Abstract

In this work, we initiate the study of the MIN-ONES d-SAT problem in the parameterized streaming model. An instance of the problem consists of a d-CNF formula F and an integer k, and the objective is to determine if F has a satisfying assignment which sets at most k variables to 1. In the parameterized streaming model, input is provided as a stream, just as in the usual streaming model. The key difference is that now the amount of local memory available to the algorithm is $\Theta(f(k) \log n)$ ($f : \mathbb{N} \rightarrow \mathbb{N}$, a computable function) as opposed to the usual streaming model’s $O(\log n)$. It is also expected that the algorithm make a small number of passes (bounded by a function of k) over its input.

We design a $(k + 1)$-pass parameterized algorithm that solves MIN-ONES d-SAT using space $O((kd^k + k^d) \log n)$ ($c > 0$, a constant) and a $(d + 1)^k$-pass algorithm that uses space $O(k^d \log n)$. We also design a streaming kernelization that makes $(k + 2)$ passes and uses space $O(k^6 \log n)$ to produce a kernel with $O(k^n)$ clauses.
To complement these positive results, we show that any k-pass algorithm for $\text{MIN-ONES } d$-SAT ($d \geq 2$) requires space $\Omega\left(\max\left\{ n^{\frac{k}{2}}, \log \frac{n}{k}\right\}\right)$ on instances (F, k). This is achieved via a reduction from the streaming problem $\text{POT POINTER CHASING}$ (Guha and McGregor [ICALP 2008]), which might be of independent interest. Given this, our $(k + 1)$-pass parameterized streaming algorithm is the best possible, inasmuch as the number of passes is concerned.

In contrast to the results of Faafianie and Kratsch [MFCS 2014] and Chitnis et al. [SODA 2015], who independently showed that there are 1-pass parameterized streaming algorithms for VERTEX COVER (a restriction of $\text{MIN-ONES } 2$-SAT), we show using lower bounds from Communication Complexity that for any $d \geq 1$, a 1-pass streaming algorithm for $\text{MIN-ONES } d$-SAT requires space $\Omega(n)$. This excludes the possibility of a 1-pass parameterized streaming algorithm for the problem. Additionally, we show that any p-pass algorithm for the problem requires space $\Omega\left(\frac{n}{p}\right)$.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of computation → Fixed parameter tractability; Theory of computation → Streaming, sublinear and near linear time algorithms; Mathematics of computing → Combinatorial algorithms

Keywords and phrases min-ones, 2-sat, d-sat, parameterized complexity, streaming algorithm, kernelization, space lower bound

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

Acknowledgements I want to thank ...
Parameterized Complexity – an approach pioneered by Downey and Fellows [8]. For details on Parameterized Complexity, we refer the reader to the books of Downey and Fellows [8], Flum and Grohne [13], Niedermeier [29], and the recent book by Cygan et al. [7]. For the convenience of readers, a small introduction is given in Appendix A.

Our Problem and the Framework We consider the problem Min-Ones-d-SAT in the parameterized streaming model, which is a minimization variant of d-SAT. In the following, we formally define the problem, where $d \geq 1$.

<table>
<thead>
<tr>
<th>Min-Ones-d-SAT</th>
<th>Parameter: k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A d-CNF formula \mathcal{F} and an integer $k \in \mathbb{N}$.</td>
<td>Question: Is there a satisfying assignment for \mathcal{F} that assigns at most k variables to 1?</td>
</tr>
</tbody>
</table>

We note that the problem 2-SAT admits a poly-time algorithm [4, 10, 25], while its minimization variant, Min-Ones-2-SAT is NP-hard [33]. Indeed, the problem encompasses a classic NP-hard problem, Vertex-Cover [33]: the graph in a Vertex-Cover instance can be seen as a formula in which the vertices are variables and each edge is a monotone clause containing the two endpoints as (positive) literals.

To the best of our knowledge, the study of parameterized streaming algorithms was first carried out independently by Fafianie and Kratsch [11], and Chitnis et al. [5]. Fafianie and Kratsch [11] studied several problems from the viewpoint of kernelization in the streaming model using constant number of passes over the input. Chitnis et al. [5] studied the problems Maximal Matching and Vertex-Cover in the parameterized streaming model while allowing only a single pass over the input. In both the above models the algorithm is allowed to use space bounded by $O(g(k) \text{poly}(\log n))$, where k is the parameter and n is the size of the input, and g is a computable function. Recall that one of the goals of streaming algorithms is to make as few passes over the input as possible, while in parameterized preprocessing, the goal is to upper-bound the size of the preprocessed instance (called a kernel) by a function of the parameter alone. So we might want to relax the constraint of the algorithm being allowed a constant number of passes (or a single pass as in the framework in [5]), to $f(k)$ passes over the input, where f is some computable function depending only on the parameter k. In the following, we define the notions of streaming-FPT algorithms and streaming-kernels. Parameterized problems whose input is presented as a stream will be called streaming-parameterized problems. In the following, let II be a streaming-parameterized problem. The problem II is said to admit an $(f(k), g(k))$-streaming-FPT algorithm, if there is an algorithm, that given an instance (x, k) of II, makes $f(k)$ passes over the input stream and resolves the instance using $g(k) \text{poly}(\log |x|)$ space. We say that II admits an $(f(k), g(k), h(k))$-streaming-kernel, if there is an algorithm, that given an instance (x, k) of II, makes $f(k)$ passes over the input stream and using space bounded by $g(k) \text{poly}(\log |x|)$, outputs an equivalent instance (x', k') of II, such that $|x'| + k' \leq h(k)$. Moreover, if $g = h$, then II is said to admit an $(f(k), g(k))$-streaming-kernel.

Our Results Our main focus is on the problem Min-Ones-d-SAT. For our problems, a stream will consist of the integer k, followed by the clauses of the input CNF formula.

For $d \geq 1$, we design a $(k + O(k^d) + d\text{poly}(k))$-streaming-FPT algorithm for Min-Ones-d-SAT. Our streaming FPT algorithm is obtained by enumerating all minimal solutions to clauses containing all positive literals. Then, each such minimal solution is “grown” to a larger solution by adding more variables to it, and then testing if it forms a valid solution. The above algorithm can also be interpreted as adapting the standard branching algorithm for Min-Ones-d-SAT, to the streaming model. Our main conceptual message here is: for some
problems, a branching algorithm can be simulated in the streaming setting. We believe this approach will be useful in designing other parameterized streaming algorithms. We will later see, for our case, this also results in an “almost optimal” algorithm (using our lower bound results). By carefully adapting the standard branching algorithm for \textsc{Min-Ones-}d-SAT, we also obtain an \((O(d^k), O(k))-\text{streaming-FPT}\) algorithm for \textsc{Min-Ones-d-SAT}.

Next we turn to streaming kernelization. We design a \((k + 2, O(k^2))\)-streaming-kernel for \textsc{Min-Ones-}2-SAT. We note that for \(d \geq 3\), \textsc{Min-Ones-d-SAT} does not admit a (standard) polynomial kernel \cite{24}, thus if the processing time for each clause is polynomial, then such a streaming kernel cannot be obtained for \textsc{Min-Ones-d-SAT}. Our streaming kernelization is based on a combination of a kernelization for \textsc{d-Hitting Set} and the idea of “growing implication chains” for variables in the streaming model. Our streaming kernel also gives a new polynomial kernel for \textsc{Min-Ones-}2-SAT that is robust for at least two models.

For \(d \geq 1\), we show that \textsc{Min-Ones-d-SAT} does not admit a \((1, g(k))-\text{streaming-kernel}\), for any function \(g\). We obtain this result by a reduction from the Communication Complexity problem \textsc{INDEX}, for which there is a known lower bound \cite{26}. This contrasts the fact that \textsc{Vertex-Cover} (a restriction of \textsc{Min-Ones-}2-SAT) admits a single-pass streaming kernelization \cite{5}. We also show that any \(p\)-pass (\(p\) is a computable integer-valued function of the input) streaming algorithm for \(d\)-\textsc{SAT} requires space \(O(n/p)\). This result is obtained by an appropriate reduction from \textsc{DISJ}, a well-known problem in Communication Complexity.

