Designing RNA Secondary Structures is Hard

Edouard Bonnet, Pawet Rzazewski, and Florian Sikora

ENS Lyon, LIP

RECOMB 2018, April 24th, Paris

ol

RNA folding

» Predicting a likely secondary structure for an RNA sequence
» Probably an easy computational task: Nature computes it...

> ...not a sound argument; NP-hard with pseudoknots.

L4
°
PN
r—— X
» .\././f ® s
o v .
Q © o
.n._./;' ®
v \ .
(‘,'7, ®

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

17

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

v

v

v

Energy models

Watson-Crick: maximize the number of AU and GC pairs

Nussinov-Jacobson: maximize a linear combination of AU,
GC and GU pairs

Turner: much more realistic model

Energy models

v

Watson-Crick: maximize the number of AU and GC pairs

Nussinov-Jacobson: maximize a linear combination of AU,
GC and GU pairs

v

v

Turner: much more realistic model

Dynamic programming O(n3)-algorithm for the first two,
recently improved to O(n?801).

RNA design

RNA design

RNA design

(=) A (G B ((((G=D))))))

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Our result

Theorem

Given a pseudoknot-free secondary structure S with imposed
nucleotides at some places, finding a complete RNA sequence that
folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

Our result

Theorem

Given a pseudoknot-free secondary structure S with imposed
nucleotides at some places, finding a complete RNA sequence that
folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

The problem most likely remains hard with more realistic models.

3-SAT reduction

Given a 3-SAT formula ¢ with clauses {Cj}1<j<m on variables
{xi}1<i<n, we build a structure S with pre-assigned nucleotides
such that:

¢ is satisfiable < S admits a design.

Formula ¢ is said satisfiable if we can attribute T/F to each
variable x; so that each disjunction C; = £,V £y V . is T.

A way to see designs

A labeling extension such that there is no rematching.

What we want is:
> ¢ satisfiable = there is one extension without rematching.

> ¢ not satisfiable = every extension admits a rematching.

Variables: hairpin loops with increasing arches

AAAA-AAAA? 77722 ?2?200U0U~UUUU

V(x;) : encoding of x;

Variables: hairpin loops with increasing arches

AAAA-AAAACCCCCcCcccUUuUuyu~uvuvuvu

L(x;): Setting x; to T <> labeling the dots by C

Variables: hairpin loops with increasing arches

AAAA-AAAAGGGGGGGGUUUU ~UUUU

L{—x;): Setting x; to F <> labeling the dots by G

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

AAAA-AAAA vuuu-uuuu

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

AAAA-AAAA A vuuu-uuuu

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

AAAA-AAAA A vuuu-uuuu

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

AAAA~AAAA C G UUUU-UUUU

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

AAAA~AAAA C G UUUU-UUUU

3n*
2n*
1n*

on*

Why the longer and longer arches?

UU AAA UUU AAAA Uuuu

”V\M

position of the G paired to the C in V(x3)

The y-axis carries the imbalance of A/U:

|#aw — #yw| where w is overarched by this supposed GC pair

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L{¢,), L(p), L{£.)

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L{¢,), L(p), L{£.)

Why is this reasonable?

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L{¢,), L(p), L{£.)

Why is this reasonable?
Iff none of the 3 literals are "satisfied"
P » destroying the CG-arch and,
» rematching V/(x;) with L{(¢;)

yields more pairs overall

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L{¢,), L(p), L{£.)

Why is this reasonable?

Iff none of the 3 literals are "satisfied"
> » destroying the CG-arch and,
» rematching V/(x;) with L{(¢;)

yields more pairs overall

Why is this failing?

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L({,), L{f}), L{{.)

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

43 » destroying the CG-arch and,
» rematching V/(x;) with L{(¢;)
yields more pairs overall

Why is this failing?

c 66 C G C€C GG ¢ GG ¢ GG C G

How to make the clause gadget?

Idea: the clause C; = £,V £, V £ is encoded by an arch
of a bit less than 3n? CG pairs enclosing L({,), L{f}), L{{.)

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

A » destroying the CG-arch and,
» rematching V/(x;) with L{(¢;)
yields more pairs overall

Why is this failing?

S(G) m S(G) m S(G) m S(C) m5<C5> m S(Cs)
G C G C G C G C G C

C G

opening all your gifts for the price of one

Fixing the clause gadget S(C;)

<£>

m

AAAAAACCCC4C G4 ACUCC

SAQAAS e
jn® (3-¢)n Jn Jn n jn®
» doubling the CG-arch with a much thicker AU-arch

» putting the literals in the order 2, 1, 3
» placing S(C;) after V(x5), V(xp) and before V/(x.)

The entire structure S

CACU

We order variable/clause gadgets at the leaves of a "binary tree"

The entire structure S

CACU

We order variable/clause gadgets at the leaves of a "binary tree"

Hales et al. showed that it is easy to design saturated structures:
any locally good labeling is globally good

Wrapping up

» S has n® unlabeled nucleotides, n® per variable gadget.
» The only choice in a variable gadget is all C (T) or all G (F).

Wrapping up

» S has n® unlabeled nucleotides, n® per variable gadget.
» The only choice in a variable gadget is all C (T) or all G (F).
> ¢ not satisfiable = one clause gadget admits a rematching.

> ¢ satisfiable — we label according to a satisfying assignment.

Wrapping up

» S has n3 unlabeled nucleotides, n? per variable gadget.
» The only choice in a variable gadget is all C (T) or all G (F).
> ¢ not satisfiable = one clause gadget admits a rematching.

> ¢ satisfiable — we label according to a satisfying assignment.

Assume 35’ compatible structure with more pairs than S
» S’ matches at least one dot.
» This has to be between a V/(x;) and a L({;) in 5(C;)
» (; satisfied = a literal gadget of S(C;) cannot be rematched.

» Contradiction, since the (3 —£)n? CG pairs are essentially lost.

Perspectives

» NP-hardness even without the imposed nucleotides?
» Considering a more realistic model might actually help for this.

» Heuristics, parameterized and subexponential algorithms

Perspectives
> NP-hardness even without the imposed nucleotides?
» Considering a more realistic model might actually help for this.

» Heuristics, parameterized and subexponential algorithms

Thank you for your attention!

