Twin-Width of Groups

Colin Geniet
joint work with Édouard Bonnet, Romain Tessera, Stéphan Thomassé

1st Workshop on Twin-width 26 May 2023, Aussois

Open problems on twin-width

- Efficient approximation of twin-width

Open problems on twin-width

- Efficient approximation of twin-width
- Characterising obstructions to twin-width

Open problems on twin-width

- Efficient approximation of twin-width
- Characterising obstructions to twin-width

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

Open problems on twin-width

- Efficient approximation of twin-width
- Characterising obstructions to twin-width
- Finding obstructions with bounded degree

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

Open problems on twin-width

- Efficient approximation of twin-width
- Characterising obstructions to twin-width
- Finding obstructions with bounded degree

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

Goal: anything interesting about twin-width and bounded degree

Strict twin-width

Definition

Strict twin-width $\operatorname{stww}(G)$: like twin-width, but

- natural contractions, without red edges
- bound the degree of the graphs in the sequence

Equivalently: twin-width of G with every edge turned red.

Strict twin-width

Definition

Strict twin-width $\operatorname{stww}(G)$: like twin-width, but

- natural contractions, without red edges
- bound the degree of the graphs in the sequence

Equivalently: twin-width of G with every edge turned red.

$$
\max (\operatorname{tww}(G), \Delta(G)) \leq \operatorname{stww}(G) \leq \operatorname{tww}(G)+\Delta(G)
$$

Strict twin-width is monotone under taking subgraphs

Powers of graphs

Power graph: $G^{(k)}=\left(V(G),\left\{x y \mid d_{G}(x, y) \leq k\right\}\right)$

Lemma

$$
\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^{k}
$$

Powers of graphs

Power graph: $G^{(k)}=\left(V(G),\left\{x y \mid d_{G}(x, y) \leq k\right\}\right)$

Lemma

$$
\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^{k}
$$

For \mathcal{P} partition of $V(G), G^{k} / \mathcal{P} \subseteq(G / \mathcal{P})^{k}$.

Powers of graphs

Power graph: $G^{(k)}=\left(V(G),\left\{x y \mid d_{G}(x, y) \leq k\right\}\right)$

Lemma

$$
\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^{k}
$$

For \mathcal{P} partition of $V(G), G^{k} / \mathcal{P} \subseteq(G / \mathcal{P})^{k}$.

$G / \mathcal{P}_{n}, \ldots, G / \mathcal{P}_{1}$ contraction sequence with degree $\leq d$
$\Rightarrow \quad G^{k} / \mathcal{P}_{n}, \ldots, G^{k} / \mathcal{P}_{1}$ contraction sequence with degree $\leq d^{k}$

Cayley graphs

For Γ group, S finite generating set, $\operatorname{Cay}(\Gamma, S)$ is:

- vertices Γ
- edges ($x, x s$) for $x \in \Gamma, s \in S$

Cayley graphs

For Γ group, S finite generating set, $\operatorname{Cay}(\Gamma, S)$ is:

- vertices Γ
- edges ($x, x s$) for $x \in \Gamma, s \in S$

Examples:

- $\operatorname{Cay}\left(\mathbb{Z}^{2},\{(1,0),(0,1)\}\right)$ is the grid
- $\operatorname{Cay}(\mathbb{F}(a, b),\{a, b\})$ is the 4-regular tree (free group)

Cayley graphs

For Γ group, S finite generating set, $\operatorname{Cay}(\Gamma, S)$ is:

- vertices Γ
- edges ($x, x s$) for $x \in \Gamma, s \in S$

Examples:

- $\operatorname{Cay}\left(\mathbb{Z}^{2},\{(1,0),(0,1)\}\right)$ is the grid
- $\operatorname{Cay}(\mathbb{F}(a, b),\{a, b\})$ is the 4-regular tree (free group)

Lemma

For any finite generating $S_{1}, S_{2}, \exists k$,

$$
\operatorname{Cay}\left(\Gamma, S_{1}\right) \subset \operatorname{Cay}\left(\Gamma, S_{2}\right)^{k}
$$

Cayley graphs

For Γ group, S finite generating set, $\operatorname{Cay}(\Gamma, S)$ is:

- vertices Γ
- edges ($x, x s$) for $x \in \Gamma, s \in S$

Examples:

- $\operatorname{Cay}\left(\mathbb{Z}^{2},\{(1,0),(0,1)\}\right)$ is the grid
- $\operatorname{Cay}(\mathbb{F}(a, b),\{a, b\})$ is the 4-regular tree (free group)

Lemma

For any finite generating $S_{1}, S_{2}, \exists k$,

$$
\operatorname{Cay}\left(\Gamma, S_{1}\right) \subset \operatorname{Cay}\left(\Gamma, S_{2}\right)^{k}
$$

All Cayley graphs of Γ have finite twin-width, or none do.

