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Grundy coloring

The worst way of reasonably coloring a graph.
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I Order the vertices v1, v2, . . . , vn to #colors used by the

coloring.
I Greedy coloring: vi gets the first color not appearing in its

neighborhood.
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A brief History of Grundy colorings

I 1939: Studied in directed acyclic graphs by Grundy.
I 1979: Kristen and Selkow defines the Grundy number Γ(G).
I 1983: Simmons defines the ochromatic1 number χo(G).
I 1987: Erdős et al. prove that χo(G) = Γ(G).

1maximum number of colors used among all vertex-orderings, with the
following rules (1) proper coloring, and (2) minimizing the number of colors for
that ordering.



Algorithmic motivations

I Γ(G) upper bounds the number of colors used by any greedy
heuristic for Min Coloring.

I Γ(G) 6 Cχ(G) on some classes of graphs gives a
C -approximation for Min Coloring.

I Online coloring.
I see Sampaio’s and Gastineau’s PhD theses for further

motivations.



How many vertices (at most) do we need to achieve color k?
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A minimal witness is of size at most 2k−1.

Theorem (Zaker ’06)
The Grundy number can be computed in f (k)n2k−1 .
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Main question

Can Γ(G) = k be decided in f (k)nO(1)? At least in f (k)nkO(1)?

No and no!

Theorem
Under the ETH, Grundy Coloring is not solvable in f (k)n2o(k) .
Also shows W[1]-hardness

Main ingredients:
I Constant-length ”paths” of half-graphs (propagation).
I Truncated binomial trees (verification gadget).

We will now see what those things are
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First thoughts on the parameterized reduction

I Reduce from a hard parameterized problem (e.g.
k-Multicolored Clique) and keep the parameter small.

I A typical input G has other k-witnesses than k-cliques.
I Need to ”dilute” G .

We need to encode choices and have a way to propagate them
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Let’s be more specific
Starting point: k-Multicolored Subgraph Isomorphism;
Given a k-colored graph G = (V1 ∪ . . . ∪ Vk ,E ) and a cubic graph
H = ([k],F ), is there a i ∈ [k] 7→ vi ∈ Vi s.t. ij ∈ F ⇒ vivj ∈ E?

Choice encoding: An independent set of size |Vi | where
”coloring 1 the p-th vertex ≡ mapping i to the p-th vertex of Vi ”

V copy
i ≡ Vi

i

1

Propagation: Coloring 1 the p-th vertex in one copy forces it in
the next copies

V 1
i ⇒ V 2

i1 1
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Anti-Matching: biclique minus a perfect matching

1 1

2 2

3 3

4 4

5 5

Would be ideal for propagation



Anti-Matching: biclique minus a perfect matching

1 1

2 2

3 3

4 4

5 5

But unbounded Grundy number



Biclique
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Grundy number 2
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But do not propagate anything
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Cycles of Half-Graphs
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Cycles of Half-Graphs
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Length-` Path of Half-Graphs

A0 A1 A2 A3 A4

i

j

j

i

Grundy number bounded by 4`, proof by induction on `

Let H be a minimal colored witness for Γ(A0 ∪ . . .∪A`) = Γ(G)
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Length-` Path of Half-Graphs
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Grundy number bounded by 4`, proof by induction on `

By hypothesis, A0 and A` contain at least Γ(G)− 4`−1 colors of H



Length-` Path of Half-Graphs
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Grundy number bounded by 4`, proof by induction on `

Hence A0 and A` share at least Γ(G)− 2 · 4`−1 > 4`−1 colors



Length-` Path of Half-Graphs
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Grundy number bounded by 4`, proof by induction on `

These color classes restricted to G [A1 ∪ . . . ∪ A`] form a witness



Length-` Path of Half-Graphs
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Grundy number bounded by 4`, proof by induction on `

Indeed if a color j in A1 is only supported by an i < j in A0



Length-` Path of Half-Graphs

A0 A1 A2 A3 A4

i

j

j

i

Grundy number bounded by 4`, proof by induction on `

Then the j appearing in A0 could not be supported by an i



Encoding Vi with a length-4 Path of Half-Graphs

l(u1) r(u1)

l(u2) r(u2)

l(u3) r(u3)

l(u4) r(u4)

l(u5) r(u5)

V L
i V R

i

z(u1, v2)

z(u1, v5)

z(u2, v1)

z(u3, v3)

z(u3, v4)

z(u4, v1)

z(u4, v5)

z(u5, v3)

z(u5, v4)

z(u1,w1)

z(u1,w3)

z(u1,w6)

z(u2,w2)

z(u2,w5)

z(u3,w1)

z(u3,w2)

z(u4,w4)

z(u5,w3)

z(u1, x4)

z(u2, x3)

z(u2, x4)

z(u3, x1)

z(u3, x2)

z(u4, x1)

z(u4, x5)

z(u5, x2)

z(u5, x5)

E (Vi ,Vj1) E (Vi ,Vj2) E (Vi ,Vj3)

1 forced in each column ⇒ not in l(ua) and r(ub) with a < b
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1 forced at a pair l(ua), r(ua) ⇒ 1 only at ”edges” incident to ua
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Only useful 1 those with other enpoints selected in their color class
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Need gadget which activates iff some pairs are colored 1



Back to binomial trees Tq = v(T1, T2, . . . , Tq−1)
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1 2 3

1 21

1

r(ua)l(ua) z(vb, ua)z(ua, vb)

A unique optimum Grundy Coloring
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r(ua)l(ua) z(vb, ua)z(ua, vb)

Dominant subtree: largest among its siblings



Back to binomial trees Tq = v(T1, T2, . . . , Tq−1)

4

1 2 3

1 2

r(ua)l(ua)

z(vb, ua)z(ua, vb)

For each l(ua), r(ua), copy tree, remove dominant 1, link to the 2



Back to binomial trees Tq = v(T1, T2, . . . , Tq−1)
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r(ua)l(ua)

z(vb, ua)z(ua, vb)

Same principle for the edge check with z(ua, vb) and z(vb, ua)



The binomial tree with missing dominant subtrees

4
3

1

2

1 1

2

v

S

v can get color 4 iff its 3 finds a 2 in S

Remove k + 3k/2 dominant 4 in the binomial tree Tlog k+10 and
link each parent 5 to the roots of a Vi or E (Vi ,Vj)
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Wrapping up

Deciding if the Grundy number is log k + O(1) is as hard as
k-Multicolored Subgraph Isomorphism for cubic patterns.

Theorem (Marx ’10)
Under the ETH, k-Multicolored Subgraph Isomorphism
with cubic patterns cannot be solved in f (k)no(k/ log k).

Thus,

Theorem
Under the ETH, Grundy cannot be solved in f (k)n2o(k) .

Nothing better than trying all colorings of all subsets of size 2k−1
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Summary of our results

I Grundy Coloring is W[1]-hard and unlikely solvable in
f (k)n2o(k)

I b-Chromatic Core is W[1]-hard:
simple half-graphs + Grid Tiling + ad-hoc tricks

I Partial Grundy Coloring and b-Chromatic Core
are FPT in Kt,t-free graphs

Lemma
Every Kt,t-free graph with a large number of large-degree vertices
admits kK1,k as an induced sugraph.



Open Questions

I Is Partial Grundy FPT?
I Are Grundy and b-Chromatic Core FPT in Ht,t-free graphs?
I Is Grundy FPT in Kt,t-free graphs?
I In general, can some of the FPT algorithms in Kt,t-free

graphs be lifted to Ht,t-free graphs?

Thank you for your attention!
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