Grundy Coloring & friends, Half-Graphs, Bicliques

Pierre Aboulker, <u>Édouard Bonnet</u>, Eun Jung Kim, and Florian Sikora

ENS Lyon, LIP

STACS 2020, Montpellier, March 11th

- Order the vertices v₁, v₂,..., v_n to maximize #colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color not appearing in its neighborhood.

- Order the vertices v₁, v₂,..., v_n to maximize #colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color not appearing in its neighborhood.

- Order the vertices v₁, v₂,..., v_n to maximize #colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color not appearing in its neighborhood.

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Do you see a Grundy coloring reaching color 6?

Witness = induced subgraph having the same Grundy number.

k-witness = induced subgraph having Grundy number at least k.

A brief History of Grundy colorings

- 1939: Studied in directed acyclic graphs by Grundy.
- ▶ 1979: Kristen and Selkow defines the Grundy number $\Gamma(G)$.
- ▶ 1983: Simmons defines the ochromatic¹ number $\chi^{o}(G)$.
- ▶ 1987: Erdős et al. prove that $\chi^o(G) = \Gamma(G)$.

¹maximum number of colors used among all vertex-orderings, with the following rules (1) proper coloring, and (2) minimizing the number of colors for that ordering.

Algorithmic motivations

- Γ(G) upper bounds the number of colors used by any greedy heuristic for MIN COLORING.
- ► Γ(G) ≤ Cχ(G) on some classes of graphs gives a C-approximation for MIN COLORING.
- Online coloring.
- see Sampaio's and Gastineau's PhD theses for further motivations.

(4)

A minimal witness is of size at most 2^{k-1} .

Theorem (Zaker '06)

The Grundy number can be computed in $f(k)n^{2^{k-1}}$.

Main question

Can $\Gamma(G) = k$ be decided in $f(k)n^{O(1)}$? At least in $f(k)n^{k^{O(1)}}$?

Main contribution

Can $\Gamma(G) = k$ be decided in $f(k)n^{O(1)}$? At least in $f(k)n^{k^{O(1)}}$?

No and no!

Theorem Under the ETH, GRUNDY COLORING is not solvable in $f(k)n^{2^{o(k)}}$. Also shows W[1]-hardness

Main contribution

Can $\Gamma(G) = k$ be decided in $f(k)n^{O(1)}$? At least in $f(k)n^{k^{O(1)}}$?

No and no!

Theorem Under the ETH, GRUNDY COLORING is not solvable in $f(k)n^{2^{o(k)}}$. Also shows W[1]-hardness

Main ingredients:

- Constant-length "paths" of half-graphs (propagation).
- Truncated binomial trees (verification gadget).

We will now see what those things are

First thoughts on the parameterized reduction

Reduce from a hard parameterized problem (e.g. k-MULTICOLORED CLIQUE) and keep the parameter small.

First thoughts on the parameterized reduction

- Reduce from a hard parameterized problem (e.g. k-MULTICOLORED CLIQUE) and keep the parameter small.
- ► A typical input *G* has other *k*-witnesses than *k*-cliques.
- ▶ Need to "dilute" G.

First thoughts on the parameterized reduction

- Reduce from a hard parameterized problem (e.g. k-MULTICOLORED CLIQUE) and keep the parameter small.
- ► A typical input *G* has other *k*-witnesses than *k*-cliques.
- ▶ Need to "dilute" G.

We need to encode choices and have a way to propagate them

Let's be more specific

Starting point: *k*-MULTICOLORED SUBGRAPH ISOMORPHISM; Given a *k*-colored graph $G = (V_1 \cup ... \cup V_k, E)$ and a cubic graph H = ([k], F), is there a $i \in [k] \mapsto v_i \in V_i$ s.t. $ij \in F \Rightarrow v_i v_j \in E$?
Let's be more specific

Starting point: *k*-MULTICOLORED SUBGRAPH ISOMORPHISM; Given a *k*-colored graph $G = (V_1 \cup ... \cup V_k, E)$ and a cubic graph H = ([k], F), is there a $i \in [k] \mapsto v_i \in V_i$ s.t. $ij \in F \Rightarrow v_i v_j \in E$?

Choice encoding: An independent set of size $|V_i|$ where "coloring 1 the *p*-th vertex \equiv mapping *i* to the *p*-th vertex of V_i "

Let's be more specific

Starting point: *k*-MULTICOLORED SUBGRAPH ISOMORPHISM; Given a *k*-colored graph $G = (V_1 \cup ... \cup V_k, E)$ and a cubic graph H = ([k], F), is there a $i \in [k] \mapsto v_i \in V_i$ s.t. $ij \in F \Rightarrow v_i v_j \in E$?