Twinwidth of groups

1. Is twin-width useful for groups?

Twinwidth of groups

1. Is twin-width useful for groups?
2. Are there groups with infinite twin-width?

Twinwidth of groups

1. Is twin-width useful for groups?
2. Are there groups with infinite twin-width?
3. Are groups useful for twin-width of graphs?

Groups and smallness

Theorem

Classes of graphs with bounded twin-width are small: at most $c^{n} n$! labelled graphs on n vertices.
E.g. cubic graphs have unbounded twin-width, because they are not small.

Groups and smallness

Theorem

Classes of graphs with bounded twin-width are small: at most $c^{n} n$! labelled graphs on n vertices.
E.g. cubic graphs have unbounded twin-width, because they are not small.

Question

Do all small hereditary classes have bounded twin-width?

Groups and smallness

Theorem

Classes of graphs with bounded twin-width are small: at most $c^{n} n$! labelled graphs on n vertices.
E.g. cubic graphs have unbounded twin-width, because they are not small.

Question

Do all small hereditary classes have bounded twin-width?

Lemma

The class induced by any fixed Cayley graph is small.

Twinwidth of groups

1. Is twin-width useful for groups?
2. Are there groups with infinite twin-width?
3. Are groups useful for twin-width of graphs?

Groups with infinite twin-width

Theorem (Osajda)

Let $\left(G_{n}\right)_{n \in N}$ be a sequence of graphs with

- bounded degree,
- bounded $\operatorname{diam}\left(G_{n}\right) / \operatorname{girth}\left(G_{n}\right)$ ratio,
- and $\operatorname{girth}\left(G_{n+1}\right) \geq \operatorname{girth}\left(G_{n}\right)+6$.

Then $\left(G_{n}\right)_{n \in N}$ embeds isometrically into some Cayley graph.

Groups with infinite twin-width

Theorem (Osajda)

Let $\left(G_{n}\right)_{n \in N}$ be a sequence of graphs with

- bounded degree,
- bounded $\operatorname{diam}\left(G_{n}\right) / \operatorname{girth}\left(G_{n}\right)$ ratio,
- and $\operatorname{girth}\left(G_{n+1}\right) \geq \operatorname{girth}\left(G_{n}\right)+6$.

Then $\left(G_{n}\right)_{n \in N}$ embeds isometrically into some Cayley graph.

Claim

The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not small.

Graphs with logarithmic girth and diameter

Claim

The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not small.

- Pick G bipartite cubic randomly.

Graphs with logarithmic girth and diameter

Claim

The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not small.

- Pick G bipartite cubic randomly.
- With constant probability, G has few cycles of length $\leq \log (n) / 4$.

Graphs with logarithmic girth and diameter

Claim

The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not small.

- Pick G bipartite cubic randomly.
- With constant probability, G has few cycles of length $\leq \log (n) / 4$.
- Edit $O\left(n^{7 / 8}\right)$ edges to ensure $\operatorname{girth}(G) \geq \log (n) / 4$ and $\operatorname{girth}(G) \leq 3 \log (n)$.

Group presentation

Classical presentation (of groups):

- S a set of 'generators'
- R a set of words on $S \cup S^{-1}$
$\langle S ; R\rangle$ is the group generated by S, such that $\forall r \in R, r=1$.

Group presentation

Classical presentation (of groups):

- S a set of 'generators'
- R a set of words on $S \cup S^{-1}$
$\langle S ; R\rangle$ is the group generated by S, such that $\forall r \in R, r=1$.
Graphical presentation:
- S a set of 'generators'
- a graph G, with edges oriented and labelled with S

Relations $R=$ words read on cycles of G.

Group presentation

Classical presentation (of groups):

- S a set of 'generators'
- R a set of words on $S \cup S^{-1}$
$\langle S ; R\rangle$ is the group generated by S, such that $\forall r \in R, r=1$.
Graphical presentation:
- S a set of 'generators'
- a graph G, with edges oriented and labelled with S

Relations $R=$ words read on cycles of G.
Understanding $\langle S ; R\rangle$ is hard:
given S, R, testing $\langle S ; R\rangle=\{1\}$ is undecidable.

