Twin-Width of Groups

Colin Geniet joint work with Édouard Bonnet, Romain Tessera, Stéphan Thomassé

> 1st Workshop on Twin-width 26 May 2023, Aussois

Efficient approximation of twin-width

- Efficient approximation of twin-width
- Characterising obstructions to twin-width

Efficient approximation of twin-width

Characterising obstructions to twin-width

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

- Efficient approximation of twin-width
- Characterising obstructions to twin-width
- Finding obstructions with bounded degree

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

- Efficient approximation of twin-width
- Characterising obstructions to twin-width
- Finding obstructions with bounded degree

Fact

Cubic graphs do not have bounded twin-width.

Proof.

Cubic graphs are not a small class.

Goal: anything interesting about twin-width and bounded degree

Definition

Strict twin-width stww(G): like twin-width, but

- natural contractions, without red edges
- bound the degree of the graphs in the sequence

Equivalently: twin-width of G with every edge turned red.

Definition

Strict twin-width stww(G): like twin-width, but

- natural contractions, without red edges
- bound the degree of the graphs in the sequence

Equivalently: twin-width of G with every edge turned red.

 $\max(\operatorname{tww}(G), \Delta(G)) \le \operatorname{stww}(G) \le \operatorname{tww}(G) + \Delta(G)$

Strict twin-width is monotone under taking subgraphs

Powers of graphs

Power graph:
$$G^{(k)} = (V(G), \{xy \mid d_G(x, y) \le k\})$$

Lemma

$$\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^k$$

Powers of graphs

Power graph:
$$G^{(k)} = (V(G), \{xy \mid d_G(x, y) \leq k\})$$

Lemma

$$\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^k$$

For \mathcal{P} partition of V(G), $G^k/\mathcal{P} \subseteq (G/\mathcal{P})^k$.

Powers of graphs

Power graph:
$$G^{(k)} = (V(G), \{xy \mid d_G(x, y) \leq k\})$$

Lemma

$$\operatorname{stww}\left(G^{(k)}\right) \leq \operatorname{stww}(G)^{k}$$

For \mathcal{P} partition of V(G), $G^k/\mathcal{P} \subseteq (G/\mathcal{P})^k$.

 $G/\mathcal{P}_n, \ldots, G/\mathcal{P}_1$ contraction sequence with degree $\leq d$ $\Rightarrow \quad G^k/\mathcal{P}_n, \ldots, G^k/\mathcal{P}_1$ contraction sequence with degree $\leq d^k$

For Γ group, ${\it S}$ finite generating set, ${\rm Cay}(\Gamma,{\it S})$ is:

- \blacktriangleright vertices Γ
- edges (x, xs) for $x \in \Gamma$, $s \in S$

For Γ group, ${\it S}$ finite generating set, ${\rm Cay}(\Gamma,{\it S})$ is:

- vertices Γ
- edges (x, xs) for $x \in \Gamma$, $s \in S$

Examples:

- $Cay(\mathbb{Z}^2, \{(1,0), (0,1)\})$ is the grid
- $Cay(\mathbb{F}(a, b), \{a, b\})$ is the 4-regular tree (free group)

For Γ group, ${\it S}$ finite generating set, ${\rm Cay}(\Gamma,{\it S})$ is:

vertices Γ

• edges (x, xs) for $x \in \Gamma$, $s \in S$

Examples:

•
$$Cay(\mathbb{Z}^2, \{(1,0), (0,1)\})$$
 is the grid

► Cay(𝔅(a, b), {a, b}) is the 4-regular tree (free group)

Lemma

For any finite generating $S_1, S_2, \exists k$,

 $Cay(\Gamma, S_1) \subset Cay(\Gamma, S_2)^k$

For Γ group, S finite generating set, $Cay(\Gamma, S)$ is:

vertices Γ

• edges (x, xs) for $x \in \Gamma$, $s \in S$

Examples:

•
$$Cay(\mathbb{Z}^2, \{(1,0), (0,1)\})$$
 is the grid

► Cay(𝔅(a, b), {a, b}) is the 4-regular tree (free group)

Lemma

For any finite generating $S_1, S_2, \exists k$,

 $Cay(\Gamma, S_1) \subset Cay(\Gamma, S_2)^k$

All Cayley graphs of Γ have finite twin-width, or none do.

1. Is twin-width useful for groups?

- 1. Is twin-width useful for groups?
- 2. Are there groups with infinite twin-width?