For \(d \geq 2\), we show that any \(k\)-pass streaming algorithm for \textsc{Min-Ones-d-SAT} requires \(O\left(\max\left\{n^k / 2^k, \log\left(\binom{n}{k}\right)\right\}\right)\) bits of space in the worst case. (Recall that \(k\) is the maximum number of variables that can be set to 1.) We obtain this result by combining a well known lower bound for \textsc{DISJ}_k \cite{26} from Communication complexity and a space lower bound for the \textsc{POT Pointer Chasing} problem \cite{18}. This result refutes the existence of any \((k, g(k))-\text{streaming-FPT}\) algorithm for \textsc{Min-Ones-d-SAT}, for any function \(g\), whenever \(d \geq 2\). Thus our streaming-FPT algorithm that uses \(k + 1\) passes is pass-optimal, for \(d \geq 2\).

Finally, we observe that our streaming-FPT algorithms for \textsc{Min-Ones-d-SAT} generalize to provide streaming-FPT algorithms for a restricted variant of \textsc{Integer-Programming}, which has at most two variables per constraint.

Related Results \textsc{Min-Ones-}2-SAT was first studied by Gusfield and Pitt \cite{19}, who gave a poly-time 2-approximation algorithm for it. Misra et al. \cite{27} exhibited an equivalence between \textsc{Min-Ones-}2-SAT and \textsc{Vertex-Cover} via a poly-time parameter-preserving reduction. Chitnis et al. \cite{5} showed that \textsc{Vertex-Cover} admits a single-pass streaming algorithm that uses space \(O(k^2)\). As noted earlier, \textsc{Min-Ones-}2-SAT generalizes \textsc{Vertex-Cover}. Analogously, \textsc{Min-Ones-d-SAT} generalizes \textsc{d-Hitting-Set}. The question of kernelizing the problem \textsc{d-Hitting-Set} was studied by Abu-Khzam \cite{1}, and in the streaming model by Fafianie and Kratsch \cite{11}, who gave a single-pass streaming kernel with \(O(k^d)\) sets.

Preliminaries Here we introduce some basic concepts and notation used in the rest of the paper. For \(n \in \mathbb{N}\), \([n]\) denotes the set \([1, 2, \ldots, n]\). Let \(x \in \{0, 1\}^n\) and \(i \in [n]\). \(x[i]\) denotes the \(i\)-th coordinate of \(x\). Consider a set of variables \(V = \{x_1, \ldots, x_n\}\). A **literal** is a variable \(x_i\) (called an **unnegated literal**) or its negation \(\neg x_i\) (called a **negated literal**). A **clause** is a disjunction (OR) of literals, e.g. \((x_1 \lor \neg x_2 \lor \neg x_3)\). It is called **monotone** if it consists entirely of unnegated literals, and is called **anti-monotone** if it consists entirely of negated literals. Clauses containing both negated and unnegated literals are called **non-monotone**.

A conjunction (AND) of clauses is called a **CNF formula**. When each clause has at most \(d\) literals, it is called a \(d\)-**CNF formula**. An **assignment** for a CNF formula \(F\) over the variable set \(V\) is a subset \(S \subseteq V\). The assignment satisfies a clause if there is a variable in \(S\) that...
appears unnegated in the clause or a variable in $V \setminus S$ that appears negated in the clause. An assignment which satisfies all clauses in a formula is called a satisfying assignment for the formula.

2 Streaming FPT Algorithms

In this section, our main focus will be designing a $(k+1, O((k^d + d^{O(k)})k \log n))$-streaming-FPT algorithm for Min-Ones-d-SAT. An $(O(d^k), O(k))$-streaming-FPT algorithm for Min-Ones-d-SAT can also be obtained by carefully adapting the standard branching algorithm to the streaming model (see Appendix B.1). Using these algorithms as subroutines, we also obtain a streaming FPT algorithm for a restricted version of the Integer Programming problem with at most two variables per constraint (see Appendix C).

The $(k+1, O((k^d + d^{O(k)})k \log n))$-streaming FPT algorithm begins by making a single pass over the formula in which a set of minimal assignments for certain “essential” monotone clauses in the formula is obtained. In the next $k-1$ passes, these assignments are extended as much as possible using the implications appearing in the formula. Finally, the algorithm makes an additional pass to check the formula as a whole is satisfied by one of the extended assignments.

Let (\mathcal{F}, k) be an instance of Min-Ones-d-SAT on variables x_1, x_2, \ldots, x_n. The next result shows how to use a streaming kernelization for the d-Hitting-Set problem (defined below) to enumerate minimal solutions for a certain hitting set problem.

<table>
<thead>
<tr>
<th>d-Hitting Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A family \mathcal{X} of sets of size at most d over a universe U and an integer $k \in \mathbb{N}$.</td>
</tr>
<tr>
<td>Question: Is there $S \subseteq U$, such that $</td>
</tr>
</tbody>
</table>

\[\blacktriangleright \text{Proposition 2.1 (♠).} \] There is an algorithm Enum-d-HS, that finds the set \mathcal{S}_k, of all minimal d-hitting sets of size at most k, for an instance $I = (\mathcal{X}, U, k)$ of d-Hitting Set in time $O(d^k|I|)$. Moreover, $|\mathcal{S}_k| \in O(d^k)$ and the algorithm uses space $O(k|I| + kd^k|U|)$, where $|I|$ is the size of I and b_U is maximum size of the elements of U in bits.

The following result follows from Observation 1, Theorem 1, and Lemma 7 of [11].

\[\blacktriangleright \text{Proposition 2.2.} \] There is a 1-pass streaming algorithm called Stream-HS for d-Hitting-Set, which given an instance $I = (\mathcal{X}, U, k)$ with u_{max} as the maximum element of U, returns an (equivalent instance) $I' = (\mathcal{X}', U' \subseteq U, k)$ using $O(k^d \log |U|)$ bits of memory and $O(k^d)$ time at each step, such that the following conditions are satisfied.

1. $|\mathcal{X}'| \in O(k^d)$ and the bit size of I' is bounded by $O(k^d \log |U|)$.
2. Elements of U' are represented using $\log |U|$ bits.
3. $S \subseteq U$ (or U') of size at most k is a solution to I if and only if it is a solution to I'.

We note that in item 1 of Proposition 2.2, the size of I' can be bounded by $O(k^d \log k)$, by relabeling, but we want to preserve the exact variables, so we do not use relabeling.

Next, we apply the algorithm Stream-HS of Proposition 2.2 to obtain a set, which we call a set of essential monotone clauses, C_1, and the set S_1 of all minimal assignments (as sets of variables set to 1) for them of size at most k, as follows.

\[\text{The proofs of the results marked with } \blacktriangleright \text{ can be found in the appendix.} \]
Parameterized Streaming Algorithms for Min-Ones \(d\)-SAT

| Pass 1. | For each monotone clause \(C = (x_1 \lor x_2 \lor \cdots \lor x_d')\) (where \(d' \leq d\)) seen in the stream, pass the set \(\{x_1, x_2, \ldots, x_d'\}\) to Stream-HS. Let \(I_1 = (\mathcal{X}_1, U_1, k)\) be the output of Stream-HS once the entire stream has been read. Set \(\mathcal{C}_1 = \mathcal{X}_1\). Using Proposition 2.1, compute the set \(S_1\), of all minimal \(d\)-hitting sets of size at most \(k\) for \(I_1\). The next lemma bounds the time and the space used in Pass 1.

Lemma 2.3 (●). Pass 1 can be executed using space bounded by \(O((k^d + d^k)k \log n)\) while using time \(O(d^d k^d \log n)\) after reading each clause from the stream.

Let \(C^+\) be the set of all monotone clauses of \(F\), let \(F^+ = \land_{C \in C^+} C\) and \(F^+_1 = \land_{C \in C^+} C\). Recall that \(C_1\) is the set of clauses computed in Pass 1. We have the following observation, which follows from Proposition 2.1 and item 3 of Proposition 2.2.

Observation 1. \(S_1\) is the set of all minimal satisfying assignments of size at most \(k\) for both \(F^+\) and \(F^+_1\).

The next observation relates satisfying assignments to \(F^+\) and the family \(S_1\).

Observation 2 (●). Let \(S\) be the set of all minimal satisfying assignments of size at most \(k\) for \(F\). Then for each \(S \in S_1\), there is \(S' \in S_1\), such that \(S' \subseteq S\).

