Grundy Coloring & friends, Half-Graphs, Bicliques

Pierre Aboulker, Édouard Bonnet, Eun Jung Kim, and Florian Sikora

ENS Lyon, LIP

STACS 2020, Montpellier, March 11th
Grundy coloring

The worst way of reasonably coloring a graph.
Grundy coloring

The **worst way** of reasonably coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to **maximize** #colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color not appearing in its neighborhood.
Grundy coloring

The worst way of *reasonably* coloring a graph.

- Order the vertices \(v_1, v_2, \ldots, v_n \) to *maximize* #colors used by the *greedy* coloring.
- Greedy coloring: \(v_i \) gets the first color not appearing in its neighborhood.
Grundy coloring

The worst way of reasonably coloring a graph.

- Order the vertices v_1, v_2, \ldots, v_n to maximize \#colors used by the greedy coloring.
- Greedy coloring: v_i gets the first color not appearing in its neighborhood.
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Do you see a Grundy coloring reaching color 6?
Witness = induced subgraph having the same Grundy number.
\(k \)-witness = induced subgraph having Grundy number at least \(k \).
A brief History of Grundy colorings

- 1939: Studied in directed acyclic graphs by Grundy.
- 1979: Kristen and Selkow defines the Grundy number $\Gamma(G)$.
- 1983: Simmons defines the ochromatic1 number $\chi^o(G)$.
- 1987: Erdős et al. prove that $\chi^o(G) = \Gamma(G)$.

1maximum number of colors used among all vertex-orderings, with the following rules (1) proper coloring, and (2) minimizing the number of colors for that ordering.
Algorithmic motivations

- $\Gamma(G)$ upper bounds the number of colors used by any greedy heuristic for \textsc{Min Coloring}.
- $\Gamma(G) \leq C\chi(G)$ on some classes of graphs gives a C-approximation for \textsc{Min Coloring}.
- Online coloring.
- See Sampaio’s and Gastineau’s PhD theses for further motivations.
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?

4
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?
How many vertices (at most) do we need to achieve color k?

A minimal witness is of size at most 2^{k-1}.

Theorem (Zaker '06)

The Grundy number can be computed in $f(k)n^{2^{k-1}}$.
Main question

Can $\Gamma(G) = k$ be decided in $f(k)n^{O(1)}$? At least in $f(k)n^k^{O(1)}$?
Main contribution

Can $\Gamma(G) = k$ be decided in $f(k)n^{O(1)}$? At least in $f(k)n^{k^{O(1)}}$?

No and no!

Theorem

Under the ETH, Grundy Coloring is not solvable in $f(k)n^{2^{o(k)}}$. Also shows $W[1]$-hardness
Main contribution

Can $\Gamma(G) = k$ be decided in $f(k) n^{O(1)}$? At least in $f(k) n^{k^{O(1)}}$?

No and no!

Theorem

Under the ETH, Grundy Coloring is not solvable in $f(k) n^{2^{o(k)}}$.

Also shows W[1]-hardness

Main ingredients:

- Constant-length "paths" of half-graphs (propagation).
- Truncated binomial trees (verification gadget).

We will now see what those things are
First thoughts on the parameterized reduction

- Reduce from a hard parameterized problem (e.g. \(k\text{-MULTICOLORED CLIQUE} \)) and keep the parameter small.
First thoughts on the parameterized reduction

- Reduce from a hard parameterized problem (e.g. \(k\text{-MULTICOLORED CLIQUE}\)) and keep the parameter small.
- A typical input \(G\) has other \(k\)-witnesses than \(k\)-cliques.
- Need to "dilate" \(G\).
First thoughts on the parameterized reduction

- Reduce from a hard parameterized problem (e.g. \textit{k-Multicolored Clique}) and keep the parameter small.
- A typical input G has other k-witnesses than k-cliques.
- Need to "dilute" G.

