (2), we get
that vi ̸= x. Thus, only one disjunct remains: vi = yj . But then v1 = y2 = v3 = y1, and
v1 = y1 contradicts (2).

Thus, any part of S contains at most two vertices of BM . And in particular, for every
i ∈ [t], |S(vi) ∩ BM | ⩽ 2. For every i ≠ j, we know from (3) that vi = xj or vi = yj . For
a fixed i, only two vertices of BM can satisfy the first disjunct, thus, we have vi = yj for at
least t − 1 − 2 = t − 3 of the indices j ∈ [t] \ {i}.

Assume for the sake of contradiction that t > 6. We have 2 · (t − 3) > t, so for every
i, j ∈ [t], {k : yk = vi} ∩ {k : yk = vj} ≠ ∅, which implies that vi = vj . Hence since there
exist i, k with yk = vi, and as vi = vk, we have vk = yk; contradicting (2). ◀

▶ Lemma 22. Let (A, B) be a S-cut of (G, S) with a semi-induced matching {e1, . . . , em}
between A and B. Then at least m − 50 edges among {e1, . . . , em} are matching edges.

Proof. Up to reordering, assume that D := {e1, . . . , et} are the dummy edges of {e1, . . . , em}
for some t ∈ [m]. We denote by ai ∈ A, bi ∈ B the endpoints of ei, and by I(ui, vi) ⊆ A the
set containing ai and by I(xi, yi) ⊆ B the set containing bi.

By definition of the dummy edges, we have that for every i ∈ [t],

vi ̸= xi and ui ̸= yi and vi ̸= yi. (4)

Let us consider the auxiliary directed graph Aux where V (Aux) := D, and E(Aux)
contains the arc (ei, ej) whenever yi = uj or vi = xj . By Lemma 21, each part of S contains
at most 6 vertices of {a1, . . . , at} ∪ {b1, . . . , bt}. Therefore, each of the disjuncts (yi = uj

or vi = xj) creates at most 6 outgoing arcs from ei. Hence Aux has maximum outdegree
at most 12. Thus the underlying undirected graph J of Aux is 24-degenerate. Thus J admits
an independent set U of size ⌈|D|/25⌉.

Assume for the sake of contradiction that t > 50, hence that |U | ⩾ 3. Without loss of
generality, say that e1, e2, e3 ∈ U . Since M is semi-induced, for every i ̸= j ∈ [t], aibj is
not a dummy edge, thus by Lemma 18 we have vi = xj or ui = yj or vi = yj . But when i

and j are restricted to {1, 2, 3}, there is no arc in Aux between ei and ej , so vi ̸= xj and
ui ̸= yj . Hence only the third disjunct can hold. Hence we have v1 = y2 = v3 = y1, and
v1 = y1 contradicts (4). ◀

4.4 Correctness of the reduction
We can now show the correctness of the reduction.

▶ Lemma 23. If (G, S) admits a tree mapping (T, f) of sim-value t, then (H, ω) admits
a t-balancing tree.

Proof. Consider a tree mapping (T, f) of sim-value at most t. We keep the same tree T

and define the map f ′ : V (H) → V (T ) with f ′(v) := f(S(v)). We will show that (T, f ′) is
a t-balancing tree of H.

Consider an edge e ∈ E(T ). Let (AH
e , BH

e ) (resp. (AG
e , BG

e )) be the cut in H (resp. in G)
defined by e, such that for every v ∈ V (H), v ∈ AH

e if and only if S(v) ⊆ AG
e . Note that

(AG
e , BG

e ) is an S-cut. Consider a vertex v ∈ V (H). Up to swapping AH
e and BH

e (and AG
e

and BG
e accordingly), we may assume that v ∈ AH

e . Consider u1, . . . , up an enumeration
of NH(v) ∩ BH

e . Now consider M , the set of all matching edges in G going from S(v) to
S(u1) ∪ · · · ∪ S(up). By construction |M | =

∑
i∈[p] ω(vui).
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We prove that M is an induced matching between AG
e and BG

e . Let us denote by
a1b1, . . . , ambm the edges of M with ai ∈ S(v) for each i ∈ [m]. Note that ai ∈ AG

e and
bi ∈ BG

e . Since M is made of matching edges, for every i ∈ [m], there exists a vertex
xi ∈ {u1, . . . , up} such that bi ∈ I(xi, v). Two vertices ai and aj are not adjacent since S(v)
is an independent set. By construction, bibj is not a dummy edge of G since bi ∈ I(xi, v)
and bj ∈ I(xj , v). This is also the case for aibj since ai ∈ I(v, xi) and bj ∈ I(xj , v), and it
holds also for ajbi by symmetry. As every vertex of G is incident to at most one matching
edge, M is indeed an induced matching in G between AG

e and BG
e .

Since the sim-value of (T, f) is t, we have |M | ⩽ t, and so
∑

i∈[p] ω(vui) ⩽ t. This upper
bound was shown for every e ∈ E(T ) and v ∈ V (H), so (T, f ′) is a t-balancing tree of H. ◀

▶ Lemma 24. If H admits a τ -balancing order, then there is a path mapping (P, f) of mim-
value at most τ + 50.

Moreover, for every cut (Ae, Be) induced by an edge e ∈ E(P ) and every semi-induced
matching M between Ae and Be, M has at most τ matching edges and there exists u ∈ V (H)
such that S(u) covers the matching edges of M .

