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Three outcomes between a pair of vertices:
edge, or non-edge, or red edge (error edge)
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Contractions in trigraphs
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edges to N(u)4N(v) turn red, for N(u) ∩ N(v) red is absorbing
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A contraction sequence of G:
Sequence of trigraphs G = Gn,Gn−1, . . . ,G2,G1 such that
Gi is obtained by performing one contraction in Gi+1.
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Twin-width

tww(G): Least integer d such that G admits a contraction
sequence where all trigraphs have maximum red degree at most d .
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Theorem (’20, ’21, & ’22)
The following families have bounded twin-width.
I Bounded boolean-width graphs,
I Kt-minor free graphs, map graphs (with embedding),
I every hereditary proper subclass of permutation graphs,
I unit interval graphs, and posets of bounded antichain size,
I d-dimensional grids, Kt-free unit d-dimensional ball graphs,
I segment graphs without Kt,t subgraph,
I visibility graphs of simple polygons with bounded α,
I Ω(log n)-subdivisions of all the n-vertex graphs,
I cubic expanders defined by iterative random 2-lifts from K4,
I products of bounded twin-width graphs, one with bounded ∆,
I subgraphs of every Kt,t-free class above,
I first-order transductions of all the above.



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x
∨

16i6k
x = xi ∨

∨
16i6k

E (x , xi ) ∨ E (xi , x)

G |= ϕ? ⇔



First-order model checking on graphs

Graph FO Model Checking Parameter: |ϕ|
Input: A graph G and a first-order sentence ϕ ∈ FO({E})
Question: G |= ϕ?

Example:

ϕ = ∃x1∃x2 · · · ∃xk∀x∀y (E (x , y)⇒
∨

16i6k
x = xi ∨ y = xi )

G |= ϕ? ⇔ k-Vertex Cover



FO interpretations and transductions

FO interpretation: redefine the edges by a first-order formula
ϕ(x , y) = ¬E (x , y) (complement)
ϕ(x , y) = E (x , y) ∨ ∃zE (x , z) ∧ E (z , y) (square)

FO transduction: color by O(1) unary relations, interpret, delete

ϕ(x , y) = E (x , y) ∨ (G(x) ∧ B(y) ∧ ¬∃zR(z) ∧ E (y , z))
∨(R(x) ∧ B(y) ∧ ∃zR(z) ∧ E (y , z) ∧ ¬∃zB(z) ∧ E (y , z))

Theorem (B., Kim, Thomassé, Watrigant ’20)
Any FO transduction of a bounded twin-width class has bounded
twin-width.
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Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes.

Tractable: FO model checking is FPT on the class

Conjecture (Workshop in Warwick ’16, Gajarský et al. ’18)
Every monadically dependent class is tractable, with equivalence
among hereditary classes.



Dependence and monadic dependence

A class C is
dependent, if the hereditary closure of every simple interpretation
of C misses some graph
monadically dependent, if every transduction of C misses some
graph [Baldwin, Shelah ’85]

Theorem (Downey, Fellows, Taylor ’96)
FO model checking is AW [∗]-complete on general graphs,
thus unlikely FPT on independent classes.

Tractable: FO model checking is FPT on the class

Conjecture (Workshop in Warwick ’16, Gajarský et al. ’18)
Every monadically dependent class is tractable, with equivalence
among hereditary classes.



Tractable classes

planar

proper minor-closed

polynomial expansion

bounded expansion

nowhere dense

bounded
degree

sparse
classes

bounded twin-width

bounded
rank-width

cographs

posets of
bounded
width

L-interval

unit interval

pattern
avoiding
permuta-
tions

map
graphs

dense
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Theorem (B., Kim, Thomassé, Watrigant ’20)
FO Model Checking solvable in f (|ϕ|, d)n on graphs with a d-sequence.



Faster parameterized algorithms?

Theorem
Given a d-sequence of the n-vertex input graph, k-Independent
Set and k-Dominating Set can be solved in time 2Od (k)n,
whereas Subgraph Isomorphism and Induced Subgraph
Isomorphism can be solved in time 2Od (k log k)n.

ETH lower bound: no 2o(n/ log n) for Max Independent Set,
hence no 2o(k/ log k)nO(1) for k-Independent Set

Question
Can we close this gap?
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Imposing more on the red graphs

reduced (∆ + tw), reduced (∆ + pw), reduced bandwidth

Question
Given a sequence witnessing bounded reduced bandwidth, can
Max Independent Set be solved in time 2O(

√
n)?

k-Independent Set be solved in time 2O(
√

k)nO(1)?

Threshold unbounded/bounded reduced bandwidth of
s-subdivisions at s = Θ(n)
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Polynomial kernels?

Mostly negative results: k-Independent Set, k-Dominating
Set, already for twin-width at most 4

k-Independent Set: easy OR-composition, complete sum of
planar instances

k-Dominating Set [BKRTW ’21]: more complicated reduction,
the 4-sequence goes through a red wall

Question
Does k-Dominating Set admit a polynomial kernel when
reduced bandwidth is bounded?



Polynomial kernels?

