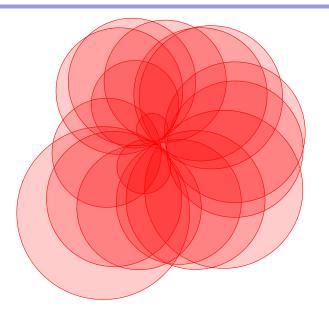
QPTAS and Subexponential Algorithm for Maximum Clique on Disks

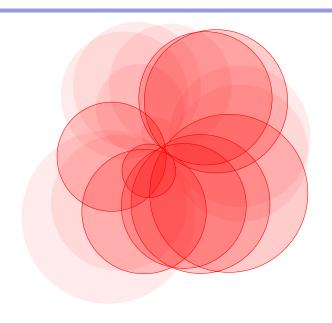
<u>Édouard Bonnet</u>, Panos Giannopoulos, Eun Jung Kim, Paweł Rzążewski, and Florian Sikora

LIP, ENS Lyon

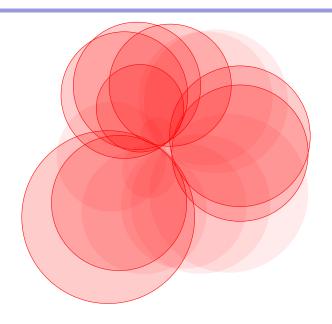
June 12th 2018, Budapest



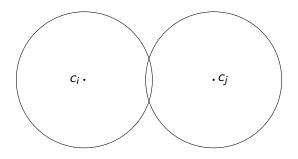
Find a largest collection of disks that pairwise intersect



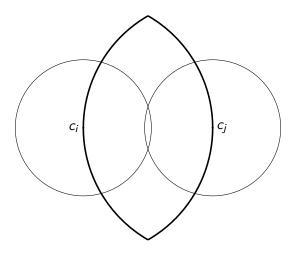
Like this



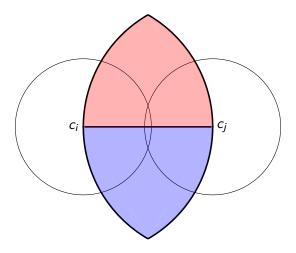
or that



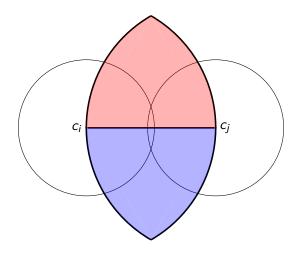
Guess two farthest disks in an optimum solution S.



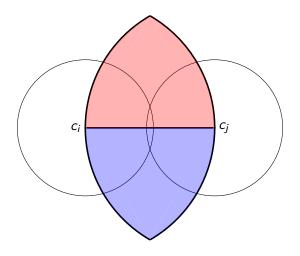
Hence, all the centers of S lie inside the bold digon.



Two disks centered in the same-color region intersect.



We solve Max Clique in a co-bipartite graph.



We solve Max Independent Set in a bipartite graph.

Disk graphs

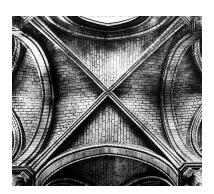
Unweighted problems

```
3-Colourability [?]
                                            NP-complete
                                                                                [+]Details
                                             Unknown to ISGCI
Clique [?]
                                                                                [+]Details
Clique cover [?]
                                            NP-complete
                                                                                [+]Details
Colourability [?]
                                            NP-complete
                                                                                [+1Details
Domination [?]
                                            NP-complete
                                                                                [+]Details
Feedback vertex set [?]
                                            NP-complete
                                                                                [+]Details
                                            Unknown to ISGCI
Graph isomorphism [?]
                                                                                [+1Details
Hamiltonian cycle [?]
                                            NP-complete
                                                                                [+]Details
Hamiltonian path [?]
                                            NP-complete
                                                                                [+]Details
Independent dominating set [?]
                                            NP-complete
                                                                                [+1Details
Independent set [?]
                                            NP-complete
                                                                                [+1Details
Maximum bisection [?]
                                            NP-complete
                                                                                [+]Details
Maximum cut [?]
                                            NP-complete
                                                                                [+1Details
Minimum bisection [?]
                                            NP-complete
                                                                                [+]Details
Monopolarity [?]
                                            NP-complete
                                                                                [+1Details
Polarity [?]
                                            NP-complete
                                                                                [+]Details
Recognition [?]
                                            NP-hard
                                                                                [+]Details
```

Inherits the NP-hardness of planar graphs.