Proof. Let ≺ be a τ -balancing order of H. Let us call v1 ≺ · · · ≺ vn the vertices of H. We
define P := p1 . . . pn as be the path of order n, and f as the map S(vi) 7→ pi. It remains to
bound the mim-value of (P, f).

Consider any i ∈ [n − 1] and the edge e = pipi+1 ∈ E(P ), and let (Ae, Be) the cut
of G such that S(v1), . . . , S(vi) ⊆ Ae, and S(vi+1), . . . , S(vn) ⊆ Be. Let M = {e1, . . . , em}
be a semi-induced matching between Ae and Be. By Lemma 22, one can assume that
M ′ := {e1, . . . , em−50} contains only matching edges. By Lemma 19, all the edges in M ′ are
incident to a same part, say S(u).

This implies that all edges of M ′ are of the form ajbj with aj ∈ S(u) and bj in some
S(vj) with uvj ∈ E(H). By construction of P , we either have {v1, . . . , v|M ′|} ≺ u, or
u ≺ {v1, . . . , v|M ′|}. In particular, |M ′| is at most the maximum between the left weight and
the right weight of u, which is at most τ . Hence |M | ⩽ τ + 50, and since this applies to any
edge of P , the mim-value of (P, f) is at most τ + 50. ◀

5 Mim/Sim-Balancing to Linear Mim-Width/Sim-Width

The next reduction uses two constants a := 45 and b := 6τ(τ + γ) + 1. With the announced
values of τ = 1080 and γ = 135, we have b = 7873201. We remark that the value of b will
not affect the linear mim-width upper bound nor the sim-width lower bound. (The constant
b should simply be that large to make our proofs work.)

Let (H, ω) be an instance of Tree Degree Balancing where all edge weights are
positive multiples of a and H is triangle-free. We build a graph G∗, such that if H has
a τ -balancing order, then the linear mim-width of G∗ is at most a+1

a τ + 107; and if H is has
no (τ + γ)-balancing tree, then the sim-width of G∗ is at least τ + γ. We construct G∗ from
the instance G := G(H), S := S(H) of Tree Mim-Balancing from the previous reduction.
Remember that S = {S(u) : u ∈ V (H)}.

The main goal of this reduction is to obtain a graph G∗ whose sim-width and linear mim-
width are related to the the sim-balancing and linear mim-balancing of (G, S), respectively.
Observe that we cannot simply set G∗ := G since a layout (T, f) of G can scatter each S(u)
so that for each matching edge xy of G, x and y are placed at leaves of T sharing a neighbor
in T . Consequently, the only cuts (A, B) induced by the edges of T with a matching edge
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between A and B are rather trivial (A or B is a singleton). Thus, the sim-width of G could
be uncontrollably smaller than the sim-balancing of (G, S).

To prevent this, we design a gadget G(u) for each u ∈ V (H) from b copies of S(u). These
gadgets ensure that any tree layout (T, f) of G∗ of sim-value at most τ + γ − 1 behaves
similarly to a tree mapping of (G, S) in the sense that for every S(u), there is an edge e of T

such that both sides of the induced cut (Ae, Be) contain a copy of S(u). Using this property,
we prove that the sim-width of G∗ is at least the sim-balancing of (G, S).

The final lemma from each of the two last subsections prove Theorem 2 (hence Theorem 1),
which we restate here.

▶ Theorem 25. Let τ, γ, a be natural numbers as previously defined. Given graphs G such
that either

the linear mim-with of G is at most a+1
a τ + 107, or

the sim-width of G is at least τ + γ + 1,
deciding which of the two outcomes holds is NP-hard.

One can indeed check that with the announced values for τ, γ, a, we have a+1
a τ + 107 = 1211

and τ + γ + 1 = 1216.

5.1 Encoding Mim/Sim-Balancing in Mim/Sim-Width
We start with the description of a gadget for each vertex of H.

Construction of G(u). For each vertex u ∈ V (H), the gadget of u, denoted by G(u),
is a graph spanned by a path Qu of length 2b · |S(u)| made by concatenating b copies of
a path Pu. The path Pu is built as follows. Recall that in the graph G, the set S(u) partitions
into I(u, v1) ⊎ · · · ⊎ I(u, vk) where {v1, . . . , vk} = NH(u). Since all weights are multiples
of a, |I(u, v)| is a multiple of a for any edge uv ∈ E(H). Hence we can write each I(u, v) as
a disjoint union I(u, v, 1) ⊎ · · · ⊎ I(u, v, a) where each I(u, v, i) has size |I(u,v)|

a .
We construct the path Li whose vertex set is I(u, v1, i) ∪ I(u, v2, i) ∪ · · · ∪ I(u, vk, i), and

whose vertices occur in this order along Li. We define L as the concatenation L1L2 . . . La,
i.e., the last vertex of Li is made adjacent to the first vertex of Li+1, for every i ∈ [a − 1].
The path Pu is obtained from the 1-subdivision of L by adding a vertex adjacent to the last
vertex of La; see Figure 6.

