Twin-width

Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant

ENS Lyon, LIP

Frontiers of Parameterized Complexity seminar,
October 1st 2020
Cograph generalization attempt

Iteratively identify near twins
Cograph generalization attempt

Iteratively identify **near** twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify *near* twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify **near** twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify **near** twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify \textbf{near} twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify near twins

This complicated graph passes the test
Cograph generalization attempt

Iteratively identify **near** twins

This complicated graph passes the test
Cograph generalization

Iteratively identify **near twins** and **keep the error degree small**

It would not with that further restriction
Contraction and trigraph

Trigraph: non-edges, edges, and red edges (error)
Contraction and trigraph

edges to $N(u) \Delta N(v)$ turn red, for $N(u) \cap N(v)$ red is absorbing
Contraction sequence and twin-width

Maximum red degree = 0
overall maximum red degree = 0
Contraction sequence and twin-width

Maximum red degree = 2
overall maximum red degree = 2
Contraction sequence and twin-width

Maximum red degree $= 2$
overall maximum red degree $= 2$
Contraction sequence and twin-width

Maximum red degree $= 2$
overall maximum red degree $= 2$
Contraction sequence and twin-width

Maximum red degree $= 1$
overall maximum red degree $= 2$
Contraction sequence and twin-width

Maximum red degree = 1
overall maximum red degree = 2
Contraction sequence and twin-width

Maximum red degree = 0
overall maximum red degree = 2
Contraction sequence and twin-width

Sequence of 2-contractions or 2-sequence, twin-width at most 2

Maximum red degree = 0
overall maximum red degree = 2
Graphs with bounded twin-width – trees

If possible, contract two twin leaves
Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent
Graphs with bounded twin-width – trees

If not, contract a deepest leaf with its parent
Graphs with bounded twin-width – trees

If possible, contract two twin leaves
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Cannot create a red degree-3 vertex
Graphs with bounded twin-width – trees

Generalization to bounded treewidth and even bounded rank-width
Graphs with bounded twin-width – grids

4-sequence for planar grids, 3d-sequence for d-dimensional grids
Graphs with bounded twin-width – planar graphs?
Graphs with bounded twin-width – planar graphs?

For every $d$, a planar trigraph without planar $d$-contraction
Graphs with bounded twin-width – planar graphs?

For every $d$, a planar trigraph without planar $d$-contraction

More powerful tool needed
The origin: **Permutation Pattern**

\[ \sigma \rightarrow ? \rightarrow \tau \]
The origin: **Permutation Pattern**

\[ \sigma \rightarrow \tau \]

**Theorem (Guillemot, Marx '14)**

Permutation Pattern can be solved in time \(2^{\frac{1}{2}|\sigma|} \cdot 2^{\frac{1}{2}|\tau|}\).
The origin: **Permutation Pattern**

\[ \sigma \rightarrow \tau \]

**Theorem (Guillemot, Marx '14)**

*Permutation Pattern* *can be solved in time* \(2^{|\sigma|^2}|\tau|\).
Guillemot and Marx’s win-win algorithm

**Theorem (Marcus, Tardos ’04)**

\[ \forall t, \exists c_t \forall n \times n 0,1\text{-matrix with } \geq c_t n \text{ entries } 1 \text{ has a } t\text{-grid minor}. \]

\[
\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]

4-grid minor
Guillemot and Marx’s win-win algorithm

**Theorem (Marcus, Tardos ’04)**

\[ \forall t, \exists c_t \ \forall n \times n \ 0,1\text{-matrix with } \geq c_t n \text{ entries } 1 \text{ has a } t\text{-grid minor.} \]

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{bmatrix}
\]

4-grid minor

A) \[ \geq c_{|\sigma|} n \text{ entries } 1 \rightarrow \text{YES from the } |\sigma|\text{-grid minor.} \]

B) \[ < c_{|\sigma|} n \text{ entries } 1 \rightarrow \text{merge of two “similar” rectangles} \]
Guillemot and Marx’s win-win algorithm

**Theorem (Marcus, Tardos ’04)**

\( \forall t, \exists c_t \ \forall n \times n \ 0,1\text{-matrix with} \ \geq c_t n \ \text{entries} \ 1 \ \text{has a} \ t\text{-grid minor.} \)

\[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
\hline
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\]

4-grid minor

A) \( \geq c_{|\sigma|} n \) entries 1 \( \rightarrow \) YES from the \( |\sigma|\)-grid minor.

