Fine-Grained Complexity in P

Édouard Bonnet

LIP, ENS Lyon

October 2nd, 2018, GT CoA, Paris
Reductions

Two interpretations

Positive: we can solve Π in \(t(n) + f(r(n)) \) with \(f \) is the time for \(Π' \)

Negative: \(Π' \) cannot be solved in \(f(n) \) since we know/assume that Π is not solvable in \(t(n) + f(r(n)) \)
Reductions

Two interpretations

Positive: we can solve Π in $t(n) + f(r(n))$ with f is the time for Π'

Negative: Π' cannot be solved in $f(n)$ since we know/assume that Π is not solvable in $t(n) + f(r(n))$
Reductions and fine-grained complexity

Complexity with the classes \(\text{TIME}(f(n)) \) and reference problems

Two interpretations

Positive: we can solve \(\Pi \) in \(t(n) + f(r(n)) \) with \(f \) is the time for \(\Pi' \)

Negative: \(\Pi' \) cannot be solved in \(f(n) \)
since we know/assume that \(\Pi \) is not solvable in \(t(n) + f(r(n)) \)
The three main hypotheses

Strong Exponential Time Hypothesis (SETH): \(\forall \varepsilon > 0, \exists \ k \ \text{s.t.} \ \ k\text{-SAT} \ \text{is not in time} \ 2^{(1-\varepsilon)n} \).
The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0$, $\exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.
The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0, \exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that $x + y + z = 0$ in a list of n integers of $[-n^4, n^4]$ is not in time $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$.

All-Pairs Shortest-Path (APSP) Hypothesis: $\exists c$, APSP with edge weights in $[-n^c, n^c]$ is not solvable in time $O(n^{3-\varepsilon})$ for $\varepsilon > 0$.

The three main hypotheses

Strong Exponential Time Hypothesis (SETH): $\forall \varepsilon > 0$, $\exists k$ s.t. k-SAT is not in time $2^{(1-\varepsilon)n}$ by a classical (randomized) algorithm.

3-SUM Hypothesis: Finding x, y, z such that $x + y + z = 0$ in a list of n integers of $[-n^4, n^4]$ is not in time $O(n^{2-\varepsilon})$ for any $\varepsilon > 0$.

All-Pairs Shortest-Path (APSP) Hypothesis: $\exists c$, APSP with edge weights in $[-n^c, n^c]$ is not solvable in time $O(n^{3-\varepsilon})$ for $\varepsilon > 0$.
The three main hypotheses

SETH: \(\text{SAT} \) is not solvable in \(1.99^n \).

- \(k\text{-SAT} \) is solvable in \(2^{\left(1-\Theta\left(\frac{1}{k}\right)\right)n} \)
- \(\text{SAT} \) is solvable \(2^{\left(1-\Theta\left(\frac{1}{\log m/n}\right)\right)n} \)

3-SUM Hypothesis: 3-SUM is not solvable in \(n^{1.99} \)

- Solvable in \(n^2 \frac{\log \log n}{\log^2 n}^{O(1)} \) even with real inputs
- Linear decision tree with depth \(O(n \log^2 n) \)

APSP Hypothesis: APSP is not solvable in \(n^{2.99} \)

- Solvable in cubic time by Floyd-Warshall algorithm
- Improved to \(n^3/2^{O(\sqrt{\log n})} \)
In 1999, Impagliazzo and Paturi introduce ETH\(^1\) and mention a stronger version of it in their conclusion

\[
\text{SETH} \implies \text{ETH} \implies P \neq NP
\]

- ETH and SETH are then mainly used for NP-hard problems

\(^1\exists \delta > 0, 3\text{-SAT cannot be solved in } 2^{\delta n}\)
SETH

In 1999, Impagliazzo and Paturi introduce ETH\(^1\) and mention a stronger version of it in their conclusion

\[\text{SETH} \Rightarrow \text{ETH} \Rightarrow P \neq NP \]

- ETH and SETH are then mainly used for NP-hard problems
- In 2005, SETH is used for the first time for a problem in P