L1

I(u, v1, 1)

L2

I(u, v1, 2)

L3

I(u, v1, 3)

Figure 6 The path Pu for a vertex u with four neighbors v1, v2, v3, v4, and a = 3. The sizes
of I(u, v1), I(u, v2), I(u, v3), I(u, v4) are 12, 9, 6, 9, respectively; all divisible by a. The labels
I(u, v1, •) and L• refer to the white vertices, while Pu also comprises the subdivision vertices in
black.

We obtain the path Qu by concatenating b copies P 1
u , P 2

u , . . . , P b
u of Pu. Note that each

vertex x of Pu has b copies x1, . . . , xb in Qu; for each y ∈ {x, x1, . . . , xb}, we denote by
Copies(y) the set {x1, . . . , xb}. The gadget G(u) is obtained from Qu by adding an edge
between every pair of vertices x, y in two distinct P i

u, P j
u except if y is in NQu [Copies(x)];

see Figure 7.

Construction of G∗. Finally, we construct G∗ as follows (based on the vertex set
of H, and the edge set of G). For each vertex u ∈ V (H), we add a gadget G(u) to G∗. For
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P 1
u

P 2
u

P 3
u

Figure 7 The gadget G(u) for the path Pu of Figure 6 and b = 3. We drew the non-edges between
distinct copies of Pu (dashed edges) incident to only three vertices (one subdivision vertex in P 2

u ,
and two regular vertices in P 2

u and P 3
u). Each path P i

u remains induced in G(u).

every edge xy ∈ E(G), we add the biclique between Copies(x) and Copies(y) in G∗. If xy is
a matching edge of G, the added edges are also said matching (see Figure 8). Similarly if xy

is a dummy edge, we call the added edges dummy (see Figure 9).

P 1
u P 2

u P 3
u

P 1
v P 2

v P 3
v

Figure 8 The matching edges between G(u) and G(v) (with u and v two adjacent vertices in H).

P 1
u P 2

u P 3
u

P 1
v P 2

v P 3
v

Figure 9 The dummy edges between G(u) and G(v) of Figure 8. An edge between two rounded
boxes represents a biclique between the corresponding vertices of I(•, •, •) (which excludes the
subdivision vertices). We only represented the bicliques incident to P 2

u (P 1
u and P 3

u have the same
adjacencies toward G(v)).
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5.2 Low linear mim-balancing of (G, P) ⇒ low linear-mim width of G∗

To upper bound the linear mim-width of G∗, we need the next lemma on G(u). For each
vertex u of H, we define the caterpillar layout of G(u) as the left-aligned caterpillar (i.e, such
that every right child is a leaf) layout with |V (G(u))| leaves bijectively labeled by V (G(u)),
in the order of Qu from the first vertex of P 1

u to the last vertex of P b
u.

▶ Lemma 26. Let u be a vertex of H, and (C, f) be the caterpillar layout of G(u). For every
cut (A, B) of G(u) induced by an edge of C, the mim-value of (A, B) is at most 7.

Proof. Let (A, B) be a cut induced by an edge of C. Since the leaves of C are bijectively
mapped f to V (G(u)) in the order of Qu, there is exactly one edge eQu

between A and B

that belongs to Qu. Let P i
u be the copy of Pu such that eQu is either an edge of P i

u or the
edge between P i−1

u and P i
u.

Let M be an induced matching of G(u)[A, B] of size at least 2. Let X and Y be the
endpoints of the edges of M lying in A and B, respectively. Observe that there exists at
least one vertex in X ∪ Y that is neither on P i

u nor an endpoint of eQu . Indeed, we have two
cases to consider:

Case 1: eQu
is the edge between P i−1

u and P i
u. Then, V (P i

u) is fully included in either A

or B, and since the sizes of X and Y are at least 2, it follows that at least one vertex in
X ∪ Y is neither on P i

u nor an endpoint of eQu
.

Case 2: eQu
is an edge of P i

u. Then, since M contains at least two edges and eQu
is the

only edge of P i
u between A and B, at least one vertex in X ∪ Y is not on P i

u (and thus
not an endpoint of eQu

).
We assume, without loss of generality, that X contains a vertex x that is neither on P i

u nor
an endpoint of eQu (we can always swap X and Y ). In the following, we prove that x has at
most 6 non-neighbors in Y . This is sufficient to prove the lemma as it implies that the size
of Y , and thus of M , is at most 7; as desired.

Let P j
u be the copy of Pu containing x. Observe that we have i ̸= j and thus all the

vertices of P j
u belong to A. We denote by x− and x+ the neighbors of x in P j

u (we may have
x− = x+ when x is an endpoint of P j

u). Since all the vertices of P j
u belong to A and x is not

incident to eQu , we have B \ NG(u)(x) = B ∩ (Copies(x) ∪ Copies(x−) ∪ Copies(x+)). Since
P i

u contains exactly one copy of each vertex among x, x− and x+, it follows that x has at
most 3 non-neighbors in B ∩ V (P i

u) and in particular in Y ∩ V (P i
u). It remains to prove that

Y \ V (P i
u) contains at most 3 non-neighbors of x. Observe that for each y ∈ {x, x−, x+} and

every pair of vertices w, z in (B ∩ Copies(y)) \ V (P i
u), we have NG(u)(w) ∩ A = NG(u)(z) ∩ A

and thus at most one vertex among w and z can be in Y . We conclude that x has at most 3
non-neighbors in Y \ V (P i

u) and thus |Y | = |M | ⩽ 7. ◀

We can now conclude for this direction of the reduction.

