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Open problems on twin-width

I Efficient approximation of twin-width

I Characterising obstructions to twin-width
I Finding obstructions with bounded degree

Fact
Cubic graphs do not have bounded twin-width.

Proof.
Cubic graphs are not a small class.

Goal: anything interesting about twin-width and bounded degree
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Strict twin-width

Definition
Strict twin-width stww(G): like twin-width, but
I natural contractions, without red edges
I bound the degree of the graphs in the sequence

Equivalently: twin-width of G with every edge turned red.

max(tww(G),∆(G)) ≤ stww(G) ≤ tww(G) + ∆(G)

Strict twin-width is monotone under taking subgraphs
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Powers of graphs
Power graph: G(k) = (V (G), {xy | dG(x , y) ≤ k})

Lemma

stww
(

G(k)
)
≤ stww(G)k

For P partition of V (G), Gk/P ⊆ (G/P)k .

A
B

C
k = 2

G/Pn, . . . ,G/P1 contraction sequence with degree ≤ d
⇒ Gk/Pn, . . . ,Gk/P1 contraction sequence with degree ≤ dk
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Cayley graphs

For Γ group, S finite generating set, Cay(Γ,S) is:
I vertices Γ

I edges (x , xs) for x ∈ Γ, s ∈ S

Examples:
I Cay(Z2, {(1, 0), (0, 1)}) is the grid
I Cay(F(a, b), {a, b}) is the 4-regular tree (free group)

Lemma
For any finite generating S1,S2, ∃k,

Cay(Γ,S1) ⊂ Cay(Γ,S2)
k

All Cayley graphs of Γ have finite twin-width, or none do.
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Twinwidth of groups

1. Is twin-width useful for groups?

2. Are there groups with infinite twin-width?
3. Are groups useful for twin-width of graphs?
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Groups and smallness

Theorem
Classes of graphs with bounded twin-width are small:
at most cnn! labelled graphs on n vertices.

E.g. cubic graphs have unbounded twin-width, because they are
not small.

Question
Do all small hereditary classes have bounded twin-width?

Lemma
The class induced by any fixed Cayley graph is small.
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Groups with infinite twin-width

Theorem (Osajda)
Let (Gn)n∈N be a sequence of graphs with
I bounded degree,
I bounded diam(Gn)/ girth(Gn) ratio,
I and girth(Gn+1) ≥ girth(Gn) + 6.

Then (Gn)n∈N embeds isometrically into some Cayley graph.

Claim
The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not
small.
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Graphs with logarithmic girth and diameter

Claim
The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not
small.

I Pick G bipartite cubic randomly.

I With constant probability, G has few cycles of length
≤ log(n)/4.

I Edit O(n7/8) edges to ensure girth(G) ≥ log(n)/4
and girth(G) ≤ 3 log(n).

9 / 14



Graphs with logarithmic girth and diameter

Claim
The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not
small.

I Pick G bipartite cubic randomly.
I With constant probability, G has few cycles of length

≤ log(n)/4.

I Edit O(n7/8) edges to ensure girth(G) ≥ log(n)/4
and girth(G) ≤ 3 log(n).

9 / 14



Graphs with logarithmic girth and diameter

Claim
The class of graphs with degree ≤ 6 and diam / girth ≤ 12 is not
small.

I Pick G bipartite cubic randomly.
I With constant probability, G has few cycles of length

≤ log(n)/4.
I Edit O(n7/8) edges to ensure girth(G) ≥ log(n)/4

and girth(G) ≤ 3 log(n).

9 / 14



Group presentation

Classical presentation (of groups):
I S a set of ‘generators’
I R a set of words on S ∪ S−1

〈S;R〉 is the group generated by S, such that ∀r ∈ R , r = 1.

Graphical presentation:
I S a set of ‘generators’
I a graph G, with edges oriented and labelled with S

Relations R = words read on cycles of G.

Understanding 〈S;R〉 is hard:
given S,R , testing 〈S;R〉 = {1} is undecidable.
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Small cancellation

〈S;G〉 a graphical presentation (G is S-labelled)

C ′(λ) small cancellation condition:
if p1, p2 ∈ G are distinct paths with the same labelling, then
if p1 is contained in a cycle C ,

|p1| ≤ |C |/λ

(and idem with p2).

Lemma
If 〈S;G〉 satisfies C ′(6), for any word w = w1 . . .wn over S ∪ S−1

such that w = 1, one can shorten w by using some equality given
by some cycle of G.

Proof based on Euler formula.
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Grid theorem for groups

Any x ∈ Γ defines a permutation on Γ by y 7→ y · x .

If < is a total order on Γ, let M<(x) the matrix of this
permutation, ordered by <.

Theorem
For any group Γ and generating set S, the following are equivalent:

I Γ has finite twin-width,
I Γ admits an order < s.t. ∀x ∈ Γ, tww(M<(x)) < ∞.
I Γ admits an order < s.t. ∀x ∈ S, tww(M<(x)) < ∞.

Γ is orderable if there is an order < such that
for any x ∈ Γ, the map y 7→ y · x is increasing.
Orderable groups have finite twin-width.
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Uniform twin-width

Definition
The uniform twin-width of Γ is

utww(Γ) = min
< total order

sup
x∈Γ

tww(M<(x))

Orderable groups have uniform twin-width 2.

Lemma
For any group G, subgroup H ⊂ G,

utww(G) ≤ max(tww(H), tww(G/H))

And many other lemmas of this form…
These give many groups of finite uniform twin-width.
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Summary and questions

Results:
I Twin-width generalises to groups.
I There is a group with infinite twin-width.
I It gives a small class with unbounded twin-width.
I Many groups have finite twin-width, and it is preserved by

several usual constructions.

Questions:
I Explicit construction for a group with infinite twin-width?
I Applications of twin-width to groups?
I Separate finite twin-width and finite uniform twin-width?

Candidate: permutations on Z.
I Any group with uniform twin-width other than 2 or ∞?
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