Small cancellation

$\langle S ; G\rangle$ a graphical presentation (G is S-labelled)
$C^{\prime}(\lambda)$ small cancellation condition:
if $p_{1}, p_{2} \in G$ are distinct paths with the same labelling, then if p_{1} is contained in a cycle C,

$$
\left|p_{1}\right| \leq|C| / \lambda
$$

(and idem with p_{2}).

Lemma

If $\langle S ; G\rangle$ satisfies $C^{\prime}(6)$, for any word $w=w_{1} \ldots w_{n}$ over $S \cup S^{-1}$ such that $w=1$, one can shorten w by using some equality given by some cycle of G.

Proof based on Euler formula.

Grid theorem for groups

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$.

Grid theorem for groups

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$. If $<$ is a total order on Γ, let $M_{<}(x)$ the matrix of this permutation, ordered by $<$.

Grid theorem for groups

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$.
If $<$ is a total order on Γ, let $M_{<}(x)$ the matrix of this permutation, ordered by $<$.

Theorem

For any group Γ and generating set S, the following are equivalent:

- Γ has finite twin-width,
- Γ admits an order $<$ s.t. $\forall x \in \Gamma, \operatorname{tww}\left(M_{<}(x)\right)<\infty$.
- Γ admits an order $<$ s.t. $\forall x \in S, \operatorname{tww}\left(M_{<}(x)\right)<\infty$.
Γ is orderable if there is an order < such that for any $x \in \Gamma$, the map $y \mapsto y \cdot x$ is increasing.

Grid theorem for groups

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$.
If $<$ is a total order on Γ, let $M_{<}(x)$ the matrix of this permutation, ordered by $<$.

Theorem

For any group Γ and generating set S, the following are equivalent:

- Γ has finite twin-width,
- Γ admits an order $<$ s.t. $\forall x \in \Gamma$, $\operatorname{tww}\left(M_{<}(x)\right)<\infty$.
- Γ admits an order $<$ s.t. $\forall x \in S, \operatorname{tww}\left(M_{<}(x)\right)<\infty$.
Γ is orderable if there is an order < such that for any $x \in \Gamma$, the map $y \mapsto y \cdot x$ is increasing.
Orderable groups have finite twin-width.

Uniform twin-width

Definition

The uniform twin-width of Γ is

$$
\operatorname{utww}(\Gamma)=\min _{<\text {total order }} \sup _{x \in \Gamma} \operatorname{tww}\left(M_{<}(x)\right)
$$

Orderable groups have uniform twin-width 2.

Uniform twin-width

Definition

The uniform twin-width of Γ is

$$
\operatorname{utww}(\Gamma)=\min _{<\text {total order }} \sup _{x \in \Gamma} \operatorname{tww}\left(M_{<}(x)\right)
$$

Orderable groups have uniform twin-width 2.
Lemma
For any group G, subgroup $H \subset G$,

$$
\operatorname{utww}(G) \leq \max (\operatorname{tww}(H), \operatorname{tww}(G / H))
$$

Uniform twin-width

Definition

The uniform twin-width of Γ is

$$
\operatorname{utww}(\Gamma)=\min _{<\text {total order }} \sup _{x \in \Gamma} \operatorname{tww}\left(M_{<}(x)\right)
$$

Orderable groups have uniform twin-width 2.

Lemma

For any group G, subgroup $H \subset G$,

$$
\operatorname{utww}(G) \leq \max (\operatorname{tww}(H), \operatorname{tww}(G / H))
$$

And many other lemmas of this form...
These give many groups of finite uniform twin-width.

Summary and questions

Results:

- Twin-width generalises to groups.
- There is a group with infinite twin-width.
- It gives a small class with unbounded twin-width.
- Many groups have finite twin-width, and it is preserved by several usual constructions.

Summary and questions

Results:

- Twin-width generalises to groups.
- There is a group with infinite twin-width.
- It gives a small class with unbounded twin-width.
- Many groups have finite twin-width, and it is preserved by several usual constructions.

Questions:

- Explicit construction for a group with infinite twin-width?
- Applications of twin-width to groups?
- Separate finite twin-width and finite uniform twin-width?

Candidate: permutations on \mathbb{Z}.

- Any group with uniform twin-width other than 2 or ∞ ?