Mostly negative results: k-Independent Set, k-Dominating
Set, already for twin-width at most 4

k-Independent Set: easy OR-composition, complete sum of
planar instances

k-Dominating Set [BKRTW ’21]: more complicated reduction,
the 4-sequence goes through a red wall

Question
Does k-Dominating Set admit a polynomial kernel when
reduced bandwidth is bounded?



How hard is computing twin-width?

Theorem (Bergé, B., Déprés ’22)
It is NP-complete to decide if the twin-width is at most 4.

Question
Is there an FPT f (OPT)-approximation of twin-width?

Question
Is twin-width at most k a “simpler” class? (for k 6 3)
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Small values of twin-width
I twin-width 0 = cographs;
I twin-width at most 1: polytime recognizable [BKRTW ’21],

perfect and bounded cliquewidth
I Is twin-width at most 2 polytime recognizable? simpler?
I Is twin-width at most 3 polytime recognizable? simpler?

Twin-width at most 1:
safe contraction (resulting in an induced subtrigraph), or
contraction of the only red edge
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Twin-width at most 2

contains unit interval graphs
Max Independent Set is polytime solvable given a 2-sequence

Theorem (B., Geniet, Kim, Thomassé, Watrigant ’21)
Max Independent Set can be solved in time O∗(|R|) given a
contraction sequence whose connected subsets in the red graphs
form the set R.

Safe contractions on a red cycle
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Twin-width at most 3
The following should have twin-width 4:
I planar grids, and
I (> 2 log n)-subdivisions of n-vertex graphs.

Question
Is every class of twin-width at most 3 and no Kt,t subgraph of
bounded cliquewidth?
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Exactly 4? The 6× 8 grid has twin-width 3 [Schidler, Szeider ’21]
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Add a red full binary tree whose leaves are the vertex set
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Take any subdivided edge



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shorten it to the length of the path in the red tree
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(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Move to the next subdivided edge



(> 2 log n)-subdivisions have twin-width at most 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Twin-width exactly 4?



Grid number, mixed number
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gn(M) = largest k such that M has a k-grid minor
mxn(M) = largest k such that M has a k-mixed minor
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gn(G) = min gn(M) among every adjacency matrix M of G
mxn(G) = min mxn(M) among every adjacency matrix M of G



Twin-width and mixed/grid number

Theorem (B., Kim, Watrigant, Thomassé ’20)
For every graph G, mxn(G)−1

2 6 tww(G) 6 22O(mxn(G)) .

Corollary
For every graph G, tww(G) 6 2O(gn(G)).

Theorem (B., Déprés ’22)
∀c < 1, ∃ a class C of unbounded twin-width such that ∀G ∈ C,

tww(G) > 2c·(gn(G)−2).

Question
Is the double-exponential dependence in mixed number necessary?
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k-grid permutation

Here with k = 3



The 6 universal patterns of unbounded twin-width
∃f s.t. all the adjacency matrices of a graph of twin-width > f (k)
contains a k-grid permutation submatrix or one of its 5 encodings



Twin-width win-win

Goal: compute FO-definable parameter p in FPT time in C.

Show that ∃f non-decreasing, such that ∀G ∈ C an
f (p(G))-sequence of G can be computed in FPT time

I Width > f (k): report p(G) > k
I Width 6 f (k): use FO model checking algorithm

→ k-Independent Set in visibility graphs of simple polygons
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Extractions

Here we only need a decreasing pattern

α1 α2 α3

β3

β2

β1

α1 α2 α3

β3

β2

β1

By Ramsey’s theorem, we can assume that the αis and the βis
both induce a clique.
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Quadrangle α2α3β3β2 is not self-crossing
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α2

α3
α4

β2 β3
P−

P+

Quadrangle α2α3β3β2 has to be convex



Geometric arguments

α1

α2

α3
α4

β2

β3

Then α2, α3, β3, β2 induce K4, a contradiction



Visibility graphs of 1.5D terrains

Order along x -coordinates

a

b cc

d

a b
c
d

Question
Is 1.5D Terrain Guarding or k-Dominating Set in
visibility graphs of 1.5D terrains FPT?
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Delineation

D is delineated if for every hereditary C ⊆ D,
C has bounded twin-width ⇔ C is monadically dependent

D is effectively delineated if further twin-width is FPT
approximable in D
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Effectively delineated classes

Ordered graphs, permutation graphs, interval graphs, etc.

Find a natural ordering of the vertex set
I no universal pattern → bounded twin-width
I universal pattern → “transversal pair,” witness of monadic

independence

transversal pair
1
4
7
2
5
8
3
6
9
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Non-delineated classes

Bounded degree, split graphs, segment graphs, visibility graphs of
simple polygons, etc.

To show that D is not delineated:

Exhibit two transdutions T ,T ′ and C ⊆ D such that T (C)
contains all subcubic graphs and T ′({subcubic graphs}) contains C
I T implies that C has unbounded twin-width
I T ′ implies that C is monadically dependent
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Questions on delineation

Question
Are tournaments delineated?

Question
Are visibility graphs of terrains delineated?

Question
Are unit segments delineated?

Question
Is non delineation equivalent to transduction equivalent to
subcubic graphs?

Thank you for your attention!
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