We need to encode \textbf{choices} and have a way to \textbf{propagate} them.
Let’s be more specific

Starting point: *k*-**Multicolored Subgraph Isomorphism**;
Given a *k*-colored graph \(G = (V_1 \cup \ldots \cup V_k, E) \) and a cubic graph \(H = ([k], F) \), is there a \(i \in [k] \mapsto v_i \in V_i \) s.t. \(ij \in F \Rightarrow v_i v_j \in E \)?
Let’s be more specific

Starting point: k-**Multicolored Subgraph Isomorphism**;
Given a k-colored graph $G = (V_1 \cup \ldots \cup V_k, E)$ and a cubic graph $H = ([k], F)$, is there a $i \in [k] \mapsto v_i \in V_i$ s.t. $ij \in F \Rightarrow v_iv_j \in E$?

Choice encoding: An independent set of size $|V_i|$ where
"coloring 1 the p-th vertex \equiv mapping i to the p-th vertex of V_i"

$$V_i^{\text{copy}} = \begin{array}{cccc}
\text{ } & \text{ } & \text{1} & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\end{array} \equiv \begin{array}{cccc}
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ } \\
\end{array} V_i$$
Let’s be more specific

Starting point: \textit{k-Multicolored Subgraph Isomorphism}; Given a \(k\)-colored graph \(G = (V_1 \cup \ldots \cup V_k, E)\) and a cubic graph \(H = ([k], F)\), is there a \(i \in [k] \mapsto v_i \in V_i\) s.t. \(ij \in F \Rightarrow v_i v_j \in E\)?

Choice encoding: An independent set of size \(|V_i|\) where ”coloring 1 the \(p\)-th vertex \(\equiv\) mapping \(i\) to the \(p\)-th vertex of \(V_i\)”

\[
V_i^{\text{copy}} \quad \begin{array}{c}
\circ \quad 1 \quad \circ \quad \circ \quad \circ \\
\end{array} \quad \equiv \quad \begin{array}{c}
\circ \quad \circ \quad \circ \quad \circ \quad \circ \\
i
\end{array} V_i
\]

Propagation: Coloring 1 the \(p\)-th vertex in one copy forces it in the next copies

\[
V_i^1 \quad \begin{array}{c}
\circ \quad 1 \quad \circ \quad \circ \quad \circ \\
\end{array} \quad \Rightarrow \quad \begin{array}{c}
\circ \quad 1 \quad \circ \quad \circ \quad \circ \\
\end{array} V_i^2
\]
Anti-Matching: biclique minus a perfect matching

Would be ideal for propagation
Anti-Matching: biclique minus a perfect matching

But unbounded Grundy number
Biclique

Grundy number 2
Biclique

But do not propagate anything
Simple Half-Graph

A 4 would need to be supported by a 3 on the other side.
Simple Half-Graph

has Grundy number 3
Simple Half-Graph

has Grundy number 3

A 4 would need to be supported by a 3 on the other side
Simple Half-Graph

has Grundy number 3

This would imply on both sides a 2 supported by a 1
Simple Half-Graph

has Grundy number 3

Impossible due to $2K_2$-freeness
Simple Half-Graph

has Grundy number 3

Only half-propagation
Cycles of Half-Graphs

Would yield *full* propagation
Cycles of Half-Graphs

But unbounded Grundy again
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^{ℓ}, proof by induction on ℓ
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^ℓ, proof by induction on ℓ

Let H be a minimal colored witness for $\Gamma(A_0 \cup \ldots \cup A_\ell) = \Gamma(G)$
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^ℓ, proof by induction on ℓ

By hypothesis, A_0 and A_ℓ contain at least $\Gamma(G) - 4^{\ell-1}$ colors of H
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^ℓ, proof by induction on ℓ

Hence A_0 and A_ℓ share at least $\Gamma(G) - 2 \cdot 4^{\ell-1} > 4^{\ell-1}$ colors
Length-\(\ell \) Path of Half-Graphs

Grundy number bounded by \(4^\ell \), proof by induction on \(\ell \)

These color classes restricted to \(G[A_1 \cup \ldots \cup A_\ell] \) form a witness
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^ℓ, proof by induction on ℓ

Indeed if a color j in A_1 is only supported by an $i < j$ in A_0
Length-ℓ Path of Half-Graphs