So what is known for Max Clique on disk graphs?

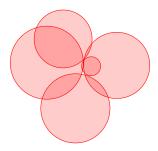
- Polynomial-time 2-approximation
 - For any clique there are 4 points hitting all the disks.
 - Guess those points.
 - ► Solve exactly in each of the $\binom{4}{2}$ co-bipartite graphs.
 - Output the best solution.
- No non-trivial exact algorithm known.



And what is known about disk graphs?

- Every planar graph is a disk graph.
- ightharpoonup Every triangle-free disk graph is planar (centers ightarrow vertices).
- ▶ So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

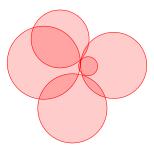
...



And what is known about disk graphs?

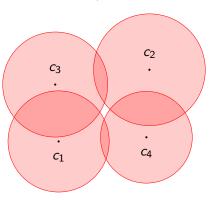
- Every planar graph is a disk graph.
- ightharpoonup Every triangle-free disk graph is planar (centers ightarrow vertices).
- ▶ So a triangle-free non-planar graph like $K_{3,3}$ is not disk.
- ► A subdivision of a non-planar graph is not a disk graph (more generally not a string graph).

...

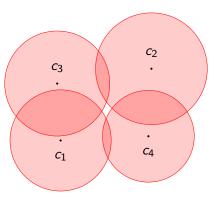


Other ways of showing that a graph is not disk?

Say the 4 centers encoding a $K_{2,2}=\overline{2K_2}$ are in convex position.

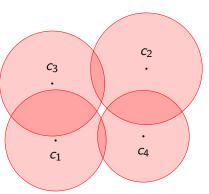


Say the 4 centers encoding a $K_{2,2}=\overline{2K_2}$ are in convex position.



Then the two non-edges should be diagonal.

Say the 4 centers encoding a $K_{2,2} = \overline{2K_2}$ are in convex position.

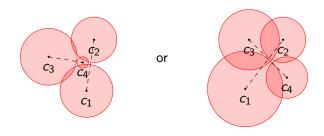


Then the two non-edges should be diagonal.

Suppose $d(c_1, c_3) > r_1 + r_3$ and $d(c_2, c_4) > r_2 + r_4$. But $d(c_1, c_3) + d(c_2, c_4) \le d(c_1, c_2) + d(c_3, c_4) \le r_1 + r_2 + r_3 + r_4$, a contradiction.

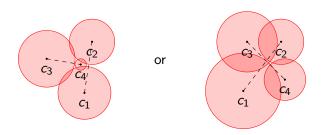
Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

- not in convex position or
- ▶ in convex position with the non-edges being *diagonal*.



Conclusion: the 4 centers of an induced $\overline{2K_2}$ are either

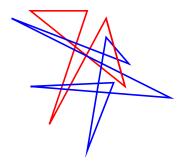
- not in convex position or
- in convex position with the non-edges being diagonal.



Reformulation: either

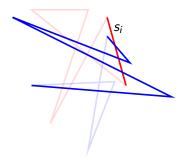
- ▶ the line $\ell(c_1, c_2)$ crosses the segment c_3c_4 , or
- ▶ the line $\ell(c_3, c_4)$ crosses the segment c_1c_2 , or
- ▶ both; equivalently, the segments c_1c_2 and c_3c_4 cross.

Link consecutive centers of the two disjoint cycles (non-edges).



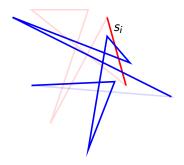
- ▶ a_i the number of blue segments crossed by $\ell(s_i)$.
- ▶ b_i the number of blue segments whose extension cross s_i .
- $ightharpoonup c_i$ the number of blue segments intersecting s_i .