B) \( < c_{|\sigma|} n \) entries 1 \( \rightarrow \) merge of two “similar” rectangles

If B) always happens \( \rightarrow \) DP on this merge sequence
Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1
\end{bmatrix}
\]

3-mixed minor
Our generalization to the dense case – mixed minor

Mixed zone: not horizontal nor vertical

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
\end{bmatrix}
\]

3-mixed minor

A matrix is said **$t$-mixed free** if it does not have a $t$-mixed minor.
Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)
If $\exists \sigma$ s.t. $\text{Adj}_\sigma(G)$ is $t$-mixed free, then $\text{tww}(G) = 2^{2^{O(t)}}$. 

Now to bound the twin-width of a class $C$:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a $t$-mixed minor would conflict with $C$
Cutting after the $t/2$-th division of the $t$-mixed minor.
Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)

If $\exists \sigma$ s.t. $\text{Adj}_\sigma(G)$ is $t$-mixed free, then $\text{tww}(G) = 2^{O(t)}$.

Now to bound the twin-width of a class $\mathcal{C}$:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a $t$-mixed minor would conflict with $\mathcal{C}$
Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)

If \( \exists \sigma \) s.t. \( \text{Adj}_\sigma(G) \) is \( t \)-mixed free, then \( \text{tww}(G) = 2^{O(t)} \).

Now to bound the twin-width of a class \( \mathcal{C} \):
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a \( t \)-mixed minor would conflict with \( \mathcal{C} \)

Cutting after the \( t/2 \)-th division of the \( t \)-mixed minor
Grid minor theorem for twin-width

Theorem (B, Kim, Thomassé, Watrigant 20)

If $\exists \sigma$ s.t. $\text{Adj}_{\sigma}(G)$ is $t$-mixed free, then $\text{tww}(G) = 2^{O(t)}$.

Now to bound the twin-width of a class $\mathcal{C}$:
1) Find a good vertex-ordering procedure
2) Argue that, in this order, a $t$-mixed minor would conflict with $\mathcal{C}$

\[
\begin{align*}
\sigma & \quad \text{Adj}_{\sigma}(G) \\
\sigma & \quad t/2\text{-mixed minor on disjoint sets}
\end{align*}
\]
Bounded twin-width – unit interval graphs

Warm-up with unit interval graphs: order by left endpoints
No 3-by-3 grid has all 9 cells crossed by two non-decreasing curves
Bounded twin-width – posets of bounded antichain

$T_1 \quad T_2 \quad T_3 \quad \ldots \quad T_k$

Put the $k$ chains in order one after the other
Bounded twin-width – posets of bounded antichain

A 3k-mixed minor implies a 3-mixed minor between two chains
Bounded twin-width – posets of bounded antichain

Transitivity implies that a zone is constant
Bounded twin-width – posets of bounded antichain

And symmetrically
Bounded twin-width – $K_t$-minor free graphs

Given a hamiltonian path, we would just use this order
Bounded twin-width – $K_t$-minor free graphs

Contracting the $2t$ subpaths yields a $K_{t,t}$-minor, hence a $K_t$-minor
Bounded twin-width – $K_t$-minor free graphs

Instead we use a specially crafted lex-DFS discovery order
Theorem

The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time.

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- $K_t$-minor free graphs,
- map graphs,
- subgraphs of $d$-dimensional grids,
- $K_t$-free unit $d$-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the $n$-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from $K_4$,
- strong products of two bounded twin-width classes, one with bounded degree, etc.
Theorem
The following classes have bounded twin-width, and $O(1)$-sequences can be computed in polynomial time:

- Bounded rank-width, and even, boolean-width graphs,
- every hereditary proper subclass of permutation graphs,
- posets of bounded antichain size (seen as digraphs),
- unit interval graphs,
- $K_t$-minor free graphs,
- map graphs,
- subgraphs of $d$-dimensional grids,
- $K_t$-free unit $d$-dimensional ball graphs,
- $\Omega(\log n)$-subdivisions of all the $n$-vertex graphs,
- cubic expanders defined by iterative random 2-lifts from $K_4$,
- strong products of two bounded twin-width classes, one with bounded degree, etc.