▶ Lemma 27. If (H, ω) admits a τ -balancing order, then the linear mim-width of G∗ is
at most a+1

a τ + 107.

Proof. Suppose that (H, ω) admits a τ -balancing order ≺. By Lemma 24, G admits a path
mapping (P, f) of mim-value at most τ + 50. We construct from ≺ a caterpillar layout C

of G∗, and leverage the mim-value of (P, f) to show that the mim-value of C is at most
a+1

a τ + 107.
For every i ∈ [|V (H)|], we denote by ui the i-th vertex of H along ≺. We denote

by Ci the caterpillar layout of G(ui), and we denote by Si the spine of Ci. We construct
a caterpillar layout C of G∗ from the disjoint union of C1, . . . , C|V (H)| by adding an edge
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between the last vertex of Si and the first vertex of Si+1 for each i ∈ [|V (H) − 1]. Let
S∗ := {V (G(u)) : u ∈ V (H)}. Let us recall that an S∗-cut (A, B) is a cut of G∗ such that
no gadget G(u) has vertices in both A and B. Observe that a cut induced by an edge e of C

is an S∗-cut if and only if e is an edge between two caterpillars Ci and Ci+1.

▷ Claim 28. Every S∗-cut (A, B) induced by an edge of C has mim-value at most τ + 50.
Moreover, every semi-induced matching M of G∗ between A and B has at most τ matching
edges, and there exists u ∈ V (H) such that V (G(u)) covers the matching edges of M .

Proof: Let (A, B) be a S∗-cut induced by an edge e of C. Let i ∈ [|V (H)| − 1] such that e

is the edge between Ci and Ci+1. We denote by eP the i-th edge of P (recall that (P, f) is
a path mapping of G) and by (AP , BP ) := (AeP

, BeP
) the cut of G induced by eP . Let M

be a semi-induced matching of G∗ between A and B.
We claim that |M | ⩽ mimG(AP , BP ). Observe that AP is the union of S(u1), . . . , S(ui)

and BP is the union of S(ui+1), . . . , S(u|V (H)|). Similarly, A is the union of G(u1), . . . , G(ui)
and B is the union of G(ui+1), . . . , G(u|V (H)|). For every vertex v of G, we say that v is the
original of the vertices of G∗ in Copies(v).

Since (A, B) is a S∗-cut, every edge in G∗[A, B] is between two different gadgets of G∗.
By construction of G∗, for every edge xy between two gadgets G(ui) and G(uj), the vertices
x and y are the copies of some vertices in G. Hence, every endpoint of an edge in M has an
original in G.

By construction of G∗, for all vertices x and y in G∗ with distinct originals w and z in G,
we have xy ∈ E(G∗) if and only wz ∈ E(G). Hence, by replacing every edge xy in M by a pair
{w, z} where w and z are the originals of x and y, respectively, we obtain a semi-induced
matching |MP | between AP and BP . Hence, we have |M | ⩽ |MP | ⩽ mimG(AP , BP ). As the
mim-value of (P, f) is at most τ + 50, we conclude that the size of M is at most τ + 50.

By Lemma 24, we know that MP has at most τ matching edges and that there exists
u ∈ V (H) such that S(u) covers the matching edges of MP . As the copies of the vertices in
S(u) are all in G(u), the vertices in G(u) cover the matching edges of M . ♢

Next we deal with the cuts of C that are not S∗-cuts. Let (A, B) be a cut induced by
an edge e of C that is not a S∗-cut. Then, there exists k ∈ [|V (H)|] such that e is the edge
of some caterpillar layout Ck. If a leaf of Ck is incident to e, then A or B is a singleton
(containing exactly one vertex in G(uk)) and mimG∗(A, B) ⩽ 1. In the remainder of the
proof, we assume that e is an edge from the spine of Ck.

Let M = {e1, . . . , em} be a semi-induced matching between A and B. By Lemma 26, we
can assume that M ′ := {e1, . . . , em−7} contains no edge within G(uk). We denote by Ak and
Bk the sets of vertices of G(uk) that are respectively in A and B. Let MA (resp. MB) be the
sets of edges in M between A and B \ Bk (resp. between B and A \ Ak). Observe that the
edges of MA are traversing the cut (A ∪ Bk, B \ Bk) which is a S∗-cut induced by an edge
of C. Symmetrically, the edges of MB are also traversing a S∗-cut induced by an edge of C.
From Claim 28, for each X ∈ {A, B}, we know that MX has at most τ + 50 edges and at
most τ matching edges, moreover there exists vX ∈ V (H) such that V (G(vX)) covers the
matching edges of MX . Let M̂, M̂A and M̂B be the sets of matching edges from respectively
M ′, MA and MB . Since M̂ = M̂A ∪ M̂B , and we remove at most 50 edges from MA and MB

to obtain respectively M̂A and M̂B , we have

|M | ⩽ |M̂ | + 107. (5)