Link consecutive centers of the two disjoint cycles (non-edges).



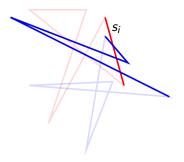
- ▶ a_i the number of blue segments crossed by $\ell(s_i)$.
- ▶ b_i the number of blue segments whose extension cross s_i .
- $ightharpoonup c_i$ the number of blue segments intersecting s_i .

Link consecutive centers of the two disjoint cycles (non-edges).



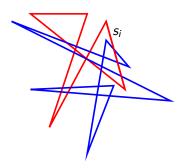
- ▶ a_i the number of blue segments crossed by $\ell(s_i)$.
- ▶ b_i the number of blue segments whose extension cross s_i .
- $ightharpoonup c_i$ the number of blue segments intersecting s_i .

Link consecutive centers of the two disjoint cycles (non-edges).



- ▶ a_i the number of blue segments crossed by $\ell(s_i)$.
- ▶ b_i the number of blue segments whose extension cross s_i .
- $ightharpoonup c_i$ the number of blue segments intersecting s_i .

Link consecutive centers of the two disjoint cycles (non-edges).



For each red segment s_i , we denote by:

- ▶ a_i the number of blue segments crossed by $\ell(s_i)$.
- \triangleright b_i the number of blue segments whose extension cross s_i .
- \triangleright c_i the number of blue segments intersecting s_i .

It should be that $a_i + b_i - c_i = t$.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = st$$

1) a_i is even:

$$\sum_{1\leqslant i\leqslant s}a_i+b_i-c_i=st$$

1) a_i is even: number of intersections of a line with a closed curve.

2)
$$\sum_{1 \leqslant i \leqslant s} b_i =$$

$$\sum_{1 \le i \le s} a_i + b_i - c_i = st$$

1) a_i is even: number of intersections of a line with a closed curve.

2)
$$\sum_{1\leqslant i\leqslant s}b_i=\sum_{1\leqslant i\leqslant t}a_i'$$
 is therefore even. (a_j',b_j',c_j') same for blue segments)

3)
$$\sum_{1 \le i \le s} c_i$$
 is even:

$$\sum_{1 \le i \le s} a_i + b_i - c_i = st$$

- 1) a_i is even: number of intersections of a line with a closed curve.
- 2) $\sum_{1 \le i \le s} b_i = \sum_{1 \le i \le t} a_i'$ is therefore even. (a_j', b_j', c_j') same for blue segments
- 3) $\sum_{1 \le i \le s} c_i$ is even: number of intersections of two closed curves.

$$\sum_{1 \le i \le s} a_i + b_i - c_i =$$

$$\sum_{1 \le i \le s} a_i + b_i - c_i = st$$

- 1) a_i is even: number of intersections of a line with a closed curve.
- 2) $\sum_{1 \le i \le s} b_i = \sum_{1 \le i \le t} a_i'$ is therefore even. (a_j', b_j', c_j') same for blue segments)
- 3) $\sum_{1 \le i \le s} c_i$ is even: number of intersections of two closed curves.

$$\sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a_i' - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even.}$$

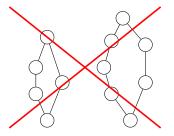
$$\sum_{1 \le i \le s} a_i + b_i - c_i = st$$

- 1) a_i is even: number of intersections of a line with a closed curve.
- 2) $\sum_{1 \le i \le s} b_i = \sum_{1 \le i \le t} a_i'$ is therefore even. (a_j', b_j', c_j') same for blue segments)
- 3) $\sum_{1 \le i \le s} c_i$ is even: number of intersections of two closed curves.

$$\textstyle \sum_{1 \leqslant i \leqslant s} a_i + b_i - c_i = \sum_{1 \leqslant i \leqslant s} a_i + \sum_{1 \leqslant i \leqslant t} a_i' - \sum_{1 \leqslant i \leqslant s} c_i \text{ is even}.$$

Hence s and t cannot be both odd.

The complement of two odd cycles is not a disk graph.



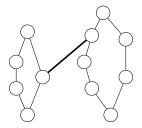
Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Going back to algorithms.

Can we solve Max Independent Set more efficiently if there are no two vertex-disjoint odd cycles as an induced subgraph?