Now we describe the next \(k - 1\) passes. The algorithm constructs a set \(S_{prim}\) of prime partial assignments, which will be enough to resolve the instance. Initially, we set \(S_{prim} = S_1\).

| Pass \(\ell\) (2 \(\leq\) \(\ell\) \(\leq\) \(k\)) | Consider a non-monotone clause \(C = (x_1^C \lor x_2^C \cdots \lor x_{d_1}^C \lor \neg y_1^C \lor \cdots \lor \neg y_{d_2}^C)\) (where \(d_1 + d_2 \leq d\)) seen in the stream. For each \(S \in S_{prim}\), such that \(\{y_1^C, y_2^C, \ldots, y_{d_2}^C\} \subseteq S\) and \(\{x_1^C, x_2^C, \ldots, x_{d_1}^C\} \cap S = \emptyset\) we do the following.
| | = If \(|S| = k\), then remove \(S\) from \(S_{prim}\).
| | = Otherwise, \(|S| \leq k - 1\). Let \(S_{prim}^{\ell} = S_{prim}\) and for \(i \in [d_1]\), let \(S_i = S \cup \{x_i^C\}\). Set \(S_{prim} = (S_{prim}^{\ell} \setminus \{S\}) \cup \{S_i\ | i \in [d_1]\}\).

Clearly, Pass \(\ell\), where 2 \(\leq\) \(\ell\) \(\leq\) \(k\), on reading a clause \(C\) uses time \(O(|S_1|dk)\). Moreover, it modifies the sets in \(S_{prim}\) (increasing \(S_{prim}\) by at most a factor of \(d\)), by either removing a set \(S \in S_1\) completely, or adding one more element to \(S\) (when the size is less than \(k\)). The above procedure is executed only for \(k - 1\) passes. Thus, it always maintains that \(|S_{prim}| \in O(d^{O(k)})\) (see Proposition 2.1) and each set in \(S_{prim}\) has at most \(k\) elements (each representable by \(\log n\) bits). Thus, the (total) space used by the algorithm is bounded by \(O((k^d + d^{O(k)})k \log n)\).

For simplicity of description, we introduce the following notation. We set \(S_{prim}^{1} = S_1\) and for each \(\ell \in [k]\), we let \(S_{prim}^{\ell}\) denote the the set \(S_{prim}\) after the execution of Pass \(\ell\). We let \(\rho = (Q_1, Q_2, \ldots, Q_t)\) be the sequence of non-monotone clause in \(F\), where the ordering is given by the order of their appearance in the stream. For \(\ell \in [k] \setminus \{1\}\), \(i \in [t]\), we let \(S_{prim}^{\ell}(i)\) be the set \(S_{prim}\) (after modification, if any) at Pass \(\ell\) after reading the clause \(Q_i\). Furthermore, we let \(S_{prim}^{t}(0)\) be the set \(S_{prim}^{t-1}\). Next, we prove some results that will be useful in establishing the correctness of the algorithm.

Lemma 2.4. Let \(S\) be the set of all minimal assignments for \(F\) of size at most \(k\). For each \(\ell \in [k]\) and \(S \in S\), there is \(S' \in S_{prim}^{\ell}\), such that \(S' \subseteq S\).

Proof. We prove this using induction on \(\ell\). The claim follows for \(\ell = 1\) from Observation 2. This forms the base case of our induction. Next, we assume that the claim holds for each \(\ell \leq z\) (for some 1 \(\leq\) \(z\) \(\leq\) \(k - 1\)) and then we prove it for \(\ell = z + 1\). At the beginning of \(\ell\)th pass when no non-monotone clause is read from the stream, we have for each \(S \in S\), there is \(S' \in S_{prim}^{\ell}(0)\), such that \(S' \subseteq S\). This follows from the fact that \(S_{prim}^{\ell}(0) = S_{prim}^{\ell-1}\). Next, we assume that at
Pass ℓ, the claim holds after reading the clause Q_i, for each $i \leq p$, where $p \in [t-1] \cup \{0\}$. Now we prove the claim for $Q_{p+1} = (x_1^{p+1} \lor x_2^{p+1} \lor \ldots \lor x_{d_i}^{p+1} \lor \neg y_1^{p+1} \lor \neg y_2^{p+1} \lor \ldots \lor \neg y_{d_2}^{p+1})$. Consider $S \subseteq S$ and let $\hat{S} \in S^t_{\text{prm}}(p)$, such that $\hat{S} \subseteq S$. We will show that there is a set $S' \in S^t_{\text{prm}}(p+1)$, such that $S' \subseteq S$. Let $X = \{x_1^{p+1}, x_2^{p+1}, \ldots, x_{d_i}^{p+1}\}$ and $Y = \{y_1^{p+1}, y_2^{p+1}, \ldots, y_{d_2}^{p+1}\}$. If $Y \not\subseteq \hat{S}$ or $X \cap \hat{S} \neq \emptyset$, then $\hat{S} \in S^t_{\text{prm}}(p+1)$. Hence, $S' = \hat{S}$ is a set such that $S' \subseteq S$. We further have $Y \subseteq \hat{S}$ and $X \cap \hat{S} = \emptyset$. Since S satisfies Q_{p+1}, it must contain a variable, say x_1^{p+1} from $\{x_1^{p+1}, x_2^{p+1}, \ldots, x_{d_i}^{p+1}\}$. As $X \cap \hat{S} = \emptyset$, $\hat{S} \subseteq S$, $|S| \leq k$, and $x_1^{p+1} \in S$, we have that $|S| \leq k-1$. For $i \in [d_1]$, let $\hat{S}_i = \hat{S} \cup \{x_i^{p+1}\}$. Recall that $S^t_{\text{prm}}(p+1) = (S^t_{\text{prm}}(p) \setminus \{\hat{S}\}) \cup \{\hat{S}_i : i \in [d_1]\}$. From the above we can conclude that $\hat{S}_i \subseteq S$ and $\hat{S}_i \in S^t_{\text{prm}}(p+1)$. This concludes the proof.

\[\textbf{Observation 3.}\] For $i \in [k-1]$ and a set $S \in S^t_{\text{prm}}$, if $S \in S^t_{\text{prm}}$, then for each $\ell \in \{i, i+1, \ldots, k\}$, we have $S \in S^\ell_{\text{prm}}$.

\[\textbf{Proof.}\] Consider $i \in [k-1]$ and a set $S \in S^t_{\text{prm}}$, such that $S \in S^t_{\text{prm}}$. Let $\ell \in \{i+2, i+3, \ldots, k\}$ be the lowest integer, such that $S \not\in S^\ell_{\text{prm}}$ (if such an ℓ does not exist, the claim trivially holds). Since $S \in S^\ell_{\text{prm}}$ and $S \not\in S^\ell_{\text{prm}}$, there is a non-monotone clause $Q = (x_1 \lor x_2 \lor \ldots \lor x_d \lor \neg y_1 \lor \neg y_2 \lor \ldots \lor \neg y_d)$, such that $\{y_1, y_2, \ldots, y_d\} \subseteq S$ and $\{x_1, x_2, \ldots, x_d\} \cap S = \emptyset$. But we also encountered Q at $(\ell-1)$th pass, and S should have been modified/deleted, which is a contradiction.

\[\textbf{Lemma 2.5.}\] Let S be the set of all assignments for F of size at most k. For every $S \in S$, there is $S' \in S^t_{\text{prm}}$, such that $S' \subseteq S$ and S' satisfies every clause of F.

