Twin-width and ordered binary structures

Édouard Bonnet

ENS Lyon, LIP

December 9th, 2021, AIGCo seminar, LIRMM
Trigraphs

Three outcomes between a pair of vertices: edge, or non-edge, or red edge (error edge)
Contractions in trigraphs

Identification of two non-necessarily adjacent vertices
Contractions in trigraphs

Identification of two non-necessarily adjacent vertices
Contractions in trigraphs

edges to $N(u) \triangle N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing
Contraction sequence

A contraction sequence of G:
Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that
G_i is obtained by performing one contraction in G_{i+1}.
A contraction sequence of G:
Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1}.
A contraction sequence of G:
Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1}.
A contraction sequence of G:

Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1}.
A contraction sequence of G:
Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1}.
A contraction sequence of G:
Sequence of trigraphs $G = G_n, G_{n-1}, \ldots, G_2, G_1$ such that G_i is obtained by performing one contraction in G_{i+1}.
Contraction sequence

A contraction sequence of \(G \):
Sequence of trigraphs \(G = G_n, G_{n-1}, \ldots, G_2, G_1 \) such that
\(G_i \) is obtained by performing one contraction in \(G_{i+1} \).
Twin-width

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree $= 0$

overall maximum red degree $= 0$
tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

Maximum red degree = 2
overall maximum red degree = 2
Twin-width

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have \textit{maximum red degree} at most d.

Maximum red degree $= 2$
 overall maximum red degree $= 2$
Twin-width

tww(\(G\)): Least integer \(d\) such that \(G\) admits a contraction sequence where all trigraphs have \textit{maximum red degree} at most \(d\).

Maximum red degree = 2
overall maximum red degree = 2
Twin-width

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have maximum red degree at most d.

![Diagram]

Maximum red degree = 1
overall maximum red degree = 2
Twin-width

tww(G): Least integer d such that G admits a contraction sequence where all trigraphs have \textit{maximum red degree} at most d.

Maximum red degree = 1

\textit{overall maximum red degree} = 2
Twin-width

tww(\(G\)): Least integer \(d\) such that \(G\) admits a contraction sequence where all trigraphs have \textit{maximum red degree} at most \(d\).

Maximum red degree = 0
overall maximum red degree = 2
Simple operations preserving small twin-width

- complementation: remains the same
- taking induced subgraphs: may only decrease
- adding one apex: at most “doubles”
- substitution $G(v \leftarrow H)$: max of the twin-width of G and H
Theorem (B., Geniet, Kim, Thomassé, Watrigant ’20 & ’21)

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time:

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size,
- unit interval graphs,
- K_t-minor free graphs,
- map graphs with embedding,
- d-dimensional grids,
- K_t-free unit d-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the n-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from K_4,
- flat classes,
- subgraphs of every $K_{t,t}$-free class above,
- first-order transductions of all the above.
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \forall y \ (E(x, y) \Rightarrow \bigvee_{1 \leq i \leq k} x = x_i \lor y = x_i)$$

$G \models \varphi \iff k$-Vertex Cover
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \quad \bigwedge_{\{x,y\} \in \{x_1,y_1,\ldots,x_k,y_k\}} \ x \neq y$$

$$\quad \bigwedge E(x, y) \iff \bigvee_{1 \leq i \leq k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

$G \models \varphi$? \iff
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists y_1 \cdots \exists x_k \exists y_k \bigwedge_{\{x,y\} \in \{\{x_1,y_1,\ldots,x_k,y_k\}\}} \ x \neq y$$

$$\land E(x,y) \iff \bigvee_{1 \leq i \leq k} (x = x_i \land y = y_i) \lor (x = y_i \land y = x_i)$$

$G \models \varphi \iff \text{k-Induced Matching}$
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Example:

$$\varphi = \bigvee_{1 \leq q \leq k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \neg E(x_1, x_2) \lor$$

$$(\exists x_3 \notin \{s, x_1, x_2\} \ E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \ldots, x_{q-1}\} E(x_{q-1}, x_q)$$

$$\land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \ldots, x_q\}))) \cdots)))$$

$G \models \varphi \iff$
First-order model checking on graphs

Graph FO Model Checking

Parameter: $|\varphi|$

Input: A graph G and a first-order sentence $\varphi \in FO(\{E\})$

Question: $G \models \varphi$?