Another way to see it: at least one edge between two vertex-disjoint odd cycles



ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)

PTAS for Max Independent Set for $ocp = o(n/\log n)$.

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)

PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)

PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$.

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)

PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$.

There is a vertex of this cycle with degree at least $n/\log^4 n$.

ocp(G): maximum size of an odd cycle packing.

Theorem (Bock et al. 2014)

PTAS for Max Independent Set for $ocp = o(n/\log n)$.

Lemma

Let H complement of a disk graph with n vertices. If $ocp(H) > n/\log^2 n$, then vertex of degree at least $n/\log^4 n$.

Proof.

The shortest odd cycle has size at most $\log^2 n$.

There is a vertex of this cycle with degree at least $n/\log^4 n$.

Branching factor $(1, n/\log^4 n)$ (in $2^{\log^5 n}$), and PTAS otherwise.

Subexponential algorithm

Theorem (Györi et al. 1997)

Graphs with odd girth $\geqslant c$ have odd cycle cover size $O(\frac{n}{c} \log \frac{n}{c})$.

Subexponential algorithm

Theorem (Györi et al. 1997)

Graphs with odd girth $\geqslant c$ have odd cycle cover size $O(\frac{n}{c}\log\frac{n}{c})$.

Let G be the co-disk, Δ its degree, c its odd girth. We can:

- branch in time $2^{\tilde{O}(n/\Delta)}$.
- ▶ solve in time $2^{O(\Delta c)}$.
- solve in time $2^{\tilde{O}(n/c)}$.

Subexponential algorithm

Theorem (Györi et al. 1997)

Graphs with odd girth $\geqslant c$ have odd cycle cover size $O(\frac{n}{c} \log \frac{n}{c})$.

Let G be the co-disk, Δ its degree, c its odd girth. We can:

- branch in time $2^{\tilde{O}(n/\Delta)}$.
- ▶ solve in time $2^{O(\Delta c)}$.
- ▶ solve in time $2^{\tilde{O}(n/c)}$.

$$2^{\tilde{O}(\min(n/\Delta, n/c, c\Delta))} \leqslant 2^{\tilde{O}(n^{2/3})}$$
 for $\Delta = c = n^{1/3}$.

Filled ellipses and triangles

2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)

For some α , Maximum Independent Set on 2-subdivisions is not α -approximable algorithm in $2^{n^{1-\varepsilon}}$, unless the ETH fails.

Filled ellipses and triangles

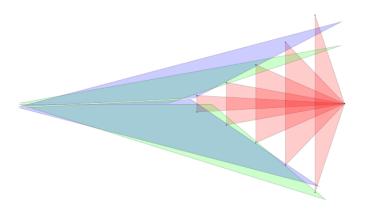
2-subdivisions: graphs where each edge is subdivided exactly twice co-2-subdivisions: complements of 2-subdivisions

Theorem (technical)

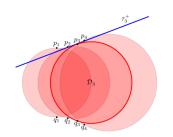
For some α , Maximum Independent Set on 2-subdivisions is not α -approximable algorithm in $2^{n^{1-\varepsilon}}$, unless the ETH fails.

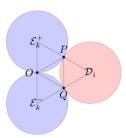
Graphs of filled ellipses or filled triangles contain all the co-2-subdivisions.

Filled triangles



Filled ellipses





Perspectives

- EPTAS for Max Clique on disk graphs and unit ball graphs (follow-up work with Bonamy, Bousquet, Charbit, and Thomassé)
- Is Max Clique NP-hard on disk graphs?
- ▶ What about the complexity of Max Independent Set in graphs with (induced) odd cycle packing number 1?
- ► The complexity of Max Clique on unit ball graphs remains also open.

Perspectives

- ► EPTAS for Max Clique on disk graphs and unit ball graphs (follow-up work with Bonamy, Bousquet, Charbit, and Thomassé)
- Is Max Clique NP-hard on disk graphs?
- ▶ What about the complexity of Max Independent Set in graphs with (induced) odd cycle packing number 1?
- ► The complexity of Max Clique on unit ball graphs remains also open.

Thank you for your attention!