Fine-grained complexity of coloring geometric intersection graphs

Édouard Bonnet

Joint works with Csaba Biró, Dániel Marx, Tillmann Miltzow, and Paweł Rzążewski and Stéphan Thomassé

ToCAI, January 27th
NP-hardness vs ETH-hardness

NP-hardness:

your problem is not solvable in polynomial, unless 3-SAT is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.
NP-hardness vs ETH-hardness

NP-hardness:

your problem is not solvable in polynomial, unless 3-SAT is very widely believed but do not give evidence against algorithms running in say, $2^{n^{1/100}}$.

ETH-hardness:

stronger assumption than $P \neq NP$ is ETH asserting that no $2^{o(n)}$ algorithm exists for 3-SAT.

Allows to prove stronger conditional lower bounds
linear reduction from 3-SAT: no $2^{o(n)}$ algorithm for your problem, quadratic reduction: no $2^{o(\sqrt{n})}$ algorithm, etc.
Many problems are solvable in $2^{O(\sqrt{n})}$ in planar graphs, and unlikely solvable in $2^{o(n)}$ in general graphs.
Square root phenomenon on planar graphs

Many problems are solvable in $2^{O(\sqrt{n})}$ in \textbf{planar graphs}, and unlikely solvable in $2^{o(n)}$ in general graphs.
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...

Dynamic programming would spare a $\log n$ in the exponent.
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Square root phenomenon on planar graphs

Max Independent Set, 3-Coloring, Hamiltonian Path...
Coloring (Unit) Disks

It might also be that only the intersection graph is given and not a geometric representation.
Coloring (Unit) Disks

It might also be that only the intersection graph is given and not a geometric representation.
It might also be that only the intersection graph is given and not a geometric representation.
Coloring (Unit) Disks

It might also be that only the intersection graph is given and not a geometric representation.
It might also be that only the intersection graph is given and not a geometric representation.
Coloring (Unit) Disks

It might also be that only the intersection graph is given and not a geometric representation.
Coloring Unit Disks

Frequency assignment in broadcast networks

\(k\)-Coloring is NP-hard for any integer \(k \geq 3 \)

the problem can be 3-approximated
Coloring Unit Disks

Frequency assignment in broadcast networks

\(k\)-\textsc{Coloring} is NP-hard for any integer \(k \geq 3\)

the problem can be 3-approximated

Is \(3\)-\textsc{Coloring} as hard as \(100\)-\textsc{Coloring}? \(\lceil \sqrt{n} \rceil\)-\textsc{Coloring}?
Coloring Unit Disks

Frequency assignment in broadcast networks

\(k\text{-Coloring} \) is NP-hard for any integer \(k \geq 3 \)
the problem can be 3-approximated

Is \(3\text{-Coloring} \) as hard as \(100\text{-Coloring} \)? \(\lceil \sqrt{n} \rceil \text{-Coloring} \)?

For general graphs, the answer is yes: for any integer \(k \),
there is an \(O^*(2^n) \) algorithm for \(k\text{-Coloring} \)
and no \(2^{o(n)} \) algorithm under the ETH.
For planar graphs,
Coloring Unit Disks

Frequency assignment in broadcast networks

\textit{k-Coloring} is NP-hard for any integer \(k \geq 3 \)

the problem can be 3-approximated

Is \textit{3-Coloring} as hard as \textit{100-Coloring}? \(\lceil \sqrt{n} \rceil \)-\textit{Coloring}?

For general graphs, the answer is yes: for any integer \(k \),

there is an \(O^*(2^n) \) algorithm for \textit{k-Coloring}

and no \(2^{o(n)} \) algorithm under the ETH.

For planar graphs, only \textit{3-Coloring} is hard!
Balanced separators for unit disks

Theorem (Smith, Wormald ’98, special case)

Given a collection S of n disks with ply at most ℓ, there exists a circle Q, such that:

- at most $3n/4$ disks of S are entirely inside Q,
- at most $3n/4$ disks of S are entirely outside Q,
- at most $O(\sqrt{n\ell})$ disks of S intersect Q.
Standard algorithm for ℓ-coloring (for unit disks)

If the ply is greater than ℓ, then more than ℓ colors are needed. Otherwise, there is a balanced separator of size $O(\sqrt{n\ell})$ which can be exhaustively found in time $O(2^{\sqrt{n\ell}} \log n)$. Trying all the ℓ-colorings on S takes time $O(2^{\sqrt{n\ell}} \log \ell)$.
Standard algorithm for ℓ-coloring (for unit disks)

If the ply is greater than ℓ, then more than ℓ colors are needed. Otherwise, there is a balanced separator of size $O(\sqrt{nl})$ which can be exhaustively found in time $O(2^{\sqrt{nl}} \log n)$.

Trying all the ℓ-colorings on S takes time $O(2^{\sqrt{nl}} \log \ell)$.

Overall running time: $O(2^{\sqrt{nl}} \log n)$.
We will see that this running time is optimal up to logarithmic factors in the exponent.
We will see that this running time is optimal up to logarithmic factors in the exponent.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^\alpha)$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.
We will see that this running time is optimal up to logarithmic factors in the exponent.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^\alpha)$ colors cannot be solved in time $2^{o(n^{\frac{1+\alpha}{2}})} = 2^{o(\sqrt{n\ell})}$, under the ETH.

Constant number of colors \leadsto square root phenomenon.
Linear number of colors \leadsto no subexponential-time algorithm.
We will see that this running time is optimal up to logarithmic factors in the exponent.

