Designing RNA Secondary Structures is Hard

Édouard Bonnet, Paweł Rzążewski, and Florian Sikora

ENS Lyon, LIP

RECOMB 2018, April 24th, Paris

dip

RNA folding

- Predicting a likely secondary structure for an RNA sequence
- Probably an easy computational task: Nature computes it...
- ...not a sound argument; NP-hard with pseudoknots.

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

↓?

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Energy models

- ▶ Watson-Crick: maximize the number of AU and GC pairs
- Nussinov-Jacobson: maximize a linear combination of AU, GC and GU pairs
- ► ...
- Turner: much more realistic model

Energy models

- ▶ Watson-Crick: maximize the number of AU and GC pairs
- Nussinov-Jacobson: maximize a linear combination of AU, GC and GU pairs
- ► ...
- Turner: much more realistic model

Dynamic programming $O(n^3)$ -algorithm for the first two, recently improved to $O(n^{2.861})$.

RNA design

RNA design

RNA design

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Our result

Theorem

Given a pseudoknot-free secondary structure S with imposed nucleotides at some places, finding a complete RNA sequence that folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

Our result

Theorem

Given a pseudoknot-free secondary structure S with imposed nucleotides at some places, finding a complete RNA sequence that folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

The problem most likely remains hard with more realistic models.

3-SAT reduction

Given a 3-SAT formula ϕ with clauses $\{C_j\}_{1 \leq j \leq m}$ on variables $\{x_i\}_{1 \leq i \leq n}$, we build a structure *S* with pre-assigned nucleotides such that:

$$\phi$$
 is satisfiable \Leftrightarrow *S* admits a design.

Formula ϕ is said satisfiable if we can attribute T/F to each variable x_i so that each disjunction $C_j = \ell_a \lor \ell_b \lor \ell_c$ is T.

A way to see designs

A labeling extension such that there is no rematching.

What we want is:

- ϕ satisfiable \Rightarrow there is one extension without rematching.
- ϕ not satisfiable \Rightarrow every extension admits a rematching.

Variables: hairpin loops with increasing arches

 $V\langle x_i \rangle$: encoding of x_i

Variables: hairpin loops with increasing arches

Variables: hairpin loops with increasing arches

 $L\langle \neg x_i \rangle$: Setting x_i to F \leftrightarrow labeling the dots by G

Seeing S as a tree, the variable gadgets are subtrees of S. Fact: **a design should be a design for each subtree**

Seeing S as a tree, the variable gadgets are subtrees of S. Fact: **a design should be a design for each subtree**

Seeing S as a tree, the variable gadgets are subtrees of S. Fact: **a design should be a design for each subtree**

Seeing S as a tree, the variable gadgets are subtrees of S. Fact: **a design should be a design for each subtree**

Seeing S as a tree, the variable gadgets are subtrees of S. Fact: **a design should be a design for each subtree**

Why the longer and longer arches?

The *y*-axis carries the imbalance of A/U: $|\#_A w - \#_U w|$ where *w* is overarched by this supposed GC pair

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Why is this reasonable?

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Why is this reasonable?

Iff none of the 3 literals are "satisfied"

- destroying the CG-arch and,
- rematching $V\langle x_i \rangle$ with $L\langle \ell_i \rangle$

yields more pairs overall

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Why is this reasonable?

Iff none of the 3 literals are "satisfied"

- destroying the CG-arch and,
- rematching $V\langle x_i \rangle$ with $L\langle \ell_i \rangle$

yields more pairs overall

Why is this failing?

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Why is this reasonable?

Iff none of the 3 literals are "satisfied"

 $(S \langle C_1 \rangle)$ $(S \langle C_2 \rangle)$ $(S \langle C_3 \rangle)$ $(S \langle C_4 \rangle)$ $(S \langle C_5 \rangle)$ $(S \langle C_6 \rangle)$

- destroying the CG-arch and,
- rematching $V\langle x_i \rangle$ with $L\langle \ell_i \rangle$

yields more pairs overall

Why is this failing?

Idea: the clause $C_j = \ell_a \vee \ell_b \vee \ell_c$ is encoded by an arch of a bit less than $3n^2$ CG pairs enclosing $L\langle \ell_a \rangle$, $L\langle \ell_b \rangle$, $L\langle \ell_c \rangle$

Why is this reasonable?

Iff none of the 3 literals are "satisfied"

- destroying the CG-arch and,
- rematching $V\langle x_i \rangle$ with $L\langle \ell_i \rangle$

yields more pairs overall

Why is this failing?

$$C^{S\langle C_1\rangle} G C^{S\langle C_2\rangle} G C^{S\langle C_3\rangle} G C^{S\langle C_4\rangle} G C^{S\langle C_5\rangle} G C^{S\langle C_6\rangle} G$$

opening all your gifts for the price of one

- doubling the CG-arch with a much thicker AU-arch
- putting the literals in the order 2, 1, 3
- placing $S\langle C_j \rangle$ after $V\langle x_a \rangle$, $V\langle x_b \rangle$ and before $V\langle x_c \rangle$

If ϕ is not satisfiable

The entire structure S

We order variable/clause gadgets at the leaves of a "binary tree"

The entire structure S

We order variable/clause gadgets at the leaves of a "binary tree"

Hales et al. showed that it is easy to design saturated structures: *any locally good labeling is globally good*

Wrapping up

- S has n^3 unlabeled nucleotides, n^2 per variable gadget.
- ▶ The only choice in a variable gadget is all C (T) or all G (F).

Wrapping up

- S has n^3 unlabeled nucleotides, n^2 per variable gadget.
- ▶ The only choice in a variable gadget is all C (T) or all G (F).
- ϕ not satisfiable \Rightarrow one clause gadget admits a rematching.
- $\blacktriangleright \phi$ satisfiable \rightarrow we label according to a satisfying assignment.

Wrapping up

- ▶ S has n^3 unlabeled nucleotides, n^2 per variable gadget.
- ▶ The only choice in a variable gadget is all C (T) or all G (F).
- ϕ not satisfiable \Rightarrow one clause gadget admits a rematching.
- $\blacktriangleright \phi$ satisfiable \rightarrow we label according to a satisfying assignment.

Assume $\exists S'$ compatible structure with more pairs than S

- S' matches at least one dot.
- This has to be between a $V\langle x_i \rangle$ and a $L\langle \ell_i \rangle$ in $S\langle C_j \rangle$
- C_j satisfied \Rightarrow a literal gadget of $S(C_j)$ cannot be rematched.
- Contradiction, since the $(3 \varepsilon)n^2$ CG pairs are essentially lost.

Perspectives

- NP-hardness even without the imposed nucleotides?
- Considering a more realistic model might actually help for this.
- Heuristics, parameterized and subexponential algorithms

Perspectives

- NP-hardness even without the imposed nucleotides?
- Considering a more realistic model might actually help for this.
- Heuristics, parameterized and subexponential algorithms

Thank you for your attention!