Orthogonal Vectors,
In 1999, Impagliazzo and Paturi introduce ETH\(^1\) and mention a stronger version of it in their conclusion

\[
\text{SETH} \Rightarrow \text{ETH} \Rightarrow P \neq NP
\]

- ETH and SETH are then mainly used for NP-hard problems
- In 2005, SETH is used for the first time for a problem in P
- 2014-\(^\), dozens of papers show SETH-hardness of problems in P

Orthogonal Vectors, Diameter, Fréchet Distance, Edit Distance, Longest Common Subsequence, Furthest Pair, dynamic problems, problems from Machine Learning, Model Checking, Language Theory etc.

\(^1\exists \delta > 0, 3\text{-Sat cannot be solved in } 2^{\delta n}\)
Psychological barrier?

If we treat k-$\text{SAT} \rightarrow \text{OV}$ as an outlier, why 15 years between defining SETH and using it in P?
Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one

B: If you know less (summing and composing functions)

\[
\text{problem SAT} \quad \text{instance } \phi \\
\text{size } n \\
\text{reduction time } \leq 1.99^n \\
\text{problem OV} \quad \text{instance } \forall \\
\text{size } r(n) = 2^{n/2}
\]
Psychological barrier?

A: If you know too much (P, NP, NP-completeness), you might disregard a reduction from a hard problem to an easy one.

B: If you know less (summing and composing functions)

<table>
<thead>
<tr>
<th>Problem (SAT)</th>
<th>Reduction time (\leq 1.99^n)</th>
<th>Problem (OV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instance (\phi)</td>
<td>size (n)</td>
<td>instance (\mathcal{V})</td>
</tr>
</tbody>
</table>

B: ”Both the time and the blow-up can be exponential, great.”
SAT → ORTHOGONAL VECTORS

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{n/2}, x_{n/2}+1, x_{n/2}+2, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B
SAT \rightarrow ORTHOGONAL VECTORS

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment
- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

$$
\begin{array}{cccccccc}
R & B & C_1 & C_2 & C_3 & C_4 & C_5 & C_6 & C_7 & C_8 \\
A_1 & 1 & 0 & & & & & & & \\
A_2 & & & & & & & & & \\
A_3 & & & & & & & & & \\
A_4 & & & & & & & & & \\
B_1 & & & & & & & & & \\
B_2 & & & & & & & & & \\
B_3 & & & & & & & & & \\
B_4 & & & & & & & & & \\
\end{array}
$$

A_1 assigns red variables
Sat → Orthogonal Vectors

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n$

Find an assignment
- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td></td>
</tr>
<tr>
<td>B_4</td>
<td></td>
</tr>
</tbody>
</table>

A_1 does not satisfy C_1
SAT \rightarrow Orthogonal Vectors

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td></td>
</tr>
<tr>
<td>B_4</td>
<td></td>
</tr>
</tbody>
</table>

A_1 satisfies C_2
SAT → ORTHOGONAL VECTORS

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{n/2}, x_{n/2+1}, x_{n/2+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>A_4</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>B_1</td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td></td>
</tr>
<tr>
<td>B_3</td>
<td></td>
</tr>
<tr>
<td>B_4</td>
<td></td>
</tr>
</tbody>
</table>

first vector $(1, 0, 1, 0, 0, 1, 1, 0, 1, 0)$
SAT \rightarrow ORTHOGONAL VECTORS

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Sat → Orthogonal Vectors

arbitrary equipartition of X: $x_1, x_2, \ldots, x_{\frac{n}{2}}, x_{\frac{n}{2}+1}, x_{\frac{n}{2}+2}, \ldots, x_n$

Find an assignment

- A of the red variables and
- B of the blue variables

such that all the clauses are satisfied by A or by B

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>B</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>A_3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>A_4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B_4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Consequence for OV under the SETH

From a SAT-instance on n variables and m clauses, we created $N := 2^{\frac{n}{2} + 1}$ vectors in dimension $d := m + 2$
Consequence for OV under the SETH

