Polyspace slightly superexponential parameterized algorithm for Subgraph Isomorphism in proper-minor closed classes

Algorithmic application in Pilipczuk and Siebertz’s paper on p-centered coloring

Édouard Bonnet

Virtual Meeting on Graph Theory, May 27th, 2020
Subgraph Isomorphism

Is H a subgraph of G?
Subgraph Isomorphism

Is H a subgraph of G?
Complexity of \textbf{Subgraph Isomorphism}

“Is H in G?” generalizes k-Clique

NP-complete, $W[1]$-complete parameterized by $p := |V(H)|$
Complexity of **Subgraph Isomorphism**

“Is H in G?” generalizes *k-Clique*

NP-complete, \(W[1] \)-complete parameterized by \(p := |V(H)| \)
no \(f(p)n^{o(p)} \), no \(f(p)n^{o(p/\log p)} \) for cubic \(H \), with \(n := |V(G)| \)
Complexity of **Subgraph Isomorphism**

“Is H in G?” generalizes **k-Clique**

NP-complete, W[1]-complete parameterized by $p := |V(H)|$

no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, tw(G))n$, by Courcelle’s theorem
Complexity of Subgraph Isomorphism

“Is H in G?” generalizes k-Clique

NP-complete, $W[1]$-complete parameterized by $p := |V(H)|$
no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, tw(G))n$, by Courcelle’s theorem
$2^{O(p)}n^{tw(H)+1}$, by color coding (Alon, Yuster, Zwick ’95)
Complexity of **Subgraph Isomorphism**

"Is H in G?" generalizes k-Clique

NP-complete, W[1]-complete parameterized by $p := |V(H)|$
no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, tw(G))n$, by Courcelle’s theorem
$2^{O(p)}n^{tw(H)+1}$, by color coding (Alon, Yuster, Zwick ’95)

$2^{O(p \log p)}n^{O(1)}$, when G is K_t-minor free, by treewidth-p coloring
Complexity of \textsc{Subgraph Isomorphism}

"Is H in G?" generalizes \textsc{k-Clique}

NP-complete, $W[1]$-complete parameterized by $p := |V(H)|$
no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, \text{tw}(G))n$, by Courcelle’s theorem
$2^{O(p)}n^{\text{tw}(H)+1}$, by color coding (Alon, Yuster, Zwick ’95)

$2^{O(p \log p)}n^{O(1)}$, when G is K_t-minor free, by treewidth-p coloring
$2^{O(p/\log p)}n^{O(1)}$, when G is apex-minor free and H connected
Complexity of **Subgraph Isomorphism**

“Is H in G?” generalizes **k-Clique**

NP-complete, W[1]-complete parameterized by \(p := |V(H)| \)

no \(f(p)n^{o(p)} \), no \(f(p)n^{o(p/\log p)} \) for cubic \(H \), with \(n := |V(G)| \)

\(f(p, \text{tw}(G))n \), by Courcelle’s theorem
\(2^{O(p)}n^{\text{tw}(H)+1} \), by color coding (Alon, Yuster, Zwick ’95)

\(2^{O(p\log p)}n^{O(1)} \), when \(G \) is \(K_t \)-minor free, by treewidth-\(p \) coloring
\(2^{O(p/\log p)}n^{O(1)} \), when \(G \) is apex-minor free and \(H \) connected
\(2^{O(\sqrt{p}\log^2 p)}n^{O(1)} \), if further \(H \) has bounded-degree
Complexity of **Subgraph Isomorphism**

“Is H in G?” generalizes k-**Clique**

NP-complete, $W[1]$-complete parameterized by $p := |V(H)|$

no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, \text{tw}(G))n$, by Courcelle’s theorem

$2^{O(p)}n^{\text{tw}(H)+1}$, by color coding (Alon, Yuster, Zwick ’95)

$2^{O(p \log p)}n^{O(1)}$, when G is K_t-minor free, by treewidth-p coloring

$2^{O(p/\log p)}n^{O(1)}$, when G is apex-minor free and H connected

$2^{O(\sqrt{p} \log^2 p)}n^{O(1)}$, if further H has bounded-degree

In sharp contrast: no $2^{o(n/\log n)}$, when G is series-parallel, H is a tree, and both graphs have only one vertex of degree more than 3.
Complexity of **Subgraph Isomorphism**

“Is H in G?” generalizes k-Clique

NP-complete, $W[1]$-complete parameterized by $p := |V(H)|$
no $f(p)n^{o(p)}$, no $f(p)n^{o(p/\log p)}$ for cubic H, with $n := |V(G)|$

$f(p, tw(G))n$, by Courcelle’s theorem
$2^{O(p)}n^{tw(H)+1}$, by color coding (Alon, Yuster, Zwick ’95)

$2^{O(p \log p)}n^{O(1)}$, when G is K_t-minor free, by treewidth-p coloring
$2^{O(p/\log p)}n^{O(1)}$, when G is apex-minor free and H connected
$2^{O(\sqrt{p} \log^2 p)}n^{O(1)}$, if further H has bounded-degree

In sharp contrast: no $2^{o(n/\log n)}$, when G is series-parallel, H is a tree, and both graphs have only one vertex of degree more than 3.