▷ Claim 29. There exists v ∈ {vA, vB , uk} such that V (G(v)) covers M̂ .
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Proof: Assume toward a contradiction that the claim is false. As V (G(vA)) covers M̂A but
not M̂ , it means that there exists at least one edge eA in M̂ \ M̂A not incident to V (G(vA)).
As eA /∈ M̂A, this edge must be in M̂B between A and Bk, so it must be covered by V (G(vB)).
Since Bk ⊆ V (G(uk)), eA is a matching edge between G(vB) and G(uk). Symmetrically, we
deduce that there is a matching edge between G(vA) and G(uk) (because V (G(vB)) covers
M̂B but not M̂). Moreover, as V (G(uk)) does not cover M̂ , there exists an edge euk

in M̂

not adjacent to G(uk). As Ak and Bk are subsets of V (G(uk)), euk
must be in M̂A and M̂B ,

so it must be covered by both V (G(vA)) and V (G(vB)). So there is at least one matching
edge between every pair of gadgets among G(vA), G(vB) and G(uk). From the construction
of G∗, it means that there is at least one matching edge between S(vA), S(vB) and S(uk).
Recall that a matching edge in G between two parts of S(u), S(v) in S implies that uv is
an edge of H. Consequently, vA, vB and uk induce a triangle in H, a contradiction with H

being triangle-free. ♢

First, suppose that vA ̸= uk and that V (G(vA)) covers M̂ . As vA ̸= uk, there is no
edge in M̂ between Ak and B (such edges would not be covered by V (G(vA))). So, we have
M̂ = M̂A and since |M̂A| ⩽ τ , it follows by Equation (5) that |M | ⩽ τ + 107. By symmetry,
the above holds also when vB ̸= uk and V (G(vB)) covers M̂ .

Now, we assume that V (G(uk)) covers M̂ . We distinguish two cases.

Case 1: There exists ℓ ∈ [b] such that V (P ℓ
uk

) ⊆ A and at least one endpoint x of M̂

is on P ℓ
uk

. We claim that M̂ has at most 3 edges with endpoints in Bk. Recall that
M̂ has only matching edges, so every edge of M̂ is between two distinct gadgets. In
particular, the endpoints of M̂ in Bk must be non-neighbors of x and adjacent via
M̂ to a vertex in A \ Ak. Since V (P ℓ

uk
) ⊆ A, the non-neighborhood of x in Bk is

exactly Bk ∩ (Copies(x) ∪ Copies(x−) ∪ Copies(x+)), where x− and x+ are the neighbors
of x in P ℓ

uk
(possibly with x− = x+). Thus, the endpoints of M̂ in Bk must be in

Copies(x) ∪ Copies(x−) ∪ Copies(x+). However, for each y ∈ {x, x−, x+}, the vertices in
Bk ∩ Copies(y) have the same neighborhood in A \ Ak. We deduce that M̂ has at most 3
endpoints in Bk. By removing the edges of M̂ with an endpoint in Bk, we obtain M̂A

which contains at most τ edges. Hence, we have |M̂ | ⩽ τ + 3 and by Equation (5), it
follows that |M | ⩽ τ + 110.
Case 2: There exists ℓ ∈ [b] such that P ℓ

uk
has vertices in both A and B, and every

endpoint of M̂ in V (G(uk)) is from P ℓ
uk

. Here, we have to use the balanced distribution
of the copies of vertices from S(uk) along the path P ℓ

uk
. Recall that M̂ contains only

matching edges with one endpoint on P ℓ
uk

. Thus, for every edge xy of M̂ with x on P ℓ
uk

,
there exists v ∈ NH(uk) such that y is from G(v); in particular, x and y are the copies of
vertices in I(uk, v) and I(v, uk), respectively. In this setting, we call xy a ukv-edge. For
each X ∈ {A, B}, let NH(uk)X be set of neighbors v of uk in H such that all the vertices
of G(v) are in X. Notice that each edge in M̂X is an ukv-edge with v ∈ NH(uk)X .
For every ukv-edge xy of M̂ where y is from G(v), we assume without loss of generality
that the vertex y is from P 1

v . This assumption can be made since the vertices in Copies(y)
have the same neighborhood in G∗[A, B], so we can always replace y in M̂ with its copy
in the path P 1

v . For each v ∈ NH(uk), let Mukv be the induced matching of size ω(ukv)
made of the matching edges between P ℓ

uk
and P 1

v . For each X ∈ {A, B}, we define M⋆
X

as the union of the matchings Mukv over the vertices v ∈ NH(uk)X . By our previous
assumption on M̂ , we have M̂A ⊆ M⋆

A and M̂B ⊆ M⋆
B. As M⋆

A contains only matching
edges that traverse the S∗-cut (A \ Ak, B ∪ Ak), we know that |M⋆

A| ⩽ τ by Claim 28.
Symmetrically, We have |M⋆

B | ⩽ τ .
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Recall that from the construction of Puk
, the path P ℓ

uk
is the concatenation of a paths

P ′1, . . . , P ′a such that for each i ∈ [a] and v ∈ NH(uk), P ′i contains ω(ukv)
a endpoints of

Mukv. Let t ∈ [a] be such that the first vertex of P ℓ
uk

in B is from P ′t . Observe that all
the vertices from P ′1, . . . , P ′t−1 belong to A and all the vertices from P ′t+1, . . . , P ′a belong
to B. Moreover, P ′t is the only path among P ′1, . . . , P ′a that can have vertices in both A

and B. Consequently, for every v ∈ NH(uk), the endpoints of Mukv in Ak lie in P ′1, . . . , P ′t
and those in Bk lie in P ′t , . . . , P ′a. So, Mukv has at most ω(ukv)t/a endpoints in Ak and
ω(ukv)(a − t + 1)/a endpoints in Bk. We deduce that:

MA has at most (a − t + 1)/a endpoints in Bk,
MB has at most t/a endpoints in Ak.