Example:

$$\varphi = \bigvee_{1 \leq q \leq k, \ q \text{ is odd}} \exists x_1 \notin \{s\} \ E(s, x_1) \land (\forall x_2 \notin \{s, x_1\} \neg E(x_1, x_2) \lor$$

$$(\exists x_3 \notin \{s, x_1, x_2\} \ E(x_2, x_3) \land (\forall x_4 \cdots (\exists x_q \notin \{s, x_1, \ldots, x_{q-1}\} E(x_{q-1}, x_q)$$

$$\land (\forall x_{q+1} \neg E(x_q, x_{q+1}) \lor x_{q+1} \in \{s, x_1, \ldots, x_q\})) \cdots)))$$

$G \models \varphi? \iff \text{Short Generalized Geography}$
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

φ(x, y) = ¬E(x, y)
φ(x, y) = E(x, y) ∨ ∃zE(x, z) ∧ E(z, y)

Theorem (B., Kim, Thomassé, Watrigant ’20)

Transductions of bounded twin-width classes have bounded twin-width.
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
\[\varphi(x, y) = \neg E(x, y) \] (complement)
\[\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by \(O(1) \) unary relations, interpret, delete

\[\text{Theorem (B., Kim, Thomassé, Watrigant '20)} \]
Transductions of bounded twin-width classes have bounded twin-width.
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula
\[\varphi(x, y) = \neg E(x, y) \] (complement)
\[\varphi(x, y) = E(x, y) \vee \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by \(O(1) \) unary relations, interpret, delete

![Diagram of FO transduction]
FO simple interpretation: redefine the edges by a first-order formula

\[\varphi(x, y) = \neg E(x, y) \] (complement)

\[\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by \(O(1) \) unary relations, interpret, delete

\[\varphi(x, y) = E(x, y) \lor \left(G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z) \right) \]
\[\lor \left(R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z) \right) \]
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

\[\varphi(x, y) = \neg E(x, y) \] (complement)

\[\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by \(O(1) \) unary relations, interpret, delete

\[\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z)) \]
\[\lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z)) \]
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

\[\varphi(x, y) = \neg E(x, y) \] (complement)

\[\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by \(O(1) \) unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)

Transductions of bounded twin-width classes have bounded twin-width.
FO interpretations and transductions

FO simple interpretation: redefine the edges by a first-order formula

\[\varphi(x, y) = \neg E(x, y) \] (complement)

\[\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

FO transduction: color by $O(1)$ unary relations, interpret, delete

Theorem (B., Kim, Thomassé, Watrigant '20)

Transductions of bounded twin-width classes have bounded twin-width.
Dependence and monadic dependence

A class \mathcal{C} is **dependent**, if the hereditary closure of every simple interpretation of \mathcal{C} misses some graph.

Monadically dependent, if every transduction of \mathcal{C} misses some graph [Baldwin, Shelah '85]

Theorem (Downey, Fellows, Taylor '96)

FO model checking is AW*-complete on general graphs, thus unlikely FPT on independent classes.

Could it be that on every dependent class, it is FPT?
Dependence and monadic dependence

A class \mathcal{C} is **dependent**, if the hereditary closure of every simple interpretation of \mathcal{C} misses some graph

monadically dependent, if every transduction of \mathcal{C} misses some graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)

FO model checking is AW[]-complete on general graphs*, thus unlikely FPT on independent classes

Could it be that on every dependent class, it is FPT?
Classes with known tractable FO model checking

Theorem (B., Kim, Thomassé, Watrigant ’20)

FO Model Checking solvable in $f(|\varphi|, d)n$ on graphs with a d-sequence.
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)

Bounded twin-width classes are small.