Theorem (Pilipczuk, Siebertz ’19)

Subgraph Isomorphism *can be solved in time* $2^{O(p \log p)}n^{O(1)}$
and polynomial space, when G is K_t-minor free.
Treedept

Treedept of G: smallest height of a forest F such that G is a subgraph of the ancestor-descendant closure of F.

![Diagram of forest F]
Treedept

Treedept of G: smallest height of a forest F such that G is a subgraph of the ancestor-descendant closure of F.

![Diagram](clos(F))
Treedeepth

Treedeepth of G: smallest height of a forest F such that G is a subgraph of the ancestor-descendant closure of F.

G has treedeepth at most 4
Treedefth

Treedefth of \(G \): smallest height of a forest \(F \) such that \(G \) is a subgraph of the ancestor-descendant closure of \(F \).

\[F \text{ clos}(F) \]

\(G \) has treedefth 4
\textbf{p-Centered colorings are treedepth-p colorings}

\textbf{Treedepth-p coloring:} every subgraph induced by a set X of at most p colors have treedepth at most $|X|$.
p-Centered colorings are treedepth-p colorings

Treedepth-p coloring: every subgraph induced by a set X of at most p colors have treedepth at most $|X|$.

Such an ind. subgraph G gets $|X|$ colors of the p-centered coloring
p-Centered colorings are treedepth-p colorings

Treedepth-p coloring: every subgraph induced by a set X of at most p colors have treedepth at most $|X|$.

Such an ind. subgraph G gets $|X|$ colors of the p-centered coloring

In each CC of G, one color appears exactly once
p-Centered colorings are treedepth-p colorings

Treedepth-p coloring: every subgraph induced by a set X of at most p colors have treedepth at most $|X|$.

Such an ind. subgraph G gets $|X|$ colors of the p-centered coloring

In each CC of G, one color appears exactly once
Set the corresponding vertices to be roots of the forest
\textbf{p-Centered colorings are treedepth-}p\ \textbf{colorings}

\textbf{Treedepth-}p\ \textbf{coloring:}\ every\ subgraph\ induced\ by\ a\ set\ \(X\)\ of\ at\ most\ \(p\)\ colors\ have\ treedepth\ at\ most\ \(|X|\).

Such\ an\ ind.\ subgraph\ \(G\)\ gets\ \(|X|\)\ colors\ of\ the\ \(p\)-centered\ coloring.

In\ each\ CC\ of\ \(G\),\ one\ color\ appears\ exactly\ once
Set\ the\ corresponding\ vertices\ to\ be\ roots\ of\ the\ forest.

The\ rest\ of\ the\ CC\ has\ at\ most\ \(|X|−1\)\ colors → recurse.
Reducing to graphs of treedepth $\leq p := |V(H)|$

$G \in \mathcal{C}$ excluding a minor $\rightarrow n^{O(1)}$ p-centered coloring with $p^{O(1)}$ colors
Reducing to graphs of treedepth $\leq p := |V(H)|$

$G \in \mathcal{C}$ excluding a minor $\rightarrow p$-centered coloring with $p^{O(1)}$ colors

\forall color set X of size p: treedepth decomposition F of $G' := G[\{v|v \text{ has a color in } X\}]$
Reducing to graphs of treedepth $\leq p := |V(H)|$

$G \in \mathcal{C}$ excluding a minor \rightarrow p-centered coloring with $p^{O(1)}$ colors

\forall color set X of size p: treedepth decomposition F of $G' := G[\{v|v \text{ has a color in } X\}]$

$\rightarrow (p^{O(1) \choose p})^{n^{O(1)}} = 2^{O(p \log p)} n^{O(1)}$
Reducing to graphs of treedepth $\leq p := |V(H)|$

$G \in \mathcal{C}$ excluding a minor \rightarrow p-centered coloring with $p^{O(1)}$ colors

\forall color set X of size p:

- treedepth decomposition F of $G' := G[\{v | v \text{ has a color in } X\}]$
- $\rightarrow \left(\frac{p^{O(1)}}{p}\right)^{n^{O(1)}} = 2^{O(p \log p)} n^{O(1)}$