As every edge in M̂A is between A and Bk, it follows that |M̂A| ⩽ a−t+1
a |M⋆

A|. Sym-
metrically, we have |M̂B | ⩽ t

a |M⋆
B |. Since the sizes of M⋆

A and M⋆
B are at most τ , we

have

|M̂ | = |M̂A| + |M̂B | ⩽ a − t + 1
a

|M⋆
A| + t

a
|M⋆

B | ⩽ a + 1
a

τ.

By Equation (5), we get that |M | ⩽ a+1
a τ + 107.

We conclude that M has at most max(τ + 110, a+1
a τ + 107) = a+1

a τ + 107 edges (since
τ ⩾ 3a). ◀

5.3 Low sim-width of G∗ ⇒ low sim-balancing of (G, P)
The main argument works as follows. We will prove that in any tree layout of G∗ of small
sim-value, one can associate to each gadget G(u) an edge e of the layout, such that a copy of
Pu can be found on both sides of the cut defined by e. Since G(u) is “represented” by any of
its copies of Pu, we will use e as where the vertices of G(u) should be moved to. With this in
mind, we gradually build a tree mapping of G from a tree layout of G∗ by “relocating” each
gadget to the edge it is associated to.

We start with two technical lemmas.

▶ Lemma 30. Let P1, . . . , Pk be k paths with k > t · maxi∈[k] |V (Pi)| such that for any
i ̸= j ∈ [k] and any ℓ ∈ [min(|V (Pi)|, |V (Pj)|) − 1], the ℓ-th edge of Pi is mutually induced
with the ℓ-th edge of Pj . Then for any cut (A, B) of sim-value at most t, there exists at least
one path Pi such that V (Pi) ⊆ A or V (Pi) ⊆ B.

Proof. Let (A, B) be a cut such that every path Pi intersects both A and B. We claim that
the mim-value of (A, B) is at least t + 1. Observe that for each i ∈ [k], Pi has at least one
edge ei with one endpoint in A and the other in B. Since k > t · maxi∈[k] |V (Pi)|, from the
pigeonhole principle, there exists i1, . . . , it+1 such that the edges ei1 , . . . , eit+1 are the ℓ-th
edges of respectively Pi1 , . . . , Pit+1 for some ℓ. Thus, by assumption, ei1 , . . . , eit+1 form an
induced matching, and the sim-value of (A, B) is at least t + 1. ◀

▶ Lemma 31. Let P1, . . . , Pk be k paths with k >
⌈ 3t

2
⌉

· maxi∈[k] |V (Pi)| such that for any
i ̸= j ∈ [k] and any ℓ ∈ [min(|V (Pi)|, |V (Pj)|) − 1], the ℓ-th edge of Pi is mutually induced
with the ℓ-th edge of Pj. Then for any tripartition (A, B, C) of V (P1) ∪ . . . ∪ V (Pk) such
that the cuts (A, B ∪ C), (B, A ∪ C) and (C, A ∪ B) have sim-value at most t, there exists at
least one path Pi such that V (Pi) is included in one set among A, B and C.
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Proof. Let (A, B, C) be a tripartition of V (P1)∪. . .∪V (Pk) such that every path Pi intersects
at least two sets among A, B and C. We claim that the sim-value of one cut among (A, B∪C),
(B, A ∪ C) and (C, A ∪ B) is at least t + 1. Observe that for each i ∈ [k], Pi has at least one
edge ei whose endpoints lie in different sets among A, B and C. Let r :=

⌈ 3t
2

⌉
+ 1. Since

k > ⌈ 3t
2 ⌉ · maxi∈[k] |V (Pi)|, from the pigeonhole principle, there exists i1, . . . , ir such that the

edges ei1 , . . . , eir are the ℓ-th edges of Pi1 , . . . , Pir , respectively, for some ℓ.
Let S(A, B), S(A, C) and S(B, C) be the sets of edges among ei1 , . . . , eir

whose endpoints
lie in A ∪ B, A ∪ C and B ∪ C, respectively. As the edges ei1 , . . . , eir form an induced
matching, and those in S(A, B) ∪ S(A, C) are between A and B ∪ C, we have sim(A, B ∪
C) ⩾ |S(A, B)| + |S(A, C)|. Similarly, we have sim(B, A ∪ C) ⩾ |S(A, B)| + |S(B, C)| and
sim(C, A ∪ B) ⩾ |S(A, C)| + |S(B, C)|. It follows that

sim(A, B ∪ C) + sim(B, A ∪ C) + sim(C, A ∪ B) ⩾ 2(|S(A, B)| + |S(A, C)| + |S(B, C)|).

Since |S(A, B)| + |S(A, C)| + |S(B, C)| = r = ⌈ 3t
2 ⌉ + 1, we have

sim(A, B ∪ C) + sim(B, A ∪ C) + sim(C, A ∪ B) ⩾ 3t + 2.