Theorem

For any $\alpha \in [0, 1]$, coloring n unit disks with $\ell = \Theta(n^\alpha)$ colors cannot be solved in time $2^{o(n^{1+\alpha}/2)} = 2^{o(\sqrt{n\ell})}$, *under the ETH.*

Constant number of colors \leadsto square root phenomenon.
Linear number of colors \leadsto no subexponential-time algorithm.

And everything in between (hard part).
For instance, \sqrt{n}-coloring cannot be done in $2^{o(n^{3/4})}$.
Roadmap

3-SAT \rightarrow 2-grid 3-SAT \rightarrow Partial 2-grid Coloring \rightarrow coloring unit disks
Partial 2-grid Coloring \rightarrow coloring unit disks
Partial 2-Grid Coloring

Input: An induced subgraph G of the $g \times g$-grid, a positive integer ℓ. Each cell of this grid is mapped to a set of ℓ points (in a smaller grid $[\ell]^2$).

Question: Is there an ℓ-coloring of all the points such that:
- two points in the same cell get different colors;
- if v and w are adjacent in G, say, $w = v + (1, 0)$, p, resp. q, are points in the smaller grid of v resp. w, receiving the same color, then q has at a second coordinate which is at least the second coordinate of p?
2-Grid 3-SAT

Input: A \(g \times g \) grid, a positive integer \(k \), each vertex (or cell) of the grid is associated to \(k \) variables, and a set \(C \) of constraints of two kinds:

- **clause constraints:** for each cell of the grid, a set of pairwise variable-disjoint 3-clauses on its variables;
- **equality constraints:** for two adjacent cells of the grid, a set of pairwise variable-disjoint equality constraints.

Question: Is there an assignment of the variables such that all constraints are satisfied?
3-SAT \rightarrow 2-Grid 3-SAT

3-SAT on N variables with bounded number of occurrences (Sparsification Lemma) \leadsto

split the variables into $\approx k$ blocks \leadsto split the clauses on one block into a constant number of sub-blocks (clauses vertex-disjoint)

The size of the created instance is $n = g^2k$.

$N = \Theta(gk) = \Theta(\sqrt{nk})$
2-Grid 3-SAT \rightarrow Partial 2-Grid Coloring

- clause checking gadget
- even variable assignment cell
- odd variable assignment cell
- local reference cell
- wires
- consistency checking gadget
Encoding information and reference coloring
Wires

A

B

p_1
p_2
p_3
p_4

q_1
q_2
q_3
q_4
Permutation

A

B

C

a
b
c
d
a
b
c
d
d
c
a
b
A
B
C
Forget

\[
\begin{array}{cc}
A & B \\
\begin{array}{c}
\bullet a \\
\bullet b \\
\bullet c \\
\bullet d \\
\end{array} & \begin{array}{c}
\bullet a | b \\
\bullet a | b \\
\bullet c \\
\bullet d \\
\end{array}
\end{array}
\]

\[
\begin{array}{cc}
C & \\
\begin{array}{c}
\bullet a | b \\
\bullet a | b \\
\bullet c \\
\bullet d \\
\end{array}
\end{array}
\]
Independence
Clauses

reference coloring

R

S

T

U

B

A

x1

x2

x3

variable assignment

clause gadget

variable assignment

[6] \ c
Consistency gadget (also crossing)
Higher dimension

Theorem
For $\alpha \in [0, 1]$ and dimension $d \geq 2$, coloring n unit d-balls with $\ell = \Theta(n^\alpha)$ colors cannot be solved in time $2^{n^{d-1+\alpha/d - \epsilon}}$ for any $\epsilon > 0$, under the ETH.

The first step in the chain is trickier: the higher dimensional grid should embed the SAT instance in a more compact way.

The second and third steps work similarly.
(Longer and longer) Segments

Theorem

6-coloring 2-Dir is not solvable in $2^{o(n)}$, under the ETH.

Reduction from 3-coloring on degree-4 graphs to list 6-coloring of segment intersection graphs.

The x_i's lists are [1, 2, 3], the y_j's lists are [4, 5, 6].

Circles are equality gadgets ($1 \equiv 4, 2 \equiv 5, 3 \equiv 6$), squares are inequality gadgets.
Equality

\begin{align*}
\text{vertex} & \quad \text{list} \\
(x_i) & \quad 1,2,3 \\
(y_i) & \quad 4,5,6 \\
a_1 & \quad 1,4 \\
b_1 & \quad 4,5 \\
c_1 & \quad 4,6 \\
a_2 & \quad 2,5 \\
b_2 & \quad 4,5 \\
c_2 & \quad 5,6 \\
a_3 & \quad 3,6 \\
b_3 & \quad 4,6 \\
c_3 & \quad 5,6
\end{align*}
Inequality

<table>
<thead>
<tr>
<th>vertex</th>
<th>list</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_i</td>
<td>1,2,3</td>
</tr>
<tr>
<td>y_j</td>
<td>4,5,6</td>
</tr>
<tr>
<td>x'</td>
<td>4,5,6</td>
</tr>
<tr>
<td>p_1</td>
<td>1,5</td>
</tr>
<tr>
<td>p_2</td>
<td>1,6</td>
</tr>
<tr>
<td>q_1</td>
<td>2,4</td>
</tr>
<tr>
<td>q_2</td>
<td>2,6</td>
</tr>
<tr>
<td>r_1</td>
<td>3,4</td>
</tr>
<tr>
<td>r_2</td>
<td>3,5</td>
</tr>
</tbody>
</table>
Inequality

Some extra gadgets permit to remove the lists.
Same lower bound for 4 colors.
What happens with 3-colors? (whiteboard)
Thanks for your attention!