\[\textbf{Proof.}\] Consider $S \in S$ and let $S' \in S^t_{\text{prm}} = S^t_{\text{prm}}$ be a set such that $S' \subseteq S$. The existence of S' is guaranteed by Lemma 2.4. We will show that S' satisfies all the clauses of F. By the construction of S^t_{prm}, there is a set $\hat{S} \subseteq S$, such that $\hat{S} \subseteq S'$. Thus, S' satisfies each monotone clause of F (see Proposition 2.1 and 2.2). Next, consider an anti-monotone clause $C = (\neg y_1 \lor \neg y_2 \lor \ldots \lor \neg y_d)$ (where $d' \leq d$), and let $Y = \{y_1, y_2, \ldots, y_d\}$. Since S satisfies C, $Y_1 = Y \setminus S$ is a non-empty set. As $S' \subseteq S$, we have $S' \cap Y_1 = \emptyset$. Thus, S' satisfies C. If S' satisfies all the non-monotone clauses of F, then the claim follows. Otherwise, let $C = (x_1 \lor x_2 \lor \ldots \lor x_{d_1} \lor \neg y_1 \lor \neg y_2 \lor \ldots \lor \neg y_{d_2})$ be a non-monotone clause in F which is not satisfied by S', and let $X = \{x_1, x_2, \ldots, x_{d_1}\}$ and $Y = \{y_1, y_2, \ldots, y_{d_2}\}$. Since S' does not satisfy C, we have $Y \subseteq S'$ and $X \cap S' = \emptyset$. Notice that $Y \subseteq S$ as $S' \subseteq S$. As S satisfies C, we have $S' \cap X \neq \emptyset$. This together with the fact that $X \cap S' = \emptyset$ implies that $|S'| \leq k-1$. We can assume that $\hat{S} \neq \emptyset$, as S^t_{prm} can be assumed to contain only non-empty sets, otherwise, \emptyset is a solution to F. The above discussions together with Observation 3 and the fact that $|S'| \leq k-1$, implies that $S' \in S^t_{\text{prm}}$ and we have $S' \in S^t_{\text{prm}}$. But then at the kth pass, we would have encountered C, and S' would be replaced by d_1 many sets, namely $S' \cup \{x_1\}$, for each $i \in [d_1]$. This concludes the proof.

We are now ready to state our scheme for the $(k+1)$th pass.

\[\textbf{Pass} \; k + 1.\] Consider a clause C seen in the stream. If there is $S \in S^t_{\text{prm}}$, such that S does not satisfy C, then remove S from S^t_{prm}. When the stream is over, if $S^t_{\text{prm}} \neq \emptyset$, then return yes, and otherwise, return no.

The discussions above establishes the correctness of the algorithm. Thus, we obtain the following theorem.

\[\textbf{Theorem 2.6.}\] \textsc{Min-Ones-d-SAT} admits a $(k+1, (k^d + d^O(k))k)$-streaming-FPT algorithm.
Parameterized Streaming Algorithms for Min-Ones d-SAT

By carefully adapting the standard branching algorithm for Min-Ones-d-SAT, we obtain the following theorem.

\textbf{Theorem 2.7 (\blacklozenge).} \textbf{MIN-ONES-d-SAT} admits an \((O(d^k), O(k))\)-streaming-FPT algorithm.

Using Theorem 2.6 and 2.7 we can obtain the following result for a restricted version of \textsc{Integer Programming}, which has at most two variables per constraint (see Appendix C for complete details).

\textbf{Theorem 2.8 (\blacklozenge).} \textbf{Bounded IP} admits a \((k + 1, kd^{O(k)} + g(k))\)-streaming-FPT algorithm and an \((O(d^k), O(k) + g'(k))\)-streaming-FPT algorithm.

3 Streaming Kernelizations

In this section, we design a \((k + 2, O(k^9))\)-streaming-kernel for \textsc{Min-Ones 2-SAT}. In the first pass the algorithm computes a set of monotone clauses as in Section 2. Then, over \(k\) more passes, for each variable \(x\) appearing in these clauses, the algorithm a set of variables which must be set to one if \(x\) is set to 1, and the implications that force this. In the last pass, it collect all the anti-monotone clauses, whose both variables appear in some stored clauses.

We now move to the formal description of our algorithm. Let \((\mathcal{F}, k)\) be an instance of \textsc{MIN-ONES 2-SAT} on \(n\) variables. In the first pass we apply the algorithm \textsc{Stream-HS} of Proposition 2.2 to obtain a set of monotone clauses, \(C_1\). That is, we do the following.

\begin{center}
\textbf{Pass 1.} Obtain a set \(C_1\) of monotone clauses of \(\mathcal{F}\) using the same procedure as the first pass of Section 2.
\end{center}

Let \(V\) be the set of variables appearing in \(\mathcal{F}\), \(V_1\) be the set of variables appearing in \(C_1\). For each variable \(v \in V_1\), we maintain a set of variables \(P_v\) and a set of clauses \(P_v\). Initially, \(P_v = \{v\}\) and \(P_v = \emptyset\), for \(v \in V_1\). Now we are ready to describe our next \(k\) passes.

\begin{center}
\textbf{Pass \(\ell\).} \((2 \leq \ell \leq k + 1)\) Consider a non-monotone clause \(C = (x \lor \neg y)\) seen in the stream. For each \(v \in V_1\) such that \(y \in P_v, x \notin P_v, C \notin P_v\), and \(|P_v| \leq k\), add \(x\) and \(C\) to the sets \(P_v\) and \(P_v\), respectively.
\end{center}

For \(v \in V_1\) and \(\ell \in [k + 1]\), by \(P_v(\ell)\) we denote the set \(P_v\) at the end of pass \(\ell\) (or at the beginning of pass \(\ell + 1\), when \(\ell = 1\)). Furthermore, we let \(P = \cup_{v \in V_1} P_v\) and \(P = \cup_{v \in V_1} P_v\).

\textbf{Observation 4 (\blacklozenge).} Consider \(i \in [k]\) and \(v \in V_1\), such that \(|P_v(i)| = |P_v(i + 1)|\). Then for all \(\ell \in \{i, i + 1, \ldots, k + 1\}\), we have \(|P_v(\ell)| = |P_v(i)|\).

\textbf{Lemma 3.1.} Consider a set \(S\) which satisfies all clauses in \(P\). Then, for each \(v \in V_1 \cap S\), we have \(P_v \subseteq S\).

\textbf{Proof.} Consider \(v \in V_1 \cap S\) and let \(\rho = (C_1 = (x_1 \lor \neg y_1), C_2 = (x_2 \lor \neg y_2), \ldots, C_t = (x_t \lor \neg y_t))\) be the order in which the clauses in \(P_v\) were added. Note that \(P_2 = \{x_i \mid i \in [t]\}\). We will show by induction on the index \(i \in [t]\) that each \(x_i \in S\). Before reading \(C_1\), the only element in \(P_v\) was \(v\). As \(C_1\) was added to \(P_v\), it must hold that \(y_1 = v\). Since \(v \in S\) and \(S\) satisfies each clause in \(P, S\) must contain \(x_1\). For the induction hypothesis, we suppose that for some \(p \in [t - 1]\), we have \(\{x_i \mid i \in [p]\} \subseteq S\). We will now show that \(x_{p + 1} \in S\). Since \(C_{p+1} \in P_v\) and \(C_{p+1}\) appears after \(C_1\) in \(\rho\), for each \(i \in [p]\), there exists \(z \in \{x_i \mid i \in [p]\}\), such that \(z = y_{p+1}\). But since \(z \in S\) and \(S\) satisfies each clause in \(P\), we have that \(x_{p+1} \in S\). \(\blacklozenge\)

Let \(\mathcal{F}'\) be the 2-CNF formula containing all the anti-monotone clauses of \(\mathcal{F}\) and all the clauses in \(C_1 \cup P\).
Lemma 3.2. (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (F', k) is a yes-instance of Min-Ones 2-SAT.

Proof. The forward direction follows from the fact that each clause in F' is also a clause in F. In the backward direction, let S be a solution to Min-Ones 2-SAT in (F', k), and $S' = \bigcup_{i} C_{i}$. We show that S' is a solution to Min-Ones-2-SAT in (F, k). Since $V_{1} \cap S \subseteq S'$, from Proposition 2.2 we have that S' satisfies each monotone clause of F. From Lemma 3.1 we have $S' \subseteq S$. Thus, S' satisfies each anti-monotone clause of F $(F'$ contains all of them). If S' satisfies each non-monotone clause of F, then the claim follows. Otherwise, we have a non-monotone clause $C = (x \lor \neg y)$ in F, which is not satisfied by S'. We have that $x \notin S'$ and $y \in S'$. Let $V_{y} = \{ v \in V_{1} \mid y \in P_{v} \}$. The construction of S' implies that there is $v^{*} \in V_{y}$ such that $v^{*} \in S$. From the construction of S' we have that $x \notin P_{v^{*}}$. The above discussions together with Observation 4 implies that we would have encountered C at a pass $i \leq k$, and we did not add x to $P_{v^{*}}$. This means that $|P_{v^{*}}| \geq k + 1$. But this contradicts the fact that S has size at most k (note that from Lemma 3.1 we have $P_{v^{*}} \subseteq S$).