Grundy number bounded by 4^ℓ, proof by induction on ℓ

Then the j appearing in A_0 could not be supported by an i
Encoding V_i with a length-4 Path of Half-Graphs
Encoding V_i with a length-4 Path of Half-Graphs

1 forced at a pair $l(u_a), r(u_a) \Rightarrow 1$ only at "edges" incident to $u_a
Encoding V_i with a length-4 Path of Half-Graphs

Only useful 1 those with other endpoints selected in their color class
Encoding V_i with a length-4 Path of Half-Graphs

Need gadget which activates iff some pairs are colored 1
Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

A *unique* optimum Grundy Coloring
Back to binomial trees $T_q = \nu(T_1, T_2, \ldots, T_{q-1})$

Dominant subtree: largest among its siblings
Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

For each $l(u_a)$, $r(u_a)$, copy tree, remove dominant 1, link to the 2
Back to binomial trees $T_q = v(T_1, T_2, \ldots, T_{q-1})$

Same principle for the edge check with $z(u_a, v_b)$ and $z(v_b, u_a)$
The binomial tree with missing dominant subtrees

Remove $k + 3$ dominant 4 in the binomial tree T and link each parent 5 to the roots of a V_i or $E(V_i, V_j)$.
The binomial tree with missing dominant subtrees

v can get color 4 iff its 3 finds a 2 in S
The binomial tree with missing dominant subtrees

\[v \text{ can get color 4 iff its 3 finds a 2 in } S \]

Remove \(k + 3k/2 \) dominant 4 in the binomial tree \(T_{\log k+10} \) and link each parent 5 to the roots of a \(V_i \) or \(E(V_i, V_j) \)
Wrapping up

Deciding if the Grundy number is $\log k + O(1)$ is as hard as \texttt{k-Multicolored Subgraph Isomorphism} for cubic patterns.

\textbf{Theorem (Marx ’10)}

Under the ETH, \texttt{k-Multicolored Subgraph Isomorphism} with cubic patterns cannot be solved in $f(k)n^{o(k/\log k)}$.

Thus,

\textbf{Theorem}

Under the ETH, \texttt{Grundy} cannot be solved in $f(k)n^{2o(k)}$.
Wrapped up

Deciding if the Grundy number is $\log k + O(1)$ is as hard as k-MULTICOLORED SUBGRAPH ISOMORPHISM for cubic patterns.

Theorem (Marx ’10)

*Under the ETH, k-MULTICOLORED SUBGRAPH ISOMORPHISM with cubic patterns cannot be solved in $f(k)n^{o(k/\log k)}$.***

Thus,

Theorem

*Under the ETH, Grundy cannot be solved in $f(k)n^{2^{o(k)}}$.***

Nothing better than trying all colorings of all subsets of size 2^{k-1}
Summary of our results

- **Grundy Coloring** is \(W[1] \)-hard and unlikely solvable in \(f(k)n^{2^{o(k)}} \)
- **\(b \)-Chromatic Core** is \(W[1] \)-hard:
 - simple half-graphs + Grid Tiling + ad-hoc tricks
- **Partial Grundy Coloring and \(b \)-Chromatic Core** are FPT in \(K_t,t \)-free graphs

Lemma
Every \(K_{t,t} \)-free graph with a large number of large-degree vertices admits \(kK_{1,k} \) as an induced sugraph.
Open Questions

- Is Partial Grundy FPT?
- Are Grundy and b-Chromatic Core FPT in $H_{t,t}$-free graphs?
- Is Grundy FPT in $K_{t,t}$-free graphs?
- In general, can some of the FPT algorithms in $K_{t,t}$-free graphs be lifted to $H_{t,t}$-free graphs?
Open Questions

- Is Partial Grundy FPT?
- Are Grundy and b-Chromatic Core FPT in $H_{t,t}$-free graphs?
- Is Grundy FPT in $K_{t,t}$-free graphs?
- In general, can some of the FPT algorithms in $K_{t,t}$-free graphs be lifted to $H_{t,t}$-free graphs?

Thank you for your attention!