On the Parameterized Complexity of Red-Blue Points Separation

Édouard Bonnet, Panos Giannopoulos, and Michael Lampis

Middlesex University, London

September 6, 2017, IPEC, Vienna
Red-Blue Separation

Given a set \mathcal{R} of red points and \mathcal{B} of blue points...
Red-Blue Separation

...find at most k lines making each cell monochromatic.
A few words on the problem

- motivated by machine learning applications
- natural geometric separation problem
- NP-hard [Meggido ’88]
- APX-hard for the variant with axis-parallel lines...
- ...with an LP-based 2-approximation [Calinescu et al. ’05]
- we will forbid the selected lines to contain any input point
Discretization of the problem

There is an easy \((4n^2)^k = n^{O(k)}\)-time algorithm
Discretization of the problem

There is an easy \((4n^2)^k = n^{O(k)}\)-time algorithm
Discretization of the problem

There is an easy \((4n^2)^k = n^{O(k)}\)-time algorithm
Discretization of the problem

There is an easy $(4n^2)^k = n^{O(k)}$-time algorithm

$O(n)$ for $k = 1$ and $O(n \log n)$ for $k = 2$ [Hurtado et al. ’04].
Parameterized complexity?

A line arrangement created by k lines has $O(k^2)$ cells. YES-instances are well-structured: decomposable into $f(k) = O(k^2)$ convex monochromatic regions.
Parameterized complexity?

A line arrangement created by k lines has $O(k^2)$ cells. YES-instances are well-structured: decomposable into $f(k) = O(k^2)$ convex monochromatic regions.

Maybe FPT algorithm based on a kernel...
Parameterized complexity?

A line arrangement created by k lines has $O(k^2)$ cells. YES-instances are well-structured: decomposable into $f(k) = O(k^2)$ convex monochromatic regions.

Maybe FPT algorithm based on a kernel...
Our main result

Red-Blue Separation cannot be solved in time $f(k)n^{o(k/\log k)}$ unless the ETH fails.

It almost matches the brute-force $n^{O(k)}$:
Red-Blue Separation is not part of those geometric problems solvable in $n^{O(\sqrt{k})}$.
Intermediate problems worth knowing

...to design parameterized lower bounds of geometric problems

- Grid Tiling [Marx '05] → no $f(k)n^{o(\sqrt{k})}$ for several geometric packing and covering problems
- Many classical optimisation problems on multiple-interval graphs [Jiang '10, Jiang and Zhang '12]: typically $W[1]$-hardness on (unit) 2-track interval and (unit) 2-interval graphs
Intermediate problems worth knowing

...to design parameterized lower bounds of geometric problems

- Grid Tiling [Marx ’05] → no $f(k)n^{o(\sqrt{k})}$ for several geometric packing and covering problems
- Many classical optimisation problems on multiple-interval graphs [Jiang ’10, Jiang and Zhang ’12]: typically $W[1]$-hardness on (unit) 2-track interval and (unit) 2-interval graphs

The latter can potentially give $f(k)n^{o(k/\log k)}$-lower bounds (and confirm the absence of square-root phenomenon)
Structured 2-Track Hitting Set

2-elements: \(\forall i \in [t], \forall j \in [k] \) \((a_i^j, b_i^j)\)
Total orderings of the \(a\)-elements and the \(b\)-elements
Sets: \(A\)-intervals and \(B\)-intervals
\textbf{Goal:} Find \(k\) 2-elements that hits all the sets
Structured 2-Track Hitting Set

Theorem (B. & Miltzow, ESA’16)

Unless the ETH fails, Structured 2-Track Hitting Set cannot be solved in time $f(k)n^{o(k/\log k)}$.
Deconstructing Structured 2-Track Hitting Set

To reduce from this problem, we need to encode:

- **intervals**; usually easy
- the **interclass permutation** σ (on k elements)
- **intraclasses permutations** σ_j (on $t \gg k$ elements); trickier
Deconstructing Structured 2-Track Hitting Set

To reduce from this problem, we need to encode:

- **intervals**; usually easy
- the **interclass permutation** σ (on k elements)
- **intra classes permutations** σ_j (on $t \gg k$ elements); trickier

Why such an intermediate problem is convenient?

The non geometricity is pushed to **mere permutations**; easier to simulate than arbitrary binary relations (reduction from a graph problem) or arbitrary ternary relations (reduction from a 3-CSP)
Enforcing near axis-parallelism with long alleys
Enforcing near axis-parallelism with long alleys
How we will in fact use them
Encoding of an interval

\[a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9 \]
Encoding of an interval
Encoding of an interval and choice propagation

only solutions with a budget of 2 almost axis-parallel lines
Intervals put together to form the whole track
Intervals put together to form the whole track

budget of k horizontal and k vertical lines
Encoding the interclass permutation σ

5
4
3
2
1

3 1 4 5 2
Encoding the interclass permutation σ
Encoding the interclass permutation σ
Half-encoding the intraclass permutation σ_j

12345678 73285164
Half-encoding the intraclass permutation σ_j

A budget of one line forces a line with the correct slope
Half-encoding the intraclass permutation σ_j

A budget of one line forces a line with the correct slope or higher
Simple fix: use two half-encodings; the second track

Gray areas correspond to possible lines; the only way to make the two lines meet at the diagonal is to take the boundary lines
The full picture
An FPT algorithm for the Axis-Parallel case1

Axis-Parallel Red-Blue Separation can be solved in $O^*(9^{|B|})$.

1with a larger parameter
The number of blue points \(k := |B| \) is small
Imagine the $2k$ axis-parallel lines crossing them
Guess in time $3^{2(k+1)}$ how many lines of a solution each of the $k + 1$ rows and the $k + 1$ columns contain: it can be 0, 1, or 2
The problematic case is with 1: the lines are only *floating*.
Each of the potential conflict can be expressed as a 2-clause: VerticalLine3RightOfp or HorizontalLine1Belowp
Consistency can be ensured with 2-clauses

VerticalLine_i_RightOf p' \rightarrow VerticalLine_i_RightOf p

HorizontalLine_j_Below p \rightarrow HorizontalLine_j_Below p'
Consistency can be ensured with 2-clauses

VerticalLine\textsubscript{i}RightOfp' → VerticalLine\textsubscript{i}RightOfp
HorizontalLine\textsubscript{j}Belowp → HorizontalLine\textsubscript{j}Belowp'

For each of the $3^{2(k+1)}$ guesses, conclude by solving a 2-SAT instance in linear time.
Open questions

The algorithm breaks with a third direction, or a third dimension, or with the natural parameter

- Is Axis-Parallel Red-Blue Separation FPT parameterized by k the number of lines?
- Is Red-Blue Separation with a fixed number of allowed slopes FPT in $|B|$? in k?
- What happens in higher dimensions?

Best candidate to be FPT: Red-Blue Separation with 3 allowed slopes and parameterized by $|B|$.