From a SAT-instance on n variables and m clauses, we created $N := 2^{\frac{n}{2} + 1}$ vectors in dimension $d := m + 2$

An algorithm solving OV in time $2^{o(d)} N^{2 - \varepsilon}$ would solve SAT in $2^{o(m)} 2^n(1 - \varepsilon/2) \rightarrow$ breaking SETH

Sharp contrast with the simple algorithms in $O(N^2d)$ and $O(2^d N)$
Diameter

\[\text{diam}(G) = \text{largest distance between a pair of vertices of } G \]

\[\begin{array}{ccc} \text{longest}_{u,v} \text{ shortestPath}(u, v) \end{array} \]

- In weighted graphs, nothing known better than APSP
- In unweighted graphs, solvable in \(\tilde{O}(n^\omega) \)
- In unweighted sparse \((m = \Theta(n))\) graphs, solvable in \(O(n^2)\)
- \(\frac{3}{2}\)-approximable in \(\tilde{O}(m^{1.5})\)
- In sparse graphs, \(\frac{3}{2}\)-approximable in \(\tilde{O}(n^{1.5})\)
Diameter

$diam(G) =$ largest distance between a pair of vertices of G

$\text{longest}_{u,v} \text{ shortestPath}(u, v) ?$

- In weighted graphs, nothing known better than APSP
- In unweighted graphs, solvable in $\tilde{O}(n^\omega)$
- **In unweighted sparse graphs**, solvable in $O(n^2)$
- $\frac{3}{2}$-approximable in $\tilde{O}(m^{1.5})$
- **In sparse graphs**, $\frac{3}{2}$-approximable in $\tilde{O}(n^{1.5})$

Linear reduction from **Orthogonal Vectors**:

no $n^{1.99}$ algorithm even to $(\frac{3}{2} - \varepsilon)$-approximate Diameter on unweighted sparse instances, assuming the SETH.
So far, all the pairs but of $A \times B$ are at distance ≤ 2.

Orthogonal Vectors → Diameter
Orthogonal Vectors \rightarrow Diameter

We put an edge between vector v and index i iff $v[i] = 1$.
Orthogonal Vectors → Diameter

A pair \((a_4, b_2)\) is at distance 2 ⇔ \(\langle a_4, b_2 \rangle \neq 0\)
Orthogonal Vectors → Diameter

$diam(G) = 3 \iff \exists (a_i, b_j) \text{ at distance 3} \iff \text{orthogonal pair}$
Orthogonal Vectors \rightarrow Diameter

If no orthogonal pair, $\text{diam}(G) = 2$
3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems
3-SUM Hardness

Introduced in 1995 by Gajentaan and Overmars to explain why some geometric problems require quadratic time

- are there three aligned points?
- are there three lines meeting at a point? (same by duality)
- is there a hole in a union of triangles?
- computing the area of a union of triangles
- is a rectangle covered by a set of infinite strips?
- Line separator of a non-intersecting axis-parallel segments?
- motion planning problems
- visibility problems

the quadratic algorithm is not easy
3-SUM \rightarrow 3 COLLINEAR POINTS

Each integer x is mapped to the point (x, x^3)
3-SUM \rightarrow 3 Collinear Points

Each integer x is mapped to the point (x, x^3)

If a, b, c are pairwise distinct

$$a + b + c = 0 \iff (a, a^3), (b, b^3), (c, c^3) \text{ are aligned}$$
Convenient 3-points-on-a-line 3-SUM-hard variant

\[B \quad \bullet \]

\[-C/2 \quad \bullet \]

\[A \quad \bullet \]
Convenient 3-points-on-a-line 3-SUM-hard variant

\[
\begin{align*}
B & \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
-C/2 & \quad \cdots \quad \cdots \quad \cdots \quad \cdots \\
A & \quad \cdots \quad \cdots \quad \cdots \quad \cdots
\end{align*}
\]
Convenient 3-points-on-a-line 3-SUM-hard variant

Points become tiny holes between horizontal segments
Convenient 3-points-on-a-line 3-SUM-hard variant

Points become tiny holes between horizontal segments
SEGMENTS SEPARATION → COVERED RECTANGLE

Rotation + Duality! Points ↔ Lines & Vertical Segments ↔ Strips
Segments Separation \rightarrow Covered Rectangle

Rotation + Duality! Points \leftrightarrow Lines & Vertical Segments \leftrightarrow Strips

Point not on any strip \Leftrightarrow Line separating the segments
APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- $(\min, +)$ matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph
APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010.