Solve "is H in G'?" helped by F
Reducing to graphs of treedepth \(\leq p := |V(H)| \)

\[G \in \mathcal{C} \text{ excluding a minor } \rightarrow p\text{-centered coloring with } p^{O(1)} \text{ colors} \]

\[\forall \text{ color set } X \text{ of size } p: \]
\[\text{treedepth decomposition } F \text{ of } G' := G[\{ v \mid v \text{ has a color in } X \}] \]
\[\rightarrow (p^{O(1)}) n^{O(1)} = 2^{O(p \log p)} n^{O(1)} \]

**Solve “is } H \text{ in } G'?” helped by } F \]

A solution cannot escape since it receives at most } p \text{ colors}
Color coding step

\[H \]

\[G \]
Color coding step

Give each vertex a random color between 1 and p
Color coding step

Give each vertex a random color between 1 and p
Color coding step

Repeating this $100p^p$ times, well color a solution with prob. 0.999
Color coding step

Repeating this $p^p n$ times, well color a solution a.a.s.
Theorem (Alon, Yuster, Zwick ’95)

One can compute in polynomial-time a family \(\mathcal{F} \) of \(p^{O(1)} \log n \) functions \(f : V(G) \to \{1, \ldots, p^2\} \) such that for every set \(X \subseteq V(G) \) of size \(p \) there exists \(f \in \mathcal{F} \) injective on \(X \).
Derandomization

Theorem (Alon, Yuster, Zwick ’95)

One can compute in polynomial-time a family \mathcal{F} of $p^{O(1)} \log n$ functions $f : V(G) \rightarrow \{1, \ldots, p^2\}$ such that for every set $X \subseteq V(G)$ of size p there exists $f \in \mathcal{F}$ injective on X.

p-perfect family: every vertex subset of size p is multicolored (no repetition of colors) by at least one function of the family.
Derandomization

Theorem (Alon, Yuster, Zwick ’95)

One can compute in polynomial-time a family \mathcal{F} of $p^{O(1) \log n}$ functions $f : V(G) \to \{1, \ldots, p^2\}$ such that for every set $X \subseteq V(G)$ of size p there exists $f \in \mathcal{F}$ injective on X.

p-perfect family: every vertex subset of size p is multicolored (no repetition of colors) by at least one function of the family.

Theorem (Schmidt, Siegal ’90)

One can compute in polynomial-time a family \mathcal{G} of $2^{O(p)}$ functions $f : \{1, \ldots, p^2\} \to \{1, \ldots, p\}$ such that for every set $X \subseteq \{1, \ldots, p^2\}$ of size p there exists $g \in \mathcal{G}$ injective on X.

$\mathcal{F}' = \{\sigma \circ g \circ f | f \in \mathcal{F} \text{ and } g \in \mathcal{G} \text{ and } \sigma \in S_p\}$

$|\mathcal{F}'| = p! \cdot 2^{O(p)} \cdot p^{O(1) \log n} = 2^{O(p \log p) \log n}$
Colored Subgraph Isomorphism on bounded treedepth graphs

We are now left with proving:

Theorem (Pilipczuk, Siebertz ’19)

Colored Subgraph Isomorphism can be solved in time $2^{O(p \log p)} n^{O(1)}$ and polynomial space, when G is given with a treedepth decomposition of depth at most p.

\begin{figure}
\centering
\begin{tikzpicture}
 \node [draw,circle,fill=red,minimum size=1cm] (a) at (0,0) {H};
 \node [draw,circle,fill=green,minimum size=1cm] (b) at (1,0) {};
 \node [draw,circle,fill=blue,minimum size=1cm] (c) at (2,0) {};
 \node [draw,circle,fill=purple,minimum size=1cm] (d) at (1,1) {};

 \node [draw,circle,fill=red,minimum size=1cm] (e) at (4,0) {G};
 \node [draw,circle,fill=green,minimum size=1cm] (f) at (5,0) {};
 \node [draw,circle,fill=blue,minimum size=1cm] (g) at (6,0) {};
 \node [draw,circle,fill=purple,minimum size=1cm] (h) at (5,1) {};
 \node [draw,circle,fill=red,minimum size=1cm] (i) at (6,1) {};
 \node [draw,circle,fill=yellow,minimum size=1cm] (j) at (5,2) {};

 \draw (a) -- (b) -- (c) -- (d) -- (a);
 \draw (a) -- (e) -- (g) -- (i) -- (j) -- (f);
 \draw (b) -- (d);
 \draw (c) -- (e) -- (f);
 \draw (d) -- (j);
 \draw (e) -- (h) -- (i);
 \draw (f) -- (h);
 \draw (g) -- (i);
 \draw (h) -- (j);