Unifies and extends the same result for:

- σ-free permutations [Marcus, Tardos ’04]
- K_t-minor free graphs [Norine, Seymour, Thomas, Wollan ’06]
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)

Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have unbounded twin-width
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture)
A hereditary class has bounded twin-width if and only if it is small.
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)

Bounded twin-width classes are small.

Is the converse true for hereditary classes?

Conjecture (small conjecture, refuted: B., Geniet, Tessera, Thomassé ’21+)*

A hereditary class has bounded twin-width if and only if it is small.
Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?
Recap of the main questions

- Can we efficiently approximate twin-width?
- Can we solve FO model checking on every dependent class?
- Is every hereditary small class of bounded twin-width?

We answer all these questions positively in the case of ordered binary structures ≡ matrices on a finite alphabet.
Twin-width for unordered matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
\]

Encode a bipartite graph (or, if symmetric, a graph)
Twin-width for unordered matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

Contraction of two columns (similar with two rows)
Twin-width for unordered matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & r & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & r & 0 & 1 & 1 & 0 \\
1 & 0 & r & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

The red degree is now the max number of \(r \) per row/column
Twin-width for unordered matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & \textcolor{red}{r} & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & \textcolor{red}{r} & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & \textcolor{red}{r} & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
\]

In the non-bipartite case, we force symmetric pairs of contractions
Twin-width for matrices

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{pmatrix}
\]

That was *not* the twin-width of *ordered* matrices
Twin-width for matrices

Let’s also record the columns disagreeing with the contraction.
Twin-width for matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

\[
\max_{\text{row, column}} \ (\text{number of red entries} + \text{red degree})
\]
Twin-width for matrices

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{bmatrix}
\]

If you find it too clumsy, encode the linear order
Twin-width for matrices

\[
\begin{bmatrix}
3 & 3 & 3 & 3 & 3 & 3 & 3 & 1 \\
2 & 3 & 3 & 2 & 2 & 0 & 1 \\
2 & 2 & 2 & 2 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 1 & 1 & 0 \\
3 & 2 & 0 & 1 & 1 & 1 & 0 \\
2 & 1 & 1 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{bmatrix}
\]

and we’re back to the unordered definition
Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are *consecutive*

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\]

Maximum number of non-constant zones per column or row part = error value
Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are \textit{consecutive}

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Maximum number of non-constant zones per column or row part
\[=\text{error value}\]
Partition viewpoint

Matrix partition: partitions of the row set and of the column set

Matrix division: same but all the parts are *consecutive*

![Matrix](image)

Maximum number of non-constant zones per column or row part

... until there are a single row part and column part
Partition viewpoint

Matrix partition: partitions of the row set and of the column set
Matrix division: same but all the parts are *consecutive*

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

Twin-width as maximum error value of a contraction sequence
Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{ R^{(1)}, <^{(2)}, E^{(2)} \}$
($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for $[0, t]$-matrices)
Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{ R(1), <(2), E(2) \}$
($E(2)$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for $[0, t]$-matrices)

- $M \models R(x)$ iff x is a row index
- $M \models x < y$ iff x is a smaller index than y
- $M \models E(x, y)$ iff $M_{x,y} = 1$
Matrix FO model checking

Signature for 0,1-matrices $\sigma = \{ R^{(1)}, <^{(2)}, E^{(2)} \}$
($E^{(2)}$ becomes $E_1^{(2)}, \ldots, E_t^{(2)}$ for $[0, t]$-matrices)

- $M \models R(x)$ iff x is a row index
- $M \models x < y$ iff x is a smaller index than y
- $M \models E(x, y)$ iff $M_{x,y} = 1$

tractable class: FO model checking solvable in time $f(\phi)|M|^{O(1)}$
Growth of classes

Our matrix classes are closed under taking submatrices

- Small class: \#n \times n matrices is 2^{O(n)}
- Subfactorial: ultimately, \#n \times n matrices < n!

No non-trivial automorphism in totally ordered structures, so no need for labels
Equivalences in the matrix language

Theorem
For every matrix class \mathcal{M}, the following are equivalent.