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- \((min, +)\) matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems:

Let us recall that unweighted APSP can be solved in n^ω.
APSP Hardness

This hypothesis has emerged more recently, introduced by Ryan Williams and Virginia Vassilevska Williams in 2010

APSP is in time $n^{3-\varepsilon}$ iff so is one of:

- finding a triangle with negative weight
- finding the radius of a weighted graph
- does a given matrix represent a metric?
- finding a shortest cycle in a graph with non-negative weights
- $(\text{min}, +)$ matrix multiplication
- computing the Wiener index of a weighted graph
- betweenness centrality of a vertex in a weighted graph

The hypothesis of weighted problems

Let us recall that unweighted APSP can be solved in n^ω

Tree Edit Distance in truly subcubic time is APSP-hard.
APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

One can show that APSP and APNT are equivalent
APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

\[B \quad A \quad C \]

Arbitrary partitions into \(t = \frac{n}{3}\) groups of size \(\frac{n}{t} = \frac{n}{3}\).

Diagram:

- **A**: The set of vertices labeled as \(A\).
- **B**: The set of vertices labeled as \(B\).
- **C**: The set of vertices labeled as \(C\).
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Arbitrary partitions into \(t = n^{2/3}\) groups of size \(n/t = n^{1/3}\)
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

For each triple of classes, call **Negative Triangle**
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Write down that the pair \(bc\) is satisfied by \(a\) and remove \(bc\)
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Write down that the pair \(bc\) is satisfied by \(a\) and remove \(bc\).
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Continue with the same triple of classes while possible
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Report if all the pairs of \(B \times C\) were satisfied
APNT → Negative Triangle: a Turing reduction

All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair \(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Number of calls to **Negative Triangle**: \(\leq n^2 + t^3 = O(n^2)\)
All-Pairs Negative Triangle (APNT):
Given a tripartite graph on \((A, B, C)\), is there, for every pair
\(b \in B, c \in C\), a vertex \(a \in A\) such that \(abc\) is a negative triangle?

Size of the subinstances: \(3n/t = O(n^{1/3})\)
Are they pairwise incomparable?
Are they pairwise incomparable?

Can we only use SETH by designing fine-grained reductions

- from k-SAT to 3-SUM
- from k-SAT to APSP?
Non-deterministic Strong Exponential Time Hypothesis

\[k \text{-Taut} : \text{Are all the assignments of a } k \text{-DNF formula satisfying?} \]

\[\text{NSETH: } \forall \varepsilon > 0, \exists k, k \text{-Taut is not in NTIME}(2^{(1 - \varepsilon)n}) \].

\(\Rightarrow\) NSETH would imply non-trivial circuit lower bounds
\(\Rightarrow\) NSETH is false if randomization is allowed
Non-deterministic Strong Exponential Time Hypothesis

\(k\text{-TAUT} \): Are all the assignments of a \(k\)-DNF formula satisfying?

\text{NSETH}: \(\forall \varepsilon > 0, \exists k, \ k\text{-TAUT} \text{ is not in } \text{NTIME}(2^{(1-\varepsilon)n}) \).
Non-deterministic Strong Exponential Time Hypothesis

k-**Taut**: Are all the assignments of a k-DNF formula satisfying?

NSETH: $\forall \varepsilon > 0$, $\exists k$, k-**Taut** is not in $\text{NTIME}(2^{(1-\varepsilon)n})$.

- \negNSETH would imply non-trivial circuit lower bounds
Non-deterministic Strong Exponential Time Hypothesis

\(k\text{-}TAUT \): Are all the assignments of a \(k\)-DNF formula satisfying?

