
Designing RNA Secondary Structures is Hard

Édouard Bonnet, Paweł Rzążewski, and Florian Sikora

ENS Lyon, LIP

RECOMB 2018, April 24th, Paris

RNA folding

I Predicting a likely secondary structure for an RNA sequence
I Probably an easy computational task: Nature computes it...
I ...not a sound argument; NP-hard with pseudoknots.

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

↓ ?

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

Pseudoknot-free RNA folding

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

↓

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....

Energy models

I Watson-Crick: maximize the number of AU and GC pairs
I Nussinov-Jacobson: maximize a linear combination of AU,

GC and GU pairs
I ...
I Turner: much more realistic model

Dynamic programming O(n3)-algorithm for the first two,
recently improved to O(n2.861).

Energy models

I Watson-Crick: maximize the number of AU and GC pairs
I Nussinov-Jacobson: maximize a linear combination of AU,

GC and GU pairs
I ...
I Turner: much more realistic model

Dynamic programming O(n3)-algorithm for the first two,
recently improved to O(n2.861).

RNA design

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
↓

??????????????????????????????????????
??????????????????????????????????????

RNA design

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
↓

?C???UUUA?CUCAGU??GG??????CCA??CUGA?GA
?????AGGUCC??????CG?UC?????????CG????A

RNA design

(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
↓

GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA
UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA

Our result

Theorem
Given a pseudoknot-free secondary structure S with imposed
nucleotides at some places, finding a complete RNA sequence that
folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

The problem most likely remains hard with more realistic models.

Our result

Theorem
Given a pseudoknot-free secondary structure S with imposed
nucleotides at some places, finding a complete RNA sequence that
folds uniquely into S in the Watson-Crick model is NP-hard.

Such a sequence is called a design.

The problem most likely remains hard with more realistic models.

3-SAT reduction

Given a 3-SAT formula φ with clauses {Cj}16j6m on variables
{xi}16i6n, we build a structure S with pre-assigned nucleotides
such that:

φ is satisfiable ⇔ S admits a design.

Formula φ is said satisfiable if we can attribute T/F to each
variable xi so that each disjunction Cj = `a ∨ `b ∨ `c is T.

A way to see designs

A labeling extension such that there is no rematching.

What we want is:
I φ satisfiable ⇒ there is one extension without rematching.
I φ not satisfiable ⇒ every extension admits a rematching.

Variables: hairpin loops with increasing arches

A UA UA UA UA UA UA UA U... ...

.

n2in4 in4

? ? ? ? ? ? ? ?

V 〈xi〉 : encoding of xi

Variables: hairpin loops with increasing arches

A UA UA UA UA UA UA UA U... ...

.

n2in4 in4

C C C C C C C C

L〈xi〉: Setting xi to T ↔ labeling the dots by C

Variables: hairpin loops with increasing arches

A UA UA UA UA UA UA UA U... ...

.

n2in4 in4

G G G G G G G G

L〈¬xi〉: Setting xi to F ↔ labeling the dots by G

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

A UA UA UA UA UA UA UA U... ...

.

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

A UA UA UA UA UA UA UA U... ...

.

A

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

A UA UA UA UA UA UA UA U
.

... ...

.

A

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

A UA UA UA UA UA UA UA U... ...

.

C G

Locality

Seeing S as a tree, the variable gadgets are subtrees of S.

Fact: a design should be a design for each subtree

So, a design has to set each variable to T or F

A UA UA UA UA UA UA UA U... ...

.

C G

Why the longer and longer arches?

V 〈x1〉

A U
. . .

V 〈x2〉

A UA U
. . .

V 〈x3〉

A UA UA U
. . .

V 〈x4〉

A UA UA UA U
. . .C

G?G?

0n4

1n4

2n4

3n4

position of the G paired to the C in V 〈x3〉

The y -axis carries the imbalance of A/U:
|#Aw −#Uw | where w is overarched by this supposed GC pair

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?

Iff none of the 3 literals are "satisfied"
I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

How to make the clause gadget?

Idea: the clause Cj = `a ∨ `b ∨ `c is encoded by an arch
of a bit less than 3n2 CG pairs enclosing L〈`a〉, L〈`b〉, L〈`c〉

Why is this reasonable?
Iff none of the 3 literals are "satisfied"

I destroying the CG-arch and,
I rematching V 〈xi〉 with L〈`i〉

yields more pairs overall

Why is this failing?