Let $V_{2} = V_{1} \cup \bigcup_{v \in V_{1}} P_{v}$. We will construct a set B of anti-monotone clauses. Initially, $B = \emptyset$. We now describe the $(k + 2)^{th}$ pass of our algorithm, which constructs the set B.

| Pass $k + 2$. For each anti-monotone clause $C = (\neg x \lor \neg y)$ in the stream with $\{x, y\} \subseteq V_{2}$ and $C \notin B$, add C to B. Then forget the sets P_{v}, where $v \in V_{1}$. |

Let \tilde{F} be the 2-CNF formula obtained from F by removing all anti-monotone clauses that are not in B.

Lemma 3.3 (▲). (F, k) is a yes-instance of Min-Ones-2-SAT if and only if (\tilde{F}, k) is a yes-instance of Min-Ones 2-SAT.

Notice that we have stored the sets of clauses C_{1}, P, and B, of sizes $O(k^{2})$, $O(k^{3})$, and $O(k^{6})$, respectively. This results in the instance (\tilde{F}, k) of Min-Ones 2-SAT. The above discussions together with Lemma 3.3 implies the following theorem.

Theorem 3.4. Min-Ones-2-SAT admits a $(k + 2, O(k^{6}))$-streaming-kernel.

4 Lower Bounds

We begin this section by exhibiting a reduction from the POT Pointer Chasing problem (defined later) to Min-Ones 2-SAT and use it to prove the following theorem.

Theorem 4.1. Any streaming algorithm that solves instances $(F; k)$ of Min-Ones-2-SAT $(d \geq 2)$ in k passes requires space $\Omega\{\max\{n^{1/k}/2^{k}, \log n\}^{2}\}$, where n is the number of variables in F.

The well-known truncated disjointness problem of Communication Complexity has the following lower bound.

Proposition 4.2 (Kushilevitz and Nisan [26], Example 2.12). Let $n, k \in \mathbb{N}$ with $0 \leq k \leq \lfloor n/2 \rfloor$. Any deterministic protocol for DISJ$_{k}$ requires $\Omega(\log n)$ bits of communication overall.

For some background on DISJ$_{k}$ and other problems (INDEX and DISJ) appearing in the proofs below, the reader is referred to Kushilevitz and Nisan’s standard work on Communication Complexity [26].

Using the bound of Proposition 4.2, it is possible to prove the intuitively obvious notion that a streaming algorithm which needs to keep track of locations in its input must use space $\Omega(\log n)$, where n is the size of its input.
Lemma 4.3. Let MOdSSolve be a streaming algorithm for MIN-ONES d-SAT ($d \geq 2$) that solves instances (F,k) of MIN-ONES d-SAT on n variables using space $g(n,k)$. For any $k \in \{1, \ldots, \lceil n/2 \rceil \}$, if MOdSSolve makes p passes to solve instances (F,k), then $g(n,k) = \Omega((1/p) \log (\binom{n}{k}))$.

Proof. Consider the following protocol for DISJ$_k$, in which Alice receives the set $S \subseteq \{1, \ldots, n\}$ and Bob receives the set $T \subseteq \{1, \ldots, n\}$ ($|S|,|T| = k$). Alice constructs the formula $F_S = \bigwedge_{i \in S} \neg x_i \vee x_i$ and Bob constructs the formula $F_T = \bigwedge_{i \in S} x_i \vee x_i$. Observe that $(F_S \land F_T, k)$ is a YES instance of MIN-ONES 2-SAT if and only if $S \cap T = \emptyset$.

Now Alice runs MOdSSolve with parameter k and F_S as partial input, and passes its memory r_S to Bob. Bob uses resumes execution of MOdSSolve on the memory r_S and feeds it the formula F_T. With this, the algorithm makes the first pass over $F_S \land F_T$. Bob then passes the algorithm’s memory r_T back to Alice. Using r_T, Alice resumes execution of MOdSSolve. The process is repeated for as many passes as the algorithm requires over $F_S \land F_T$. Once the algorithm halts, Bob returns its output as his answer.

Since MOdSSolve outputs YES if and only if $(F_S \land F_T, k)$ is a YES instance, the protocol is valid. The amount of communication per pass between Alice and Bob is at most $2pg(n,k)$, so the total amount of communication is at most $2pg(n,k)$. From Proposition 4.2, we have $2pg(n,k) = \Omega((\log (\binom{n}{k}))$, i.e. $g(n,k) = \Omega((1/p) \log (\binom{n}{k}))$.

The above result shows an $\Omega(\log n)$ lower bound on the space used by any algorithm that solves instances (F,k) of MIN-ONES d-SAT in $\Omega(k)$ passes. This is quite weak, but it is possible to strengthen the result substantially using a lower bound for the following POT POINTER CHASING problem.

Consider a complete t-ary tree T with $l + 1$ levels rooted at the vertex r. Let the levels be numbered from 1 to $l + 1$, with the root being on level 1. For each non-leaf vertex v, define v_i to be the i^{th} child of v (in the lexicographic ordering of its children). Given a function $f : V(T) \to \{0, \ldots, t - 1\}$, define $f^*(v) = v_f(v)$ for non-leaf vertices v and $f^*(v) = f(v)$ for leaf vertices. For $i \in \mathbb{N}$, $(f^*)^i(r)$ denotes the result of applying f^* to r repeatedly, t times.

POT POINTER CHASING

Instance: (T,f), where T is a complete t-ary tree with $l + 1$ levels rooted at r, encoded as a post-order traversal of its vertices, and $f : V(T) \to \{0, \ldots, t - 1\}$.

Question: Is $(f^*)^i(r) = 1$?

Figure 1 shows an instance with parameters $t = 3$ and $l = 3$. The following result exhibits a tradeoff between the number of passes made by a streaming algorithm for POT POINTER CHASING and the space it requires.

Proposition 4.4 (Guha and McGregor [18], Theorem 1). Any p-pass streaming algorithm that solves POT POINTER CHASING instances over t-ary trees with $(p + 1)$ levels requires space $\Omega(t/2^p)$ in the worst case.

Lemma 4.5. Let (T,f) be an instance of POT POINTER CHASING, where T is a t-ary tree with $k + 1$ levels. A boolean formula F can be constructed such that (T,f) is a YES instance of POT POINTER CHASING if and only if (F,k) is a YES instance of MIN-ONES 2-SAT.

Proof. The tree T has levels 1, \ldots, $k + 1$, with the root r on level 1 and the leaves on level $k + 1$. Since each internal vertex has t children, $|V(T)| = \frac{t^{k+1} - 1}{t - 1} = O(t^k)$. Consider the following boolean formula F with $n = \frac{t^k - 1}{t - 1} = \Theta(t^{k-1})$ variables.
Let \(w = f^*(r) \), i.e. the \(f^*(r) \)th child of \(r \), and \(T_w \) be the subtree of \(T \) rooted at \(w \). The variable set of \(F \) is \(\{ x_v \mid v \in V(T_w) \} \). For each vertex \(v \) on level \(i \), \(F \) has the clause \(x_w \rightarrow x_{f^*(v)} \). For each leaf vertex \(v \), \(F \) has the clause \(\neg x_v \lor \neg x_v \) if and only if \(f(v) = 0 \). In addition, \(F \) has the clause \(x_w \lor x_w \).

We now show that \((F, k)\) is an equivalent instance of \(\text{Min-Ones 2-SAT} \). Consider the leaf vertex \(z = (f^*)^k(r) \), i.e. the vertex reached by chasing pointers from the root of \(T \). If \((T, f)\) is a \textsf{YES}-instance, i.e. \(f(z) = 1 \), then \(F \) can be satisfied by setting \(k \) variables (corresponding to variables on the \(w-z \) path in \(T \)) to 1, i.e. \((F, k)\) is a \textsf{YES} instance. In the other case, i.e. \(f(z) = 0 \), \(F \) is unsatisfiable: \(F \) contains the clause \(x_w \lor x_w \), a chain of implications from \(w \) to \(z \), and the clause \(\neg x_z \lor \neg x_z \), which cannot be satisfied simultaneously. Thus, \((F, k)\) is a \textsf{NO} instance.