Choice encoding: An independent set of size $|V_i|$ where "coloring 1 the *p*-th vertex \equiv mapping *i* to the *p*-th vertex of V_i "

Propagation: Coloring 1 the *p*-th vertex in one copy forces it in the next copies

$$V_i^1 \bigcirc \textcircled{1} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \Rightarrow \bigcirc \textcircled{1} \bigcirc \bigcirc \bigcirc \bigcirc V_i^2$$

Anti-Matching: biclique minus a perfect matching

Would be ideal for propagation

Anti-Matching: biclique minus a perfect matching

But unbounded Grundy number

Biclique

Grundy number 2

Biclique

But do not propagate anything

has Grundy number 3

has Grundy number 3

A 4 would need to be supported by a 3 on the other side

has Grundy number 3

This would imply on both sides a 2 supported by a 1 $% \left({{{\rm{D}}_{\rm{B}}}} \right)$

has Grundy number 3

Impossible due to $2K_2$ -freeness

has Grundy number 3

Only half-propagation

Cycles of Half-Graphs

Would yield full propagation

Cycles of Half-Graphs

But unbounded Grundy again

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

Let *H* be a minimal colored witness for $\Gamma(A_0 \cup \ldots \cup A_\ell) = \Gamma(G)$

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

By hypothesis, A_0 and A_ℓ contain at least $\Gamma(G) - 4^{\ell-1}$ colors of H

Grundy number bounded by $4^\ell,$ proof by induction on ℓ

Hence A_0 and A_ℓ share at least $\Gamma(G) - 2 \cdot 4^{\ell-1} > 4^{\ell-1}$ colors

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

These color classes restricted to $G[A_1 \cup \ldots \cup A_\ell]$ form a witness

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

Indeed if a color j in A_1 is only supported by an i < j in A_0

Grundy number bounded by 4^{ℓ} , proof by induction on ℓ

Then the j appearing in A_0 could not be supported by an i

1 forced at a pair $l(u_a), r(u_a) \Rightarrow 1$ only at "edges" incident to u_a

Only useful 1 those with other enpoints selected in their color class

Need gadget which activates iff some pairs are colored 1

Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

A unique optimum Grundy Coloring

Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

Dominant subtree: largest among its siblings

Back to binomial trees $T_q = v(T_1, T_2, \dots, T_{q-1})$

For each $I(u_a)$, $r(u_a)$, copy tree, remove dominant 1, link to the 2

Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

Same principle for the edge check with $z(u_a, v_b)$ and $z(v_b, u_a)$

The binomial tree with missing dominant subtrees

The binomial tree with missing dominant subtrees

v can get color 4 iff its 3 finds a 2 in S

The binomial tree with missing dominant subtrees

v can get color 4 iff its 3 finds a 2 in S

Remove k + 3k/2 dominant 4 in the binomial tree $T_{\log k+10}$ and link each parent 5 to the roots of a V_i or $E(V_i, V_j)$

Wrapping up

Deciding if the Grundy number is $\log k + O(1)$ is as hard as *k*-MULTICOLORED SUBGRAPH ISOMORPHISM for cubic patterns.

Theorem (Marx '10)

Under the ETH, k-MULTICOLORED SUBGRAPH ISOMORPHISM with cubic patterns cannot be solved in $f(k)n^{o(k/\log k)}$.

Thus,

Theorem

Under the ETH, GRUNDY cannot be solved in $f(k)n^{2^{o(k)}}$

Wrapping up

Deciding if the Grundy number is $\log k + O(1)$ is as hard as *k*-MULTICOLORED SUBGRAPH ISOMORPHISM for cubic patterns.

Theorem (Marx '10)

Under the ETH, k-MULTICOLORED SUBGRAPH ISOMORPHISM with cubic patterns cannot be solved in $f(k)n^{o(k/\log k)}$.

Thus,

Theorem

Under the ETH, GRUNDY cannot be solved in $f(k)n^{2^{o(k)}}$

Nothing better than trying all colorings of all subsets of size 2^{k-1}

Summary of our results

- GRUNDY COLORING is W[1]-hard and unlikely solvable in f(k)n^{2^{o(k)}}
- b-CHROMATIC CORE is W[1]-hard: simple half-graphs + GRID TILING + ad-hoc tricks
- PARTIAL GRUNDY COLORING and b-CHROMATIC CORE are FPT in K_{t,t}-free graphs

Lemma

Every $K_{t,t}$ -free graph with a large number of large-degree vertices admits $kK_{1,k}$ as an induced sugraph.

Open Questions

- ▶ Is Partial Grundy FPT?
- Are Grundy and b-Chromatic Core FPT in $H_{t,t}$ -free graphs?
- Is Grundy FPT in K_{t,t}-free graphs?
- In general, can some of the FPT algorithms in K_{t,t}-free graphs be lifted to H_{t,t}-free graphs?
Open Questions

- ▶ Is Partial Grundy FPT?
- ▶ Are Grundy and b-Chromatic Core FPT in *H*_{t,t}-free graphs?
- ▶ Is Grundy FPT in *K*_{t,t}-free graphs?
- In general, can some of the FPT algorithms in K_{t,t}-free graphs be lifted to H_{t,t}-free graphs?

Thank you for your attention!