(i) \mathcal{M} has bounded twin-width.

(ii) \mathcal{M} has bounded grid rank. (division property)

(iii) \mathcal{M} is pattern-avoiding.
 (not including any of 6 “permutation-universal” classes)

(iv) \mathcal{M} is dependent.

(v) \mathcal{M} is monadically dependent.

(vi) \mathcal{M} has subfactorial growth.

(vii) \mathcal{M} is small.

(viii) \mathcal{M} is tractable. (only if $\text{FPT} \neq \text{AW}[\ast]$.)

(ix) \mathcal{M} has no large rich division. (division property)
Roadmap

(i) bounded twin-width

(ix) no large rich division

(ii) bounded grid rank

[vi] subfactorial growth

(iii) pattern-avoiding

(vii) small

(iv) independent

(viii) intractable

(i) bounded twin-width

(viii) tractable

(iv) dependent

(v) monadically dependent

Tww I

Tww II

Tww I

if FPT \neq AW[*]
Roadmap

(i) unbounded twin-width

(ii) unbounded grid rank

(iii) “permutation-universal”

(iv) independent

(v) monadically dependent

(vi) factorial growth

(vii) small

(viii) intractable

(ix) large rich division

T ww I if FPT \neq AW[*]
Theorem
Let \mathcal{C} be a hereditary class of ordered graphs. The following are equivalent.

(1) \mathcal{C} has bounded twin-width.
(2) \mathcal{C} is monadically dependent.
(3) \mathcal{C} is dependent.
(4) \mathcal{C} is small.
(5) \mathcal{C} contains $2^{O(n)}$ ordered n-vertex graphs.
(6) \mathcal{C} contains less than $\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} k!$ ordered n-vertex graphs, for some n.
(7) \mathcal{C} does not include one of 25 hereditary ordered graph classes with unbounded twin-width.
(8) FO-model checking is fixed-parameter tractable on \mathcal{C}.

Equivalences in the ordered graph language
\textit{k-Rich division}

Division
k-Rich division

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Division such that for each, say, column part C
Division such that for each, say, column part \(C \) no removal of \(k \) row parts
k-Rich division

Division such that for each, say, column part C no removal of k row parts leaves C with less than k distinct column vectors.
Fix an $2k(k + 1)$-rich division D, and assume there is a k-sequence S
Large rich division \Rightarrow unbounded twin-width

Consider the first time a part of S intersects 3 parts of D
Large rich division \Rightarrow unbounded twin-width

There are at most k other column parts intersecting C'_b (red degree of C_j)
Large rich division \Rightarrow unbounded twin-width

Each such part C_z is non-vertical in at most $2k$ zones of \mathcal{D}
Large rich division \Rightarrow unbounded twin-width

Thus removing $2k(k + 1)$ row parts of $D \rightarrow \leq k + 1$ distinct columns
No large rich division \Rightarrow bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I
No large rich division \Rightarrow bounded twin-width

Build greedily a division where every part contradicts the richness

- can only be stopped by a large rich division
- turned into a contraction sequence as in Tww I

\Rightarrow approximation of twin-width for ordered binary structures

Theorem

There is a fixed-parameter algorithm, which, given an ordered binary structure G and a parameter k, either outputs

- a $2^{O(k^4)}$-sequence of G, implying that $\text{tww}(G) = 2^{O(k^4)}$, or
- a $2k(k+1)$-rich division of $M(G)$, implying that $\text{tww}(G) > k$.
Roadmap

$T_{ww} I$ if $\text{FPT} \not= \text{AW}[*]$

(i) unbounded twin-width

(ii) unbounded grid rank

(iii) “permutation-universal”

(iv) independent

(vi) factorial growth

(ix) large rich division

(viii) intractable
k-rank division

<table>
<thead>
<tr>
<th>rank $\geq k$</th>
<th>rank $\geq k$</th>
<th>rank $\geq k$</th>
<th>rank $\geq k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
</tr>
<tr>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
</tr>
<tr>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
</tr>
<tr>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
<td>rank $\geq k$</td>
</tr>
</tbody>
</table>

k-by-k division where every cell has rank at least k
Grid rank of $M = $ largest k such that M admits a k-rank division
Large rich division \Rightarrow unbounded grid rank