We conclude that the maximum among sim(A, B ∪ C), sim(B, A ∪ C) and sim(C, A ∪ B) is
at least t + 1. ◀

A hybrid tree of a partitioned graph (J, P) is pair (T, f) where T is a tree and f : V (J) →
V (T ) is a map such that for any node t ∈ T , either f−1(t) ∈ P or |f−1(t)| ⩽ 1. As for tree
mappings each edge e ∈ E(T ) in a hybrid tree of (J, P) defines a cut (Ae, Be) of J : the sets
of vertices mapped to each component of T − e. The sim-value of the hybrid tree (T, f) is
the maximum sim-value of all possible cuts (Ae, Be) for e ∈ E(T ).

We recall that S∗ = {V (G(u)) : u ∈ V (H)}. We observe that in the instances (H, ω) pro-
duced by the first reduction, every vertex has weight at most 2τ . Hence maxu∈V (H) |V (Pu)| ⩽
4τ . We set α := ⌈ b−1

6τ ⌉ − 1 = τ + γ − 1, where b is the constant introduced at the beginning
of the section.

▶ Lemma 32. Let (T, f) be a hybrid tree of (G∗, S∗) of sim-value at most α and T subcubic.
Then, for any vertex u of H, either

there exists t ∈ V (T ) with f−1(t) = V (G(u)), or
there exists an edge e ∈ E(T ) such that in the cut (Ae, Be) induced by e in G∗, one can
find a copy of Pu in both Ae and Be.

Proof. Let u be a vertex of H. If there exists a node t ∈ V (T ) such that f−1(t) = V (G(u)), the
statement holds. Hence we may assume that for any node t ∈ V (T ), |f−1(t) ∩ V (G(u))| ⩽ 1.

We build a directed graph Aux whose underlying undirected graph is T , as follows. For
any x, y ∈ V (Aux) := V (T ), the arc x → y is in E(Aux) whenever e := xy ∈ E(T ) and,
letting (Xe, Ye) be the cut induced by e in G∗ with f(Xe) (resp. f(Ye)) in the component
of x (resp. of y) in T − e, it holds that Ye contains a copy of Pu. Informally, the arcs of Aux
point toward whole copies of Pu. We shall then simply show that are x ̸= y ∈ V (Aux) such
that both x → y and y → x are in E(Aux).

By construction of G∗, there are b > 4ατ ⩾ α|V (Pu)| copies of Pu: P 1
u , . . . , P b

u. Moreover,
observe that for any i, j, ℓ with i ̸= j the ℓ-th edges of P i

u and P j
u are mutually induced.

Hence Lemma 30 ensures that in any cut (X, Y ) of G∗, a copy of Pu is included in X or
in Y . Thus each edge xy ∈ E(T ) implies that the arc x → y or the arc y → x is in E(Aux).

Assume, for the sake of contradiction, no edge xy ∈ E(T ) incurs that both x → y and
y → x are in E(Aux). It implies that Aux is an oriented tree, and thus contains a sink (i.e.,



B. Bergougnoux, É. Bonnet, and J. Duron 25

a vertex with no outneighbors), say s. Since T is of maximum degree 3, s has at most three
neighbors, say v1, v2 and v3. If the degree of s is 2 (note that it cannot be less), some vi may
not exist; in which case we set vi := s.

Let us define (V1, V2, V3) the tripartition of V (G∗) − f−1(s) induced by s as follows: V1,
V2 and V3 are the subsets of V (G∗) − f−1(s) mapped to the respective components of v1, v2
and v3 in T − s (with Vi = ∅ if and when vi = s). However, since |f−1(s) ∩ V (G(u))| ⩽ 1
there are b − 1 > 6ατ ⩾ 3

2 α|V (Pu)| copies of Pu lying in V1 ∪ V2 ∪ V3. Hence Lemma 31
ensures that some copy of Pu is included in one of V1, V2, V3; a contradiction to s being
a sink. ◀

We now define a grouping operation on triples (T, f, u), where (T, f) is a subcubic hybrid
tree of (G∗, S∗) of sim-value smaller than 2(b−1)

3 maxu∈V (H) |V (Pu) (which is still very large compared
to τ + γ by definition of b) and u ∈ V (H), and denote it by group(T, f, u). If there exists
t ∈ V (T ) with f−1(t) = G(u), then we set group(T, f, u) := (T, f). Otherwise, Lemma 32
ensures that there is an edge e ∈ E(T ) such that a copy of Pu is in both sides of the cut
defined by e. We then define group(T, f, u) := (T ′, f ′), where

T ′ is obtained from T by subdividing e, which adds a node, say, te, and
f ′ satisfies that f ′(x) = f(x) whenever x ̸∈ V (G(u)), and f ′(x) = te otherwise.

Given an edge e′ ∈ E(T ′), the edge corresponding to e′ in T is e′ if e′ is an edge of T , and e

if e′ is incident to te.
We make two observations on the grouping operation.

▶ Observation 33. For any subcubic hybrid tree (T, f) of (G∗, S∗) and any u ∈ V (H),
group(T, f, u) is a subcubic hybrid tree of (G∗, S∗).

▶ Observation 34. Let (T, f) be a subcubic hybrid tree of (G∗, S∗) and u ∈ V (H). Let
(T ′, f ′) := group(T, f, u), e ∈ E(T ), and e′ ∈ E(T ′) corresponds to e in T . Then if (Ae, Be)
and (Ae′ , Be′) are the cuts of G∗ defined by e and e′, respectively, we have

Ae′ \ V (G(u)) = Ae \ V (G(u)),
Be′ \ V (G(u)) = Be \ V (G(u)),
V (G(u)) ⊆ Ae′ implies that Ae contains a copy of Pu, and
V (G(u)) ⊆ Be′ implies that Be contains a copy of Pu.