Observe that the implication \(x_v \rightarrow x_{f(v)} \) can be produced by simply reading off the value \(f(v) \). This is because in the stream, the values of \(f \) appear as in the (lexicographic) post-order traversal of \(T \), and knowing the value \(f(v) \) and the position of \(f(v) \) in the stream is enough to determine the \(f(v) \)th child of \(v \). Thus, the clauses can be produced on the fly while making a pass over the post order traversal of \(T \).

We now prove Theorem 4.1.

Proof. Let \(\text{ModSSolve} \) be a \(k \)-pass streaming algorithm for \(\text{Min-Ones 2-SAT} \) that uses space \(O(n, k) \) on inputs \((F, k)\) over \(n \) variables. Consider an algorithm that takes as input an instances \((T, f)\) of \(\text{POT Pointer Chasing} \) over trees with \(k + 1 \) levels, producing instances \((F, k)\) (over \(n = \Theta(k^{k-1}) \) variables) of \(\text{Min-Ones 2-SAT} \) on the fly as above, and feeding them as input to \(\text{ModSSolve} \). Because of Lemma 4.5, the output of \(A \) on \((F, k)\) correctly decides \((T, f)\).

The algorithm makes \(k \) passes over its input and the amount of space overall is \(O(g(n, k) + \log n) \). This value is \(\Omega(t/2^k) \), by Proposition 4.4. Since \(n = \Theta(t^k) \), we have \(g(n, k) + \log n = \Omega(n^{1/k}/2^k) \). Consider the case \(k \geq \sqrt{\log n} \). The expression \(n^{1/k}/2^k \) is \(o(1) \), so \(g(n, k) = \Omega(n^{1/k}/2^k) \) holds trivially. In the other case, i.e. \(k < \sqrt{\log n} \), we have \(g(n, k) = \Omega(\log n) \) by Lemma 4.3, so \(g(n, k) + \log n = O(g(n, k)) \), i.e. \(g(n, k) = \Omega(n^{1/k}/2^k) \).

Observe that the bound \(g(n, k) = \Omega(\log \frac{n}{2}) \) holds for any \(k \leq [n/2] \) (Lemma 4.3), and for \(k > [n/2] \), \(g(n, k) = \Omega(\log \frac{n}{2}) \) holds trivially. Therefore, we have \(g(n, k) = \Omega(\max\{n^{1/k}/2^k, \log \frac{n}{2}\}) \).

Suppose a streaming algorithm for \(\text{Min-Ones 2-SAT} \) uses space \(O(f(k)n^{1/k-\epsilon}) \) (\(\epsilon > 0 \), a constant) to decide instances \((F, k)\) over \(n \) variables. Observe that \(\lim_{n \to \infty} \frac{f(k)n^{1/k-\epsilon}}{n^{1/k}/2^k} = 0 \).
Parameterized Streaming Algorithms for Min-Ones d-SAT

for any function f. Thus, we have the following corollary.

Corollary 4.6. Let $\epsilon > 0$ be a number. Any streaming algorithm for Min-Ones 2-SAT that uses space $O(f(k)n^{1/k-\epsilon})$ must make at least $k + 1$ passes over its input.

The preceding corollary shows that the algorithm of Theorem 2.6, which makes $k + 1$ passes over (F, k), is the best possible inasmuch as the number of passes is concerned. We now exhibit two lower bounds on the space complexity of Min-Ones 2-SAT using Communication Complexity similar to those in Lemma 4.3, which apply to Min-Ones d-SAT even when $d = 1$.

Theorem 4.7. There are no 1-pass streaming algorithms for Min-Ones d-SAT ($d \geq 1$) that use space $f(k)g(n)$ ($f, g : \mathbb{N} \to \mathbb{N}$, computable functions; $g = o(n)$) on instances (F, k) with n variables.

Proof. Observe that any instance (a, b) of INDEX can be encoded as the formula $F = \left(\bigwedge_{a[i]=1} x_i \right) \land \neg x_b$. $(F, 1)$ is a NO instance if and only if $a[b] = 1$. Suppose there is a 1-pass algorithm for Min-Ones d-SAT that uses space $f(k)g(n)$ on n-variable inputs with parameter k. Alice runs the algorithm on $\bigwedge_{a[i]=1} x_i$ and passes the algorithm’s memory to Bob. Bob resumes executing the algorithm on the memory and feeds it the additional clause $\neg x_b$. Using the output of the algorithm, Bob can determine the value $a[b]$.

It is known that any deterministic 1-pass protocol for INDEX requires $\Omega(n)$ bits of communication (Kushilevitz and Nisan [26], Example 4.19). Because Alice passes the algorithm’s memory to Bob, the size of this memory must be $\Omega(n)$, i.e. $f(1)g(n) = \Omega(n)$. Thus, there are no 1-pass parameterized streaming algorithms for Min-Ones d-SAT ($d \geq 1$) that use space $O(f(k)g(n))$ with $g = o(n)$.

The above theorem shows that even in the case where every clause consists of exactly one literal, it is not possible to solve an instance of Min-Ones d-SAT in a single pass without using space $\Omega(n)$. Unlike Theorem 4.1, the next result holds in cases where p, the number of passes made by the algorithm, is a more general function of k.

Theorem 4.8. Any p-pass streaming algorithm for Min-Ones d-SAT ($d \geq 1$) requires space $\Omega(n/p)$.

Proof. The claim follows from the fact that instances of DISJ can be encoded as SAT formulas in which every clause comprises one literal. Consider the formula $F = \bigwedge(C_S \cup C_T)$, where $C_S = \{x_i \mid i \in S\}$ and $C_T = \{\neg x_i \mid i \in T\}$. $S \cap T = \emptyset$ if and only if F is satisfiable. By standard arguments from Communication Complexity, any p-pass streaming algorithm for Min-Ones 2-SAT must use space $\Omega(n/p)$.

5 Conclusion

In this work, we have proved a variety of results that together provide a complete picture of the parameterized streaming complexity of Min-Ones d-SAT. One of the main results is the streaming algorithm for Min-Ones d-SAT which solves instances (F, k) in $(k + 1)$ passes using space $O((kd^k + k^d)\log n)$. The matching $(k + 1)$-pass lower bound shows that in terms of the number of passes, this result is the best possible.

It is pertinent to note that such results, i.e. which show a sharp tradeoff between the space complexity of a parameterized streaming problem and the number of passes allowed, are quite scarce in the literature. It would be interesting to see which other parameterized streaming problems exhibit such behaviour.
References

Appendix

A A Brief Introduction to Parameterized Complexity

A parameterized problem Π is a subset of $\Gamma^* \times \mathbb{N}$, where Γ is a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a classical problem instance and k is an integer, which is called the parameter. The framework of parameterized complexity was originally introduced to deal with NP-hard problems, with the aim to limit the exponential growth in the running time expression to the parameter alone. A central notion in parameterized complexity is fixed-parameter tractability (FPT) which means, for a parameterized problem Π, there is an algorithm that given an instance (x, k), decides whether or not (x, k) is a YES instance of Π in time $f(k) \cdot p(|x|)$, where f is a computable function of k and p is a polynomial in the input size. Another central notion in parameterized complexity is kernelization, which mathematically captures the efficiency of a data preprocessing. A typical goal of a kernelization algorithm is to store only “small” amount of information, which is enough to recover the answer to the original instance. The “smallness” of the stored information is quantified by the input parameter. Formally, a kernelization algorithm or a kernel for a parameterized problem Π is given an input (x, k), and the goal is to obtain an equivalent instance (x', k') of Π in polynomial time, such that $|x'| + k' \leq g(k)$. Here, g is some computable function whose value only depends only on k, and depending on whether it is a linear, polynomial, or exponential function, the kernel is called a linear, polynomial, or...
Theorem 2.1