Fix a large rich division \mathcal{D}
Large rich division \Rightarrow unbounded grid rank

Red zones = large rank; Blue zones = first of its column to contain a particular row vector
Large rich division \Rightarrow unbounded grid rank

Marcus-Tardos theorem applied to the colored zones \rightarrow division D'
Large rich division \Rightarrow unbounded grid rank

Coarser division \mathcal{D}'', 1 zone of $\mathcal{D}'' \equiv 2^k \times 2^k$ zones of \mathcal{D}'
Large rich division \Rightarrow unbounded grid rank

A zone of D'' containing a red zone has large rank
Large rich division \Rightarrow unbounded grid rank

Other zones have diagonals of blue zones
Large rich division \Rightarrow unbounded grid rank

2^k distinct row vectors in each zone of D''
Large rank division \Rightarrow large rank Latin division

Latin rank division: high-rank zones are boxed (red) in a universal permutation pattern,
Large rank division \Rightarrow large rank Latin division

...they are the usual suspects: diagonal, anti-diagonal, upper triangular, upper anti-triangular, and their *complements*
Large rank division \Rightarrow large rank Latin division

...while every other subzones are constant.
Large rank division \Rightarrow large rank Latin division

Reversible encoding of \[\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] by a 6×6 matrix
Large rank division \Rightarrow large rank Latin division

Injection from \mathcal{S}_n to \mathcal{M}_{2n} \rightarrow $|\mathcal{M}_n| \geq \lfloor \frac{n}{2} \rfloor !$
Roadmap

(i) unbounded twin-width

(ix) large rich division

(ii) unbounded grid rank

(vi) factorial growth

(iii) “permutation-universal”

(iv) independent

(viii) intractable

Tww I

if FPT \(\not=\) AW[\(*]\)
Further extractions in the rank Latin division

Submatrix agreeing on 1 of 16 patterns for the constant zones

\(\eta : \{-1, 1\}^2 \cup \{(0, 0)\} \rightarrow \{0, 1\} \) with \(\eta(0, 0) = 1 - \eta(1, 1) \)
Large rank Latin division \Rightarrow permutation-universal

An example of a pattern with $\eta(x, y) = 0$ iff $x = y = 1$
Large rank Latin division \Rightarrow permutation-universal

Another example
Large rank Latin division \Rightarrow permutation-universal

Now injection from \mathfrak{S}_n to \mathcal{M}_n, so $|\mathcal{M}_n| \geq n!$
Only 6 minimal permutation-universal classes
Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)

Every hereditary class of ordered graphs have growth $2^{O(n)}$
or at least $n^{n/2+o(n)}$.

Solved:

- Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- Unbounded twin-width: $\geq n!$ ordered (n, n)-bipartite graphs
Growth gap of hereditary ordered graph class

Conjecture (Balogh, Bollobás, Morris)

Every hereditary class of ordered graphs have growth $2^{O(n)}$

or at least $\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} k! = n^{n/2+o(n)}$

Solved:

- Bounded twin-width: growth is $2^{O(n)}$ (Tww II)
- Unbounded twin-width: $\geq n!$ ordered (n, n)-bipartite graphs

A bit more work to get the fine-grained bound
Roadmap

(i) bounded twin-width
(ii) bounded grid rank
(iii) pattern-avoiding
(iv) dependent
(v) monadically dependent
(vi) subfactorial growth
(vii) small
(viii) tractable
(ix) no large rich division

Tww I

if FPT \neq AW[*]
Roadmap

(ix) no large rich division

(ii) bounded grid rank

(vi) subfactorial growth

(iii) pattern-avoiding

(vii) small

(iv) dependent

(iii) tractable

(v) monadically dependent

(i) bounded twin-width

Tww I def

if FPT \neq AW[*]

Thank you for your attention!