Can we solve problems faster, given an $O(1)$-sequence?
Example of \textbf{k-Independent Set}

\textit{d-sequence}: \( G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1 \)

\textbf{Algorithm}: \textbf{Compute by dynamic programming a best partial solution in each red connected subgraph of size at most} \( k \).
Example of $k$-Independent Set

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most $k$.**

d$^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)}n$
Example of $k$-Independent Set

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: **Compute by dynamic programming a best partial solution in each red connected subgraph of size at most $k$.**

$d^{2k}n^2$ red connected subgraphs, actually only $d^{2k}n = 2^{O_d(k)n}$

In $G_n$: red connected subgraphs are singletons, so are the solutions.
In $G_1$: If solution of size at least $k$, global solution.
Example of $k$-Independent Set

d-sequence: $G = G_n, G_{n-1}, \ldots, G_2, G_1 = K_1$

Algorithm: Compute by dynamic programming a best partial solution in each red connected subgraph of size at most $k$.

$d^{2k} n^2$ red connected subgraphs, actually only $d^{2k} n = 2^{O_d(k)} n$

In $G_n$: red connected subgraphs are singletons, so are the solutions.
In $G_1$: If solution of size at least $k$, global solution.

How to go from the partial solutions of $G_{i+1}$ to those of $G_i$?
Best partial solution inhabiting $u$, or $v$, or both
3 unions of \( \leq d + 2 \) red connected subgraphs to consider in \( G_{i+1} \) with \( u \), or \( v \), or both
Other (almost) single-exponential parameterized algorithms

**Theorem**

*Given a d-sequence \( G = G_n, \ldots, G_1 = K_1 \),

- \( k \)-Independent Set,
- \( k \)-Clique,
- \((r, k)\)-Scattered Set,
- \( k \)-Dominating Set, and
- \((r, k)\)-Dominating Set*

*can be solved in time \( 2^{O_d(k)} n \),

whereas **Subgraph Isomorphism** and **Induced Subgraph Isomorphism** *can be solved in time \( 2^{O_d(k \log k)} n \).*
Other (almost) single-exponential parameterized algorithms

**Theorem**
*Given a d-sequence $G = G_n, \ldots, G_1 = K_1$,*
- $k$-Independent Set,
- $k$-Clique,
- $(r, k)$-Scattered Set,
- $k$-Dominating Set, and
- $(r, k)$-Dominating Set
*can be solved in time* $2^{O_d(k)} n$, 
*whereas Subgraph Isomorphism and Induced Subgraph Isomorphism can be solved in time* $2^{O_d(k \log k)} n$.

A more general FPT algorithm?
First-order model checking on graphs

**Graph FO Model Checking**

**Parameter:** $|\varphi|$

**Input:** A graph $G$ and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$

**Question:** $G \models \varphi$?
First-order model checking on graphs

**Graph FO Model Checking**

**Input:** A graph $G$ and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$

**Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee_{1 \leq i \leq k} x = x_i \lor \bigvee_{1 \leq i \leq k} E(x, x_i) \lor E(x_i, x)$$

$G \models \varphi$? $\iff$
First-order model checking on graphs

**Graph FO Model Checking**

**Parameter:** $|\varphi|$

**Input:** A graph $G$ and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$

**Question:** $G \models \varphi$?

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \forall x \bigvee \ x = x_i \lor \bigvee \ E(x, x_i) \lor E(x_i, x)$$

$1 \leq i \leq k \quad 1 \leq i \leq k$

$G \models \varphi \iff k$-Dominating Set
First-order model checking on graphs

**Graph FO Model Checking**

**Input:** A graph $G$ and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$

**Question:** $G \models \varphi$?

**Parameter:** $|\varphi|$

Example:

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$G \models \varphi$? $\iff$
First-order model checking on graphs

**Graph FO Model Checking**

**Input:** A graph $G$ and a first-order sentence $\varphi \in FO(\{E_2, =_2\})$

**Question:** $G \models \varphi$?

**Example:**

$$\varphi = \exists x_1 \exists x_2 \cdots \exists x_k \bigwedge_{1 \leq i < j \leq k} \neg (x_i = x_j) \land \neg E(x_i, x_j) \land \neg E(x_j, x_i)$$