We can next show that a grouping can only decrease the sim-value.

▶ Lemma 35. For any subcubic hybrid tree (T, f) of (G∗, S∗) and any u ∈ V (H), the sim-
value of group(T, f, u) is at most that of (T, f).

Proof. Let (T ′, f ′) := group(T, f, u). Let e′ be an edge of T ′ with (Ae′ , Be′) the cut of
G∗ defined by e′. Let e ∈ E(T ) be the edge corresponding to e′ in T and (Ae, Be) be
the cut of G∗ defined by e. By construction of (T ′, f ′), there is a node t′ ∈ V (T ′) with
f ′−1(t′) = V (G(u)). Hence we can assume without loss of generality that V (G(u)) ⊆ Ae′ .
Consider M ′ an induced matching between Ae′ and Be′ . We will prove that there exists an
induced matching M between Ae and Be with |M | = |M ′|.

Let M ′ := {a′1b′1, . . . , a′pb′p} with a′i ∈ Ae′ and b′i ∈ Be′ for every i ∈ [p]. We build
the matching M := {a1b1, . . . , ap, bp} as follows. By assumption, Be′ ∩ V (G(u)) = ∅, and
by Observation 34, we know that Be \ V (G(u)) = Be′ \ V (G(u)). Hence Be′ ⊆ Be, and
so for any i ∈ [p], we set bi := b′i. Exploiting the same idea, when a′i ̸∈ V (G(u)) we have
a′i ∈ Ae, and so we set ai := a′i. Otherwise we have a′i ∈ V (G(u)), but since V (G(u)) ⊆ Ae′ ,
Observation 34 ensures that some copy P k

u of Pu is in Ae. So we set ai to be the unique
vertex in Copies(a′i) ∩ V (P k

u ). It remains to prove that M is indeed an induced matching.
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Assume without loss of generality that X ′ := {a′1, . . . , a′t} are exactly the vertices in
{a′1, . . . , a′p} that belongs to V (G(u)). Let X := {a1, . . . , at}. Observe that by construction
we have V (M ′) \ X ′ = V (M) \ X and this set contains no vertex from G(u). For every
i ∈ [t], since ai ∈ Copies(a′i), we have N(ai) \ V (G(u)) = N(a′i) \ V (G(u)). In particular,
N(ai) ∩ (V (M) \ X) = N(a′i) ∩ (V (M) \ X) and thus ai is adjacent to only bi = b′i in
V (M) \ X. Since X contains only the copies in P k

u of some vertices in G, we know that X

induces an independent set. It follows that for each i ∈ [t], ai is only adjacent to bi in V (M).
As V (M ′) \ X ′ = V (M) \ X, we conclude that M is an induced matching.

◀

We are now equipped to turn hybrid trees G∗ into tree mappings of G∗ no greater
sim-value.

▶ Lemma 36. If (G∗, S∗) admits tree layout(T, f) of sim-value at most α, then (G∗, S∗)
admits a tree mapping (T ′, f ′) of sim-value at most the sim-value of (T, f).

Proof. The tree layout (T, f) is a subcubic hybrid tree by definition. Let (Ti, fi)i∈[0,n]
be the sequences of hybrid trees where (T0, f0) := (T, f), and for any i ∈ [n], we set
(Ti, fi) = group(Ti−1, fi−1, ui) with V (H) = {u1, . . . , un}. Lemma 35 ensures that the sim-
value of (Tn, fn) is at most the one of (T, f). From the definition of the operation group, it
follows that for every node t of Tn, we have either f−1

n (t) ∈ S∗ or f−1
n (t) = ∅.

Let (T ′, f ′) be the hybrid tree obtained by starting from (T ′, f ′) = (Tn, fn) and by doing
the following. While there is an edge tt′ in T ′ such that f ′−1(t) ∈ S and f ′−1(t′) = ∅, we
contract the edge tt′ into a vertex whose preimage is the part f ′−1(t). At every iteration,
(T ′, f ′) remains a hybrid tree of (G∗, S∗). It can also be observed that after each iteration,
the S∗-cuts induced by the remaining edges of T ′ doesn’t change. Thus, by repeating this
process, the sim-value can only decrease.

At the end of this process, every node of T ′ has for preimage by f ′ a unique part of S.
Hence (T ′, f ′) is a tree mapping of (G∗, S∗). By the argument in the previous paragraphs,
its sim-value is at most the sim-value of (T, f). ◀

We can conclude.

▶ Lemma 37. Let (T, f) be a tree layout witnessing that the sim-width of G∗ is at most τ +γ.
Then the tree sim-balancing of (G, S) is at most τ + γ.

Proof. By Lemma 36, there exists a tree mapping (T ′, f ′) of (G∗, S∗) whose sim-value is
at most that of (T, f). We finally observe that (T ′, g)—with g defined such that g−1(t) =
S(u) whenever f ′−1(t) = V (G(u))—is a tree mapping of (G, S) of sim-value at most that
of (T ′, f ′). ◀
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