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Witness = induced subgraph having the same Grundy number.



k-witness = induced subgraph having Grundy number at least k.



A brief History of Grundy colorings

» 1939: Studied in directed acyclic graphs by Grundy.

» 1979: Kristen and Selkow defines the Grundy number '(G).
» 1983: Simmons defines the ochromatic! number x°(G).

» 1987: Erdds et al. prove that x°(G) =I'(G).

!maximum number of colors used among all vertex-orderings, with the

following rules (1) proper coloring, and (2) minimizing the number of colors for
that ordering.



Algorithmic motivations

'(G) upper bounds the number of colors used by any greedy
heuristic for MIN COLORING.

I'(G) < Cx(G) on some classes of graphs gives a
C-approximation for MIN COLORING.

Online coloring.

see Sampaio's and Gastineau's PhD theses for further
motivations.
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How many vertices (at most) do we need to achieve color k?

A minimal witness is of size at most 2k~

Theorem (Zaker '06)

The Grundy number can be computed in f(k)nzkfl.
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Main contribution
Can I'(G) = k be decided in f(k)n®(1)? At least in f(k)nko(l)?

No and no!

Theorem

Under the ETH, GRUNDY COLORING is not solvable in f(k)n2°(k).
Also shows W[1]-hardness

Main ingredients:
» Constant-length "paths” of half-graphs (propagation).
» Truncated binomial trees (verification gadget).

We will now see what those things are
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» Reduce from a hard parameterized problem (e.g.
k-MULTICOLORED CLIQUE) and keep the parameter small.

» A typical input G has other k-witnesses than k-cliques.
> Need to "dilute” G.

We need to encode choices and have a way to propagate them
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Propagation: Coloring 1 the p-th vertex in one copy forces it in
the next copies

v'[0@000) = (0000



Anti-Matching: biclique minus a perfect matching

Of---{0
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Would be ideal for propagation
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But unbounded Grundy number



Biclique

Grundy number 2



Biclique

But do not propagate anything



Simple Half-Graph

O



Simple Half-Graph

has Grundy number 3



Simple Half-Graph

has Grundy number 3

A 4 would need to be supported by a 3 on the other side



Simple Half-Graph

has Grundy number 3

This would imply on both sides a 2 supported by a 1



Simple Half-Graph

has Grundy number 3

Impossible due to 2K,-freeness



Simple Half-Graph

has Grundy number 3

Only half-propagation



Cycles of Half-Graphs

Would yield full propagation



Cycles of Half-Graphs

But unbounded Grundy again



Length-¢ Path of Half-Graphs
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Grundy number bounded by 4¢, proof by induction on ¢

© O O UVU 2

P
ey
O] ] ]
/e /4
o I



Length-¢ Path of Half-Graphs

Ao Ay

/

\
(CleReRhe

— =

QAR Q O

QEA_[ QY=
CNReRohIF,
QEe_[ QY2

—/

Grundy number bounded by 4¢, proof by induction on ¢

Let H be a minimal colored witness for [(AgU...UA;) =T(G)



Length-¢ Path of Half-Graphs
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Grundy number bounded by 4¢, proof by induction on ¢

By hypothesis, Ay and A contain at least I'(G) — 4~1 colors of H



Length-¢ Path of Half-Graphs
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Grundy number bounded by 4¢, proof by induction on ¢

Hence Ag and Ay share at least [(G) — 2 - 4/~1 > 4~ colors



Length-¢ Path of Half-Graphs
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Grundy number bounded by 4¢, proof by induction on ¢

These color classes restricted to G[A; U ... U Ay] form a witness



Length-¢ Path of Half-Graphs

bounded by 4¢, proof by i
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nduction on

Grundy number

i <jin

nly supported by an

Indeed if a color j in A; is o



Length-¢ Path of Half-Graphs

Grundy number bounded by 4¢, proof by induction on ¢

Then the j appearing in Ag could not be supported by an i



Encoding V; with a length-4 Path of Half-Graphs

E(‘/“ ‘/Jl) E(‘/“ ‘/12) E(‘/” ‘/13)




Encoding V; with a length-4 Path of Half-Graphs

1 forced at a pair /(us), r(us) = 1 only at "edges” incident to u,



Encoding V; with a length-4 Path of Half-Graphs

E(Vi.V;) E(Vi. V)

2(us, ws))

Only useful 1 those with other enpoints selected in their color class



Encoding V; with a length-4 Path of Half-Graphs

E(Vi, Vi) E(Vi: Viy)

2(us, w;)]

Need gadget which activates iff some pairs are colored 1



Back to binomial trees Tq = v(T1, To, ..., T4-1)
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A unique optimum Grundy Coloring
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Dominant subtree: largest among its siblings
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For each /(u,), r(ua), copy tree, remove dominant 1, link to the 2



Back to binomial trees Tq = v(T1, To, ..., T4-1)
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Same principle for the edge check with z(u,, v,) and z(vp, u,)



The binomial tree with missing dominant subtrees




The binomial tree with missing dominant subtrees

v can get color 4 iff its 3 findsa2in S



The binomial tree with missing dominant subtrees

e

v can get color 4 iff its 3 finds a2 in S

Remove k 4 3k/2 dominant 4 in the binomial tree Tiog k10 and
link each parent 5 to the roots of a V; or E(V;, V)



Wrapping up

Deciding if the Grundy number is log k + O(1) is as hard as
k-MULTICOLORED SUBGRAPH ISOMORPHISM for cubic patterns.

Theorem (Marx '10)

Under the ETH, k-MULTICOLORED SUBGRAPH ISOMORPHISM
with cubic patterns cannot be solved in f(k)n°(k/108 k).

Thus,

Theorem

Under the ETH, GRUNDY cannot be solved in f(k)n*"" .
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k-MULTICOLORED SUBGRAPH ISOMORPHISM for cubic patterns.

Theorem (Marx '10)

Under the ETH, k-MULTICOLORED SUBGRAPH ISOMORPHISM
with cubic patterns cannot be solved in f(k)n°(k/108 k).

Thus,

Theorem
Under the ETH, GRUNDY cannot be solved in f(k)nzo(k).

Nothing better than trying all colorings of all subsets of size 2k~1



Summary of our results

» GRUNDY COLORING is W[1]-hard and unlikely solvable in
F(k)n*"

» b-CHROMATIC CORE is W[1]-hard:
simple half-graphs + GRID TILING + ad-hoc tricks

» PARTIAL GRUNDY COLORING and b-CHROMATIC CORE
are FPT in K; -free graphs

Lemma
Every K: :-free graph with a large number of large-degree vertices
admits kK1 i as an induced sugraph.



Open Questions

» |s Partial Grundy FPT?
» Are Grundy and b-Chromatic Core FPT in H; ;-free graphs?
» Is Grundy FPT in K; ;-free graphs?

» In general, can some of the FPT algorithms in K; ;-free
graphs be lifted to H; ;-free graphs?
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Thank you for your attention!