$G \models \varphi ? \iff k$-Independent Set
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula

\[ \varphi(x, y) = \neg E(x, y) \] (complement)

\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula
\[ \varphi(x, y) = \neg E(x, y) \] (complement)
\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

**FO transduction:** color by \( O(1) \) unary relations, interpret, delete

\[ \begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 4 & 5 & 6 \\
0 & 7 & 8 & 9 \\
0 & 10 & 11 & 12 \\
\end{array} \]

Theorem (B, Kim, Thomassé, Watrigant '20)
Bounded twin-width is preserved by transduction.
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula

\[
\varphi(x, y) = \neg E(x, y) \quad \text{(complement)}
\]

\[
\varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \quad \text{(square)}
\]

**FO transduction:** color by \(O(1)\) unary relations, interpret, delete

\[
\varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z)) \lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z))
\]

Theorem (B, Kim, Thomassé, Watrigant '20)

Bounded twin-width is preserved by transduction.
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula
\[ \varphi(x, y) = \neg E(x, y) \quad \text{(complement)} \]
\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \quad \text{(square)} \]

**FO transduction:** color by \( O(1) \) unary relations, interpret, delete

\[ \varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z)) \]
\[ \lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z)) \]
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula

\[ \varphi(x, y) = \neg E(x, y) \]  
(complement)

\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \]  
(square)

**FO transduction:** color by \( O(1) \) unary relations, interpret, delete

\[ \varphi(x, y) = E(x, y) \lor (G(x) \land B(y) \land \neg \exists z R(z) \land E(y, z)) \]
\[ \lor (R(x) \land B(y) \land \exists z R(z) \land E(y, z) \land \neg \exists z B(z) \land E(y, z)) \]
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula
\[ \varphi(x, y) = \neg E(x, y) \] (complement)
\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \] (square)

**FO transduction:** color by \(O(1)\) unary relations, interpret, delete
FO interpretations and transductions

**FO interpretation:** redefine the edges by a first-order formula

\[ \varphi(x, y) = \neg E(x, y) \]  
(complement)

\[ \varphi(x, y) = E(x, y) \lor \exists z E(x, z) \land E(z, y) \]  
(square)

**FO transduction:** color by \( O(1) \) unary relations, interpret, delete

---

**Theorem (B, Kim, Thomassé, Watrigant '20)**

_Bounded twin-width is preserved by transduction._
Monadically Stable and NIP

**Stable class:** no transduction of the class contains all ladders

**NIP class:** no transduction of the class contains all graphs

![Diagram of a ladder graph](image)
Monadically Stable and NIP

**Stable class:** no transduction of the class contains all ladders

**NIP class:** no transduction of the class contains all graphs

![Diagram of a ladder graph](attachment:diagram.png)

Bounded-degree graphs $\rightarrow$ stable
Unit interval graphs $\rightarrow$ NIP but not stable
Interval graphs $\rightarrow$ not NIP (triple negation!)
Monadically Stable and NIP

**Stable class:** no transduction of the class contains all ladders

**NIP class:** no transduction of the class contains all graphs

Bounded-degree graphs $\rightarrow$ stable

Unit interval graphs $\rightarrow$ NIP but not stable

Interval graphs $\rightarrow$ not NIP (triple negation!)

**Bounded twin-width classes** $\rightarrow$ NIP but not stable in general
Classes with known tractable FO model checking

NIP \ stable

bounded rank-width

cographs
dense classes

bounded

posets of bounded width

$L$-interval

unit interval

pattern avoiding permutations

nowhere dense

bounded expansion

polynomial expansion

proper minor-closed

map graphs

planar

bounded degree

“sparse” classes

stable
Classes with known tractable FO model checking

FO Model Checking solvable in $f(|\varphi|)n$ on bounded-degree graphs [Seese ’96]
Classes with known tractable FO model checking

\[ \text{FO Model Checking solvable in } f(|\varphi|)n^{1+\varepsilon} \text{ on any nowhere dense class} \]

