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Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Guess two farthest disks in an optimum solution S.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Hence, all the centers of S lie inside the bold digon.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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Two disks centered in the same-color region intersect.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Clique in a co-bipartite graph.



Polynomial algorithm on unit disks by Clark, Colbourn, and Johnson, 1990.
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We solve Max Independent Set in a bipartite graph.



Disk graphs

Inherits the NP-hardness of planar graphs.



So what is known for Max Clique on disk graphs?
I Polynomial-time 2-approximation

I For any clique there are 4 points hitting all the disks.
I Guess those points.
I Solve exactly in each of the

(4
2
)
co-bipartite graphs.

I Output the best solution.
I No non-trivial exact algorithm known.



And what is known about disk graphs?
I Every planar graph is a disk graph.
I Every triangle-free disk graph is planar (centers → vertices).
I So a triangle-free non-planar graph like K3,3 is not disk.
I A subdivision of a non-planar graph is not a disk graph

(more generally not a string graph).
I ...

Other ways of showing that a graph is not disk?
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Say the 4 centers encoding a K2,2 = 2K2 are in convex position.

c1

c2
c3

c4

Then the two non-edges should be diagonal.

Suppose d(c1, c3) > r1 + r3 and d(c2, c4) > r2 + r4.
But d(c1, c3) + d(c2, c4) 6 d(c1, c2) + d(c3, c4) 6 r1 + r2 + r3 + r4,
a contradiction.
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Conclusion: the 4 centers of an induced 2K2 are either
I not in convex position or
I in convex position with the non-edges being diagonal.

c1
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c3 c4

or

c1

c2c3

c4

Reformulation: either
I the line `(c1, c2) crosses the segment c3c4, or
I the line `(c3, c4) crosses the segment c1c2, or
I both; equivalently, the segments c1c2 and c3c4 cross.
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Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.



Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.



Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.



Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.



Assume Cs + Ct is a disk graph.
Link consecutive centers of the two disjoint cycles (non-edges).

si

For each red segment si , we denote by:
I ai the number of blue segments crossed by `(si ).
I bi the number of blue segments whose extension cross si .
I ci the number of blue segments intersecting si .

It should be that ai + bi − ci = t.



Σ
16i6s

ai + bi − ci = st

1) ai is even:

number of intersections of a line with a closed curve.

2) Σ
16i6s

bi = Σ
16i6t

a′
i is therefore even. (a′j , b′j , c ′j same for blue segments)

3) Σ
16i6s

ci is even: number of intersections of two closed curves.

Σ
16i6s

ai + bi − ci = Σ
16i6s

ai + Σ
16i6t

a′
i − Σ

16i6s
ci is even.

Hence s and t cannot be both odd.
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The complement of two odd cycles is not a disk graph.



Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no
two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it:
at least one edge between two vertex-disjoint odd cycles
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Quasi-polynomial time approximation-scheme (QPTAS)

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)
PTAS for Max Independent Set for ocp = o(n/ log n).

Lemma
Let H complement of a disk graph with n vertices.
If ocp(H) > n/ log2 n, then vertex of degree at least n/ log4 n.

Proof.
The shortest odd cycle has size at most log2 n.
There is a vertex of this cycle with degree at least n/ log4 n.
Branching factor (1, n/ log4 n) (in 2log5 n), and PTAS otherwise.
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Subexponential algorithm

Theorem (Györi et al. 1997)
Graphs with odd girth > c have odd cycle cover size O(n

c log n
c ).

Let G be the co-disk, ∆ its degree, c its odd girth.
We can:

I branch in time 2Õ(n/∆).
I solve in time 2O(∆c).
I solve in time 2Õ(n/c).

2Õ(min(n/∆,n/c,c∆)) 6 2Õ(n2/3) for ∆ = c = n1/3.
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Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice
co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)
For some α, Maximum Independent Set on 2-subdivisions is not
α-approximable algorithm in 2n1−ε , unless the ETH fails.

Graphs of filled ellipses or filled triangles contain all the
co-2-subdivisions.
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Filled triangles



Filled ellipses



Perspectives

I EPTAS for Max Clique on disk graphs and unit ball graphs
(follow-up work with Bonamy, Bousquet, Charbit, and
Thomassé)

I Is Max Clique NP-hard on disk graphs?
I What about the complexity of Max Independent Set in graphs

with (induced) odd cycle packing number 1?
I The complexity of Max Clique on unit ball graphs remains

also open.

Thank you for your attention!
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