C
S〈C1〉

G C
S〈C2〉

G C
S〈C3〉

G C
S〈C4〉

G C
S〈C5〉

G C
S〈C6〉

G

opening all your gifts for the price of one

Fixing the clause gadget S〈Cj〉

A UA UA UA UA UA UC GC GC GC G
L−jn3 〈`b〉 L〈`a〉 L−jn3 〈`c〉

AC GGU...UC GA...ACUCC GG
jn3 jn3(3-ε)n2 (3-ε)n2jn3 jn3

I doubling the CG-arch with a much thicker AU-arch
I putting the literals in the order 2, 1, 3
I placing S〈Cj〉 after V 〈xa〉, V 〈xb〉 and before V 〈xc〉

If φ is not satisfiable

UA UA UA UA A UA UA UA UA UA UA UA UA U A UA UA UA UA UA UA UA UA UA UA UA UA UA UA UA UC GC GC GC GC GC G
L−jn3 〈`b〉 L〈`a〉

L−jn3 〈`c〉
AC GGUUUC GAAACUCC GG

V 〈xa〉

...

V 〈xb〉

...

V 〈xc〉

...

S〈Cj〉

The entire structure S

V 〈x1〉 V 〈x2〉 S〈C1〉 S〈C2〉 V 〈x3〉 S〈C3〉 V 〈x4〉
ACAC GG CUUC GG CAGGAC GG CUUC GG CACU

We order variable/clause gadgets at the leaves of a "binary tree"

Hales et al. showed that it is easy to design saturated structures:
any locally good labeling is globally good

The entire structure S

V 〈x1〉 V 〈x2〉 S〈C1〉 S〈C2〉 V 〈x3〉 S〈C3〉 V 〈x4〉
ACAC GG CUUC GG CAGGAC GG CUUC GG CACU

We order variable/clause gadgets at the leaves of a "binary tree"

Hales et al. showed that it is easy to design saturated structures:
any locally good labeling is globally good

Wrapping up

I S has n3 unlabeled nucleotides, n2 per variable gadget.
I The only choice in a variable gadget is all C (T) or all G (F).

I φ not satisfiable ⇒ one clause gadget admits a rematching.
I φ satisfiable → we label according to a satisfying assignment.

Assume ∃S ′ compatible structure with more pairs than S
I S ′ matches at least one dot.
I This has to be between a V 〈xi〉 and a L〈`i〉 in S〈Cj〉
I Cj satisfied ⇒ a literal gadget of S〈Cj〉 cannot be rematched.
I Contradiction, since the (3− ε)n2 CG pairs are essentially lost.

Wrapping up

I S has n3 unlabeled nucleotides, n2 per variable gadget.
I The only choice in a variable gadget is all C (T) or all G (F).
I φ not satisfiable ⇒ one clause gadget admits a rematching.
I φ satisfiable → we label according to a satisfying assignment.

Assume ∃S ′ compatible structure with more pairs than S
I S ′ matches at least one dot.
I This has to be between a V 〈xi〉 and a L〈`i〉 in S〈Cj〉
I Cj satisfied ⇒ a literal gadget of S〈Cj〉 cannot be rematched.
I Contradiction, since the (3− ε)n2 CG pairs are essentially lost.

Wrapping up

I S has n3 unlabeled nucleotides, n2 per variable gadget.
I The only choice in a variable gadget is all C (T) or all G (F).
I φ not satisfiable ⇒ one clause gadget admits a rematching.
I φ satisfiable → we label according to a satisfying assignment.

Assume ∃S ′ compatible structure with more pairs than S
I S ′ matches at least one dot.
I This has to be between a V 〈xi〉 and a L〈`i〉 in S〈Cj〉
I Cj satisfied ⇒ a literal gadget of S〈Cj〉 cannot be rematched.
I Contradiction, since the (3− ε)n2 CG pairs are essentially lost.

Perspectives

I NP-hardness even without the imposed nucleotides?
I Considering a more realistic model might actually help for this.
I Heuristics, parameterized and subexponential algorithms

Thank you for your attention!

Perspectives

I NP-hardness even without the imposed nucleotides?
I Considering a more realistic model might actually help for this.
I Heuristics, parameterized and subexponential algorithms

Thank you for your attention!