[Grohe, Kreutzer, Siebertz ’14]
Classes with known tractable FO model checking

End of the story for the subgraph-closed classes

tractable FO Model Checking ⇔ nowhere dense ⇔ stable
Classes with known tractable FO model checking

New program: transductions of nowhere dense classes
Not sparse anymore but still stable
Classes with known tractable FO model checking

- NIP \ stable
  - bounded rank-width
    - cographs
    - posets of bounded width
    - pattern avoiding permutations
    - dense classes
  - L-interval
  - unit interval

- nowhere dense
  - bounded expansion
  - polynomial expansion
  - proper minor-closed
  - map graphs
    - planar

- bounded degree
- “sparse” classes

**MSO₁ Model Checking** solvable in $f(|\varphi|, w)n$ on graphs of rank-width $w$ [Courcelle, Makowsky, Rotics ’00]
Classes with known tractable FO model checking

Is $\sigma$ a subpermutation of $\tau$? solvable in $f(|\sigma||\tau|)$

[Guillemot, Marx '14]
Classes with known tractable FO model checking

NIP \ stable

bounded rank-width

cographs
dense classes

posets of bounded width

$L$-interval

unit interval

pattern avoiding permutations

nowhere dense

bounded expansion

polynomial expansion

proper minor-closed

map graphs

planar

“sparse” classes

FO Model Checking solvable in $f(|\varphi|, w)n^2$ on posets of width $w$

[GHLOORS '15]
Classes with known tractable FO model checking

\[ f(|\varphi|)n^{O(1)} \] on map graphs

[Eickmeyer, Kawarabayashi '17]
Classes with known tractable FO model checking

**FO Model Checking** solvable in $f(|\varphi|, d)n$ on graphs with a $d$-sequence [B, Kim, Thomassé, Watrigant ’20]
Workflow of the FO model checking algorithm

- Binary structure $G$ of bounded twin-width
- $t$-mixed-free order
- $d$-contraction sequence $G = G_n, \ldots, G_1 = K_1$
- Reduced morphism-tree $MT'_\ell(G)$ of size $h(\ell)$
- Query $G \models \varphi$ for any prenex $\varphi$ of depth $\ell$
Workflow of the FO model checking algorithm

- Binary structure $G$ of bounded twin-width
  - $n^{O(1)}$ reduction
- $t$-mixed-free order
  - $n^{O(1)}$ reduction
- $d$-contraction sequence $G = G_n, \ldots, G_1 = K_1$
  - $n^{O(1)}$ reduction
- Reduced morphism-tree $MT'_\ell(G)$ of size $h(\ell)$
  - $O_{\ell,d}(n)$ reduction
- Query $G \models \varphi$ for any prenex $\varphi$ of depth $\ell$
  - $O_{\ell}(1)$ reduction

Direct examples: trees, bounded rank-width, grids, $d$-dimensional grids, unit interval graphs, $K_t$-free unit ball graphs
Workflow of the FO model checking algorithm

binary structure $G$ of bounded twin-width

$t$-mixed-free order

$d$-contraction sequence $G = G_n, \ldots, G_1 = K_1$

reduced morphism-tree $MT'_\ell(G)$ of size $h(\ell)$

Query $G \models \varphi$ for any prenex $\varphi$ of depth $\ell$

Detour via mixed minor for: pattern-avoiding permutations, bounded width posets, $K_t$-minor free graphs
Workflow of the FO model checking algorithm

binary structure $G$ of bounded twin-width $n^{O(1)}$ $t$-mixed-free order $n^{O(1)}$ $d$-contraction sequence $G = G_n, \ldots, G_1 = K_1$

reduced morphism-tree $MT'_\ell(G)$ of size $h(\ell)$ $O_{\ell,d}(n)$

Query $G \models \varphi$ for any prenex $\varphi$ of depth $\ell$ $O_{\ell}(1)$

Let us see a snapshot of the FO model checking
DP for FO model checking with $d$-sequence

$(G, P_{15})$

$\ell_{MT'}(G, P_{15}, \cdot)$

$\ell$
DP for FO model checking with $d$-sequence

\[(G, \mathcal{P}_{14})\]

only $f(d, \ell)$ trees

\[\ell\]

updates
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)

*Bounded twin-width classes are small.*

Unifies and extends the same result for:

- $\sigma$-free permutations [Marcus, Tardos '04]
- $K_t$-minor free graphs [Norine, Seymour, Thomas, Wollan '06]
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)

Bounded twin-width classes are small.