The algorithm Enum-d-HS is given in Algorithm 1. We start by proving the correctness of the algorithm by induction on k. When $k = 0$, then the algorithm correctly computes the set S_k (see Steps 1-6). Let us assume that the algorithm returns the correct output for all $k \leq t$, where $t \in \mathbb{N}$. We will now prove that the output of the algorithm is correct for $k = t + 1 \geq 1$. If there is no non-empty set in X, then the algorithm returns the correct output (Steps 1-2 and 5-6). Hereafter, we assume that Steps 1-6 are not executed (otherwise, we already have the correct output). Also, we have that $k \geq 1$ and there is a non-empty set $X = \{x_1, x_2, \ldots, x_d\} \in X$. Any d-hitting set must contain at least one element from X. By induction hypothesis, for each $i \in [d']$, we (correctly) compute the set S_i of all minimal d-hitting sets of size at most $k - 1$, for the instance $(X_i, U \setminus \{x_i\}, k - 1)$. Notice that each set $S \in S_i$ intersects each set in X_i and may not intersect X. Moreover, $S \cup \{x_i\}$ is a d-hitting set for (X, U, k). From the above discussion (together with the induction hypothesis), we obtain that $S_i^* = \{S \cup \{x_i\} \mid S \in S_i\}$ is a set containing all minimal d-hitting sets containing x_i for (X, U, k). Thus, $\bigcup_{i \in [d']} S_i^*$ is a set containing all minimal d-hitting sets for (X, U, k). Moreover, by construction we have that $S_k = \bigcup_{i \in [d']} S_i^*$ with non-minimal solutions removed, is the output returned by the algorithm at Step 17. This concludes the proof of correctness of the algorithm.

We now move to the running time analysis of the algorithm. Notice that the running time of the algorithm is $O\left(\sum_{i \in [d']} |S_i|\right)$, where $|S_i|$ is the size of the set S_i.
time of the algorithm is given by the recurrence: $T(k) = d \cdot T(k-1) + O(|U| + |X| + |S_k|)$. Also, the size of S_k is given by the recurrence $D(k) = d \cdot D(k-1)$, where $0 \leq D(0) \leq 1$. Thus, the running time of the algorithm is bounded by $O(d^k|I|)$ and $|S_k| \in O(d^k)$. Next, we move to the analysis of the space used by the algorithm. Notice that at any point of time, in the recursive procedure, memory is allocated for at most k copies of Enum-d-HS. Hence, the space required by the algorithm can be bounded by $O(k|I| + kd^k b_U)$.

Proof of Lemma 2.3

From Proposition 2.2, Pass 1 can compute $I_t = (X_t, U_t, k)$ after reading all the clauses from the stream using $O(k^d \log n)$ space, and using $O(k^d)$ time after reading a clause from the stream. Furthermore, $|X_t| \in O(k^d)$, and elements of U_t are represented using $\log n$ bits (by Proposition 2.2 and our assumption that variables of \mathcal{F} are x_1, x_2, \ldots, x_n). Now using Enum-d-HS of Proposition 2.1, the algorithm computes S_1 using space (in bits) bounded by $O((k^d + d^k) k \log n)$ and time bounded by $O(d^k k^d \log n)$.

Proof of Observation 2

Any minimal satisfying assignment $S \in \mathcal{S}$ is also a satisfying assignment for \mathcal{F}^+. From Observation 1 we know that S_1 is the set of all minimal satisfying assignments of size at most k for \mathcal{F}^+. Hence, it follows that there is $S' \in S_1$, such that $S' \subseteq S$.

B.1 $(O(d^k), O(k))$-streaming-FPT Algorithm for Min-Ones-d-SAT

In this section, we design an $(O(d^k), O(k))$-streaming-FPT algorithm for Min-Ones-d-SAT. The algorithm closely follows the standard $O(d^k)(n + m)^{O(1)}$ branching algorithm for Min-Ones-d-SAT, where n and m are the number of variables and clauses in the input instance.

Let (\mathcal{F}, k) be an instance of Min-Ones-d-SAT. By S, we denote the stream of clauses in \mathcal{F}. We give our $(O(d^k), O(k))$-streaming-FPT algorithm Stream-MOS, for Min-Ones-d-SAT algorithm in Algorithm 2. In the following, we describe various functions of the algorithm Stream-MOS. We note that each of the functions have access to the stream S and a global variable called pass-count.

1. The function FinishScan takes no input and returns no output (only updates pass-count). Its goal is only to read the stream till the end and update pass-count, which stores the number of passes we have made through S. When we enter this function, the pass number is updated. If we are already at the end of the stream S, then it exits without doing any other operation. Otherwise, it reads S till the end and exits. The purpose of defining this function (and maintaining pass-count) is to simplify the analysis of the algorithm.

2. The function TestSatisfiability takes as input a set S, and its objective is to determine whether or not S satisfies each clause of \mathcal{F}. A call to TestSatisfiability, makes a complete scan through S and we explicitly ensure that whenever it is called, we are at the beginning of the stream. Whenever we find a clause unsatisfied by S in the stream, the function calls FinishScan to complete the scanning through remaining clauses of S and update pass-count, and then it exits after returning 0. In the case when there is no clause which is not satisfied by S, it makes a call to FinishScan to update pass-count, and exits after returning 1.

3. The function FindBranchClause takes as input a set S. Its objective is to find a clause C which cannot be satisfied (by just) setting variables in S to 1. More precisely, it returns
Algorithm 2, Algorithm Stream-MOS.

Input: A stream of clauses S for an instance (\mathcal{F}, k) of MIN-ONES-d-SAT.

1. pass-count = 0;
2. Function FinishScan()
 3. pass-count = pass-count + 1;
 4. if at end of the stream S then
 5. return;
 6. while end of the stream S is not reached do
 7. Read the next clause in the stream;
 8. return;
3. Function TestSatisfiability(Set S)
 4. while end of the stream S is not reached do
 5. Read the next clause C in the stream;
 6. if C is not satisfied by S then
 7. FinishScan();
 8. return 0;
 9. FinishScan();
 10. return 1;
4. Function FindBranchClause(Set S)
 5. while end of the stream S is not reached do
 6. Read the next clause C in the stream, and let X and Y be the sets of variables in C appearing positively and negatively, respectively;
 7. if $Y \subseteq S$ and $S \cap X = \emptyset$ then
 8. FinishScan();
 9. return C;
 12. return \emptyset;
5. Function DetectSolution(Set S)
 13. if $S > k$ then
 14. return 0;
 15. if TestSatisfiability(S) = 1 then
 16. return 1;
 17. $C = $ FindBranchClause(S);
 18. if $C \neq \emptyset$ then
 19. if $|S| = k$ then
 20. return 0;
 21. Let $X = \{x_1, x_2, \ldots, x_{d'}\}$ (where $d' \leq d$) be the set of variables appearing positively in C;
 22. $ans = 0$;
 23. for $i = 1$ to d' do
 24. $ans = ans \lor $ DetectSolution($S \cup \{x_i\}$);
 25. return ans;
 28. return 0;
 30. return \emptyset;
6. Function MainMOS()
 31. res = DetectSolution(\emptyset);
 32. return res;
a clause C (if it exists) which satisfies two conditions (to be stated, shortly). Let X and Y be the sets of variables which appear positively and negatively in C, respectively. It must hold that $Y \subseteq S$ and $X \cap S = \emptyset$. Notice that for a satisfying assignment S' for \mathcal{F}, such that $S \subseteq S'$, it must hold that $S' \cap X \neq \emptyset$. Moreover, as $S \cap X = \emptyset$, S' must contain at least one more vertex (from X), which is not present in S. We will later see how we use C to progress our branching procedure. To find C, FindBranchClause makes a complete scan through S. If it finds a clause C with the desired properties, it makes a call to FinishScan to complete the scan through S and update pass-count, and then it exits after returning C. If a clause with the desired properties is not found even when we reach the end of the stream S, it makes a call to FinishScan to update pass-count, and then exits after returning \bot (indicating that a clause with the desired property could not be found).