 \node [draw,thick,fill=gray,fill opacity=0.2] (f) at (7,0) {F};

 \draw [->] (7.5,0) -- (8.5,0) node [right] {$\leq p$};
\end{tikzpicture}
\end{figure}
Some notations for the upcoming dynamic-programming
Some notations for the upcoming dynamic-programming

\[
\text{Chld}(u): \text{set of children of } u
\]
Some notations for the upcoming dynamic-programming

$\text{Child}(u)$: set of children of u
Some notations for the upcoming
dynamic-programming

Tail(u): set of strict ancestors of u
Some notations for the upcoming dynamic-programming

Desc(u): set of descendants of u, including u
disjoint pair \((X, D)\),
\(H[X]\) connected, and
\(N_H(X) \subseteq D\)
A tuple \((u, X, D, \gamma)\) with \(u \in V(G)\) is a chunk \(\gamma: D \to \text{Tail}(u)\) injective.
A tuple \((u, X, D, \gamma)\)

\(u \in V(G)\)

\((X, D)\) is a chunk

\(\gamma: D \to \text{Tail}(u)\) injective
Subproblems

Val\((u, X, D, \gamma) = \)
Is there \(\gamma' : X \to \text{Desc}(u) \) such that
\(\gamma \cup \gamma' \) is a (color-preserving) subgraph embedding?
Subproblems

Val(u, X, D, γ) =
Is there $\gamma' : X \rightarrow \text{Desc}(u)$ such that $\gamma \cup \gamma'$ is a (color-preserving) subgraph embedding?
How many tuples \((u, X, D, \gamma)\)?
\[
\leq n \cdot 3^p \cdot p^p = 2^{O(p \log p)} n
\]
Computing Val, u is a leaf of F

$\text{Val}(u, \emptyset, D, \gamma) = [\gamma \text{ is a subgraph embedding}]$
Computing Val, u is a leaf of F

$\text{Val}(u, \emptyset, D, \gamma) = \left[\gamma \text{ is a subgraph embedding} \right]$

$\text{Val}(u, \{w\}, D, \gamma) = \left[u \text{ is colored } w \text{ and } \gamma \cup \{w \rightarrow u\} \text{ is a s.e.} \right]$
Computing Val, u is a not a leaf of F

If u has not a color of X:

$$\text{Val}(u, X, D, \gamma) = \bigvee_{v \in \text{Child}(u)} \text{Val}(v, X, D, \gamma)$$
Computing Val, u is a *not* a leaf of F

If u has *not* a color of X:

$$\text{Val}(u, X, D, \gamma) = \bigvee_{v \in \text{Chld}(u)} \text{Val}(v, X, D, \gamma)$$

If u is colored $w \in X$:

$$\text{Val}(u, X, D, \gamma) = \bigvee_{v \in \text{Chld}(u)} \text{Val}(v, X, D, \gamma) \lor$$

$$\bigwedge_{Z \in \text{CC}(X \setminus \{w\})} \bigvee_{v \in \text{Chld}(u)} \text{Val}(v, Z, D \cup \{w\}, \gamma \cup \{w \rightarrow u\})$$
Algorithm

Compute $\bigvee_{r \text{ root of } F} \text{Val}(r, X, \emptyset, \emptyset)$ for every X CC of H
Algorithm

Compute $\bigvee_{r \text{ root of } F} \text{Val}(r, X, \emptyset, \emptyset)$ for every X CC of H

If all positive answers \rightarrow overall solution. Why?
Algorithm

Compute \(\bigvee_{r \text{ root of } F} \text{Val}(r, X, \emptyset, \emptyset) \) for every \(X \) CC of \(H \)

If all positive answers \(\rightarrow \) overall solution. Why?

Disjointness. That was the point of color coding.
Complexity

Space: polynomial, calling stack bounded by treedepth
Complexity

Space: polynomial, calling stack bounded by treedepth

Time: $2^{O(p \log p)} n^{O(1)}$ all recursive calls are different. A non-root call defines a unique parent tuple.
Summary

p color classes of a p-centered coloring have treedepth p

Color coding for solution disjointness

Treedepth DP allows polyspace, as opposed to treewidth DP

An example of such an algorithm, notion of chunk
Summary

p color classes of a p-centered coloring have treedepth p

Color coding for solution disjointness

Treedepth DP allows polyspace, as opposed to treewidth DP

An example of such an algorithm, notion of chunk

Thank you for your attention!