Subcubic graphs, interval graphs, triangle-free unit segment graphs have **unbounded** twin-width
Small classes

Small: class with at most $n!c^n$ labeled graphs on $[n]$.  

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)

*Bounded twin-width classes are small.*

Is the converse true for hereditary classes?

Conjecture (small conjecture)

*A hereditary class has bounded twin-width if and only if it is small.*
Sparse twin-width

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)  
If $\mathcal{C}$ is a hereditary class of bounded twin-width, tfae.

- (i) $\mathcal{C}$ is $K_{t,t}$-free.
- (ii) $\mathcal{C}$ is $d$-grid free.
- (iii) Every $n$-vertex graph $G \in \mathcal{C}$ has at most $gn$ edges.
- (iv) The subgraph closure of $\mathcal{C}$ has bounded twin-width.
- (v) $\mathcal{C}$ has bounded expansion.
Sparse twin-width

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)
If $C$ is a hereditary class of bounded twin-width, tfae.

▶ (i) $C$ is $K_{t,t}$-free.
▶ (ii) $C$ is $d$-grid free.
▶ (iii) Every $n$-vertex graph $G \in C$ has at most $gn$ edges.
▶ (iv) The subgraph closure of $C$ has bounded twin-width.
▶ (v) $C$ has bounded expansion.

Still fairly complicated: bounded sparse twin-width classes comprise classes with bounded stack/queue number, flat classes, some particular expanders.
\(\chi\)-boundedness

\(\mathcal{C}\ \chi\)-bounded: \(\exists f, \forall G \in \mathcal{C}, \chi(G) \leq f(\omega(G))\)

Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)

*Every twin-width class is \(\chi\)-bounded.*

*More precisely, every graph \(G\) of twin-width at most \(d\) admits a proper \((d + 2)^{\omega(G) - 1}\)-coloring.*
\textbf{\(\chi\)-boundedness}

\(\mathcal{C}\ \chi\text{-bounded}: \exists f, \forall G \in \mathcal{C}, \chi(G) \leq f(\omega(G))\)

\textbf{Theorem (B, Geniet, Kim, Thomassé, Watrigant 20+)}

\textit{Every twin-width class is \(\chi\)-bounded.}

\textit{More precisely, every graph }G\textit{ of twin-width at most }d\textit{ admits a proper }\((d + 2)\omega(G) - 1\)\textit{-coloring.}

Polynomially \(\chi\)-bounded? i.e., \(\chi(G) = O(\omega(G)^d)\)

\textit{At least strong Erdős-Hajnal property satisfied}
$d + 2$-coloring in the triangle-free case

Algorithm: **Start from** $G_1 = K_1$, color its unique vertex 1, and rewind the $d$-sequence. A contraction seen backward is a split and we shall find colors for the two new vertices.
$d + 2$-coloring in the triangle-free case

Algorithm: **Start from** $G_1 = K_1$, **color its unique vertex** 1, **and rewind the $d$-sequence**. A contraction seen backward is a **split** and we shall find colors for the two new vertices.

$z$ has only red incident edges $\rightarrow$ $d + 2$-nd color available to $v$
$d + 2$-coloring in the triangle-free case

Algorithm: **Start from** $G_1 = K_1$, **color its unique vertex 1**, and **rewind the $d$-sequence**. **A contraction seen backward is a split** and we shall find colors for the two new vertices.

$z$ incident to at least one **black edge** $\rightarrow$ non-edge between $u$ and $v$
Future directions

**Obvious questions:**
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion
Future directions

**Obvious questions:**
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

**Other directions we are exploring:**
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups

::
Future directions

**Obvious questions:**
Algorithm to compute/approximate twin-width in general
Fully classify classes with tractable FO model checking
Small conjecture, polynomial expansion

**Other directions we are exploring:**
Better approximation algorithms on bounded twin-width classes
Twin-width of Cayley graphs of finitely generated groups

On arxiv
Twin-width I: tractable FO model checking [BKTW ’20]
Twin-width II: small classes [BGKTW ’20]
Twin-width III: Max Independent Set and Coloring [BGKTW ’20]