4. The function DetectSolution takes as input a set S, and its objective is to determine whether or not there is a solution for (\mathcal{F}, k) which sets each variable in S to 1. This function is defined because our algorithm is a recursive procedure, and as the algorithm progresses, we maintain a set of variables that have already been set to 1. We note that at any point of time we allocate memory only for one such set, and whenever we make calls to other functions, we send the memory location, instead of a separate copy of the set itself. At some steps we call other functions with a modified set (with an element added to S), in this case also we send the memory address after appending the new element (in the front). The above can be achieved by using appropriate memory pointers. Next, we describe the working of DetectSolution. If $|S| > k$, then it (correctly) return 0, indicating that there is no satisfying assignment of size at most k containing S. Hereafter, we assume that $|S| \leq k$. Now the function checks if S is a satisfying assignment for \mathcal{F}, by making a call to $\text{TestSatisfiability}$ with (memory location of) S as the argument. If $\text{TestSatisfiability}(S)$ returns 1, then the function exits after (correctly) returning 1. Otherwise, it makes a call to FindBranchClause with (memory location of) S as the argument, and stores the output of it in C. Next, it considers the case when $C \neq \bot$. Let X and Y be the sets of variables appearing positively and negatively in C, respectively. By the properties of the clauses returned by FindBranchClause, we know that $X \cap S = \emptyset$ and $Y \subseteq S$. Thus, for any satisfying assignment S' for \mathcal{F} with $S \subseteq S'$, $S' \cap X \neq \emptyset$ must hold. As $X \cap S = \emptyset$, S' must contain at least one vertex from X and this vertex does not belong to S. If $|S| = k$, then there cannot be a satisfying assignment of size at most k containing S, as otherwise, it will not satisfy C. Thus, in the above case, the function correctly returns 0, and exits. Next, the function deals with the case when $|S| < k$. For any $x \in X$, it checks if there is a satisfying assignment for \mathcal{F} of size at most k containing $S \cup \{x\}$. This is done by making a recursive call to DetectSolution with (the memory location of) $S \cup \{x\}$ as the argument. If for any $x \in X$, $\text{DetectSolution}(S \cup \{x\})$ returns 1, then the function exits after (correctly) returning 1. If for no $x \in X$, $\text{DetectSolution}(S \cup \{x\})$ returns 1, then the function exits after (correctly) returning 0. If none of the above statements could be used to return an answer, then the algorithm returns 0 and exits.

5. The function MainMOS is the main function of the algorithm, where the algorithm begins its execution. The objective of MainMOS is to return 1 if (\mathcal{F}, k) is a yes-instance of $\text{MIN-ONES-}d\text{-SAT}$ and return 0, otherwise. Thus, we have only statement, namely, $\text{DetectSolution}(\emptyset)$ in this function. The correctness of this function follows from the correctness of DetectSolution.

Next, we state a lemma regarding Stream-MOS, which will be used to establish the main theorem of this section.
Lemma B.1. Stream-MOS correctly resolves an instance Min-Ones-d-SAT (presented as a stream S, of clauses). Moreover, it uses space bounded by $O(k \log n)$ and makes at most $O(d^k)$ passes over S.

Proof. The correctness of Stream-MOS is immediate from the correctness of each of its functions (which is apparent from their respective descriptions). We now bound the space used by the algorithm and the number of passes it makes over S. The space bounds follows from the facts that at any point of the time, we have at most $O(k)$ active instances of DetectSolution and whenever we pass a set as an argument to a function, its memory is passed, rather than a copy of the set itself. To bound the number of passes that the algorithm makes over S, it is enough to bound pass-count. Recall that pass-count is updated only when TestSatisfiability or FindBranchClause is called by DetectSolution. In the above, the pass-count is updated by TestSatisfiability or FindBranchClause by making a call to FinishScan, which increments pass-count exactly by 1. Observe that the total number of (recursive) calls to TestSatisfiability or FindBranchClause, made by DetectSolution is bounded by $O(d^k)$. Thus, pass-count is bounded by $O(d^k)$. This concludes the proof. ▶

The proof of Theorem 2.7 follows from Lemma B.1.

C Streaming FPT Algorithm for Bounded IP

In this section, we consider a restricted integer programming problem called Bounded IP (to be defined, shortly). We show how to convert an instance of the Bounded IP problem to an instance of Min-Ones-2-SAT under parameterized streaming constraints, using the approach of Hochbaum et al. [21]. This allows us to use the algorithms for Min-Ones-2-SAT to solve Bounded IP. We consider integer programs on n variables and m constraints that have the following form.

Minimize: $\sum_{j=1}^{n} w_j x_j$,

subject to: $a_i x_{p_i} + b_i x_{q_i} \geq c_i$ \hspace{1cm} (i \in [m], p_i, q_i \in [n]),

$0 \leq x_j \leq u_j$ \hspace{1cm} (j \in [n]),

x_j integer \hspace{1cm} (j \in [n]),

where the coefficients appearing in the constraints are integers and for $j \in [n]$, $w_j \in \mathbb{N}$.

Such integer programs (hereafter called bounded-IPs) were considered by Hochbaum et al. [21], and they showed that by applying a transformation to the variables of the program, the problem of finding a feasible solution becomes equivalent to 2-SAT. We consider the following problem.

Bounded IP

Input: A bounded-IP \mathcal{P}, where we want to minimize $\sum_{j=1}^{n} w_j x_j$, subject to $a_i x_{p_i} + b_i x_{q_i} \geq c_i$, for $i \in [m]$ and $0 \leq x_j \leq u_j$, for $j \in [n]$, and an integer $k \in \mathbb{N}$.

Question: Is there a feasible solution for \mathcal{P}, such that $\sum_{j=1}^{n} w_j x_j \leq k$?

Let (\mathcal{P}, k) be an instance of bounded-IP, where \mathcal{P} is provided as a stream of w_i, for $i \in [n]$, followed by the constraints. As a constraint arrives, we show how we create 2-CNF clauses for it. This will give us an instance of (\mathcal{F}, k), such that (\mathcal{P}, k) is a yes-instance of Bounded IP if and only if (\mathcal{F}, k) is a yes-instance of Min-Ones-2-SAT. We note that both the construction...
and the equivalence of the instances follows from [21], therefore, we only briefly explain the construction of \mathcal{F}.

We use the approach described in Section 4 of [21] to construct \mathcal{F}. Consider the variable constraint $0 \leq x_p \leq u_p$, for $p \in [n]$. By replacing x_p with u_p binary variables $x_{p,l}$ ($l \in [u_p]$) and introducing the constraints $x_{p,l} \geq x_{p,l+1}$ ($l \in [u_p-1]$), we obtain an injective correspondence between x_p and $(x_{p,1}, \ldots, x_{p,u_p})$: $x_p = \sum_{l=1}^{u_p} x_{p,l}$. To model these constraints, we add the clause $(x_{p,l} \lor \neg x_{p,l+1})$ to \mathcal{F}, for each $l \in [u_p-1]$.

Let $a_i x_p + b_i x_q \geq c_i$ be a constraint. We only state the case where $a_p, b_q > 0$ (for more details, see [21]). For $i \in [m]$ and $l \in \{0, \ldots, u_p\}$, let $\alpha_{i,l} = [(c_i - l a_i)/b_i] - 1$. The constraint can be expressed by adding the clauses to \mathcal{F} as follows.

- $(x_{p,l+1} \lor x_{q,\alpha_{i,l}+1})$, for every $l \in \{0, \ldots, u_p - 1\}$ with $0 \leq \alpha_{i,l} < u_q$.
- $x_{p,l+1}$, for every $l \in \{0, \ldots, u_p - 1\}$ with $\alpha_{k,l} \geq u_q$.
- $x_{q,\alpha_{i,l}}$ for $l = u_p$ with $\alpha_{k,u_p} \geq 0$.

Next, we state how weights (and the function to be minimized) are encoded. Note that the weights appearing in the objective function are nonnegative integers. Let x_p be a variable with $w_p > 1$. To express the effect of setting x_p to 1 on the objective function, we introduce $w_p - 1$ additional variables $y_{p,1}, \ldots, y_{p,w_p-1}$ and the clauses $(\neg x_p \lor y_{p,j})$ to \mathcal{F}, for all $j \in [w_p-1]$.

Producing the clauses as a stream. Under the reasonable assumption that the clauses of \mathcal{P} can each be stored in working memory, i.e. in $O(f(k) \log n)$ bits of space, and by the construction of \mathcal{F}, it is easy to see that as a constraint of \mathcal{P} arrives, we can construct the corresponding clauses for that constraint in space bounded by $O(g(k) \log n)$. The above discussions together with the algorithms of Section 2 and B.1, implies the proof of Theorem 2.8.