\(\text{NSETH}: \forall \varepsilon > 0, \exists k, k\text{-}TAUT \) is not in \(\text{NTIME}(2^{(1-\varepsilon)n}) \).

- \(\neg \text{NSETH} \) would imply non-trivial circuit lower bounds
- \(\text{NSETH} \) is false if randomization is allowed
3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME($\tilde{O}(n^{1.5})$)
3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME(\(\tilde{O}(n^{1.5})\))

Certificate for non-existence of a triple summing to 0:

- a prime \(p\) among the first \(n^{1.5}\) primes \(\mathbb{P}_{n^{1.5}}\),
- an integer \(t = \tilde{O}(n^{1.5})\), and
- a set \(S\) of \(t\) triples all summing to 0 modulo \(p\) but not to 0
3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in coNTIME(\(\tilde{O}(n^{1.5})\))

Certificate for non-existence of a triple summing to 0:

- a prime \(p\) among the first \(n^{1.5}\) primes \(\mathbb{P}_{n^{1.5}}\),
- an integer \(t = \tilde{O}(n^{1.5})\), and
- a set \(S\) of \(t\) triples all summing to 0 modulo \(p\) but not to 0

Why does such a certificate exist?

\[
|\{(a_i, a_j, a_k, p) \mid a_i + a_j + a_k = 0 \mod p\}| \leq n^3 \log(3n^c) = \tilde{O}(n^3)
\]

\[
\exists p \in \mathbb{P}_{n^{1.5}}, \ |\{(a_i, a_j, a_k) \mid x + y + z = 0 \mod p\}| = \tilde{O}(n^{1.5})
\]
3-SUM in truly subquadratic co-nondeterministic time

3-SUM is in \(\text{coNTIME}(\tilde{O}(n^{1.5})) \)

Certificate for non-existence of a triple summing to 0:
- a prime \(p \) among the first \(n^{1.5} \) primes \(\mathbb{P}_{n^{1.5}} \),
- an integer \(t = \tilde{O}(n^{1.5}) \), and
- a set \(S \) of \(t \) triples all summing to 0 modulo \(p \) but not to 0

Given \((p, t, S) \), we check that:
- all triples of \(S \) sum to a non-zero value multiple of \(p \)
- expand \((\sum_{i} x^{a_i} \mod p)^3 \) with FFT
- check that the coefficients of \(x^0, x^p, x^{2p} \) sum to \(t \)
Consequences for the unification

3-SUM is in coNTIME($\tilde{O}(n^{1.5})$)

APSP is in coNTIME($\tilde{O}(n^{2+\frac{6+\omega}{9}})$)

No known implication, the dashed ones are ruled out under NSETH
Consequences for the unification

3-SUM is in coNTIME($\tilde{O}(n^{1.5})$)

APSP is in coNTIME($\tilde{O}(n^{2+6+\omega \over 9})$)

A fine-grained **deterministic** reduction from \(k\)-\textit{SAT} to either of these problems would break NSETH

No known implication, the dashed ones are ruled out under NSETH
Things I did not mention

Log shavings and friends

- **Reductions from Circuit Sat** to consolidate a lower bound
- **2 hypotheses implying** SETH, 3-SUMH, and APSPH!
Things I did not mention

Log shavings and friends

- **Reductions from Circuit Sat** to consolidate a lower bound
- **2 hypotheses implying** SETH, 3-SUMH, and APSPH!
- **FPT in P:** typically algorithms in $k^c n$ or $2^k n$ to circumvent a quadratic/cubic lower bound
- **Distributed PCPs:** hardness of approximation in P
Things I did not mention

Log shavings and friends

- **Reductions from Circuit Sat** to consolidate a lower bound
- **2 hypotheses** implying SETH, 3-SUMH, and APSPH!
- **FPT in P**: typically algorithms in $k^c n$ or $2^k n$ to circumvent a quadratic/cubic lower bound
- **Distributed PCPs**: hardness of approximation in P

Thanks for your attention!