- 1. Is twin-width useful for groups?
- 2. Are there groups with infinite twin-width?
- 3. Are groups useful for twin-width of graphs?

Theorem

Classes of graphs with bounded twin-width are small: at most cⁿn! labelled graphs on n vertices.

 $\mathsf{E}.\mathsf{g}.$ cubic graphs have unbounded twin-width, because they are not small.

Theorem

Classes of graphs with bounded twin-width are small: at most cⁿn! labelled graphs on n vertices.

E.g. cubic graphs have unbounded twin-width, because they are not small.

Question

Do all small hereditary classes have bounded twin-width?

Theorem

Classes of graphs with bounded twin-width are small: at most cⁿn! labelled graphs on n vertices.

E.g. cubic graphs have unbounded twin-width, because they are not small.

Question

Do all small hereditary classes have bounded twin-width?

Lemma

The class induced by any fixed Cayley graph is small.

- 1. Is twin-width useful for groups?
- 2. Are there groups with infinite twin-width?
- 3. Are groups useful for twin-width of graphs?

Theorem (Osajda)

Let $(G_n)_{n \in N}$ be a sequence of graphs with

- bounded degree,
- ▶ bounded diam (G_n) /girth (G_n) ratio,
- and $\operatorname{girth}(G_{n+1}) \ge \operatorname{girth}(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Theorem (Osajda)

Let $(G_n)_{n \in N}$ be a sequence of graphs with

- bounded degree,
- ▶ bounded diam (G_n) /girth (G_n) ratio,
- and $\operatorname{girth}(G_{n+1}) \ge \operatorname{girth}(G_n) + 6$.

Then $(G_n)_{n \in \mathbb{N}}$ embeds isometrically into some Cayley graph.

Claim

The class of graphs with degree ≤ 6 and $diam\,/\,girth \leq 12$ is not small.

Claim

The class of graphs with degree ≤ 6 and $diam\,/\,girth \leq 12$ is not small.

Pick G bipartite cubic randomly.

Claim

The class of graphs with degree ≤ 6 and $diam\,/\,girth \leq 12$ is not small.

- Pick G bipartite cubic randomly.
- With constant probability, G has few cycles of length $\leq \log(n)/4$.

Claim

The class of graphs with degree ≤ 6 and $diam\,/\,girth \leq 12$ is not small.

- Pick G bipartite cubic randomly.
- With constant probability, G has few cycles of length $\leq \log(n)/4$.
- ► Edit O(n^{7/8}) edges to ensure girth(G) ≥ log(n)/4 and girth(G) ≤ 3 log(n).

Classical presentation (of groups):

- ► S a set of 'generators'
- *R* a set of words on $S \cup S^{-1}$

 $\langle S; R
angle$ is the group generated by S, such that $\forall r \in R$, r = 1.

Classical presentation (of groups):

- S a set of 'generators'
- *R* a set of words on $S \cup S^{-1}$

 $\langle S; R
angle$ is the group generated by S, such that $\forall r \in R$, r = 1.

Graphical presentation:

S a set of 'generators'

• a graph G, with edges oriented and labelled with S Relations R = words read on cycles of G. Classical presentation (of groups):

- S a set of 'generators'
- *R* a set of words on $S \cup S^{-1}$

 $\langle S; R
angle$ is the group generated by S, such that $\forall r \in R$, r = 1.

Graphical presentation:

S a set of 'generators'

• a graph G, with edges oriented and labelled with S Relations R = words read on cycles of G.

Understanding $\langle S; R \rangle$ is hard: given S, R, testing $\langle S; R \rangle = \{1\}$ is undecidable. $\langle S; G
angle$ a graphical presentation (G is S-labelled)

 $C'(\lambda)$ small cancellation condition: if $p_1,p_2\in G$ are distinct paths with the same labelling, then if p_1 is contained in a cycle C,

 $|p_1| \leq |C|/\lambda$

(and idem with p_2).

Lemma

If $\langle S; G \rangle$ satisfies C'(6), for any word $w = w_1 \dots w_n$ over $S \cup S^{-1}$ such that w = 1, one can shorten w by using some equality given by some cycle of G.

Proof based on Euler formula.

Grid theorem for groups

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$.

Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$. If < is a total order on Γ , let $M_{<}(x)$ the matrix of this permutation, ordered by <. Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$. If < is a total order on Γ , let $M_{<}(x)$ the matrix of this permutation, ordered by <.

Theorem

For any group Γ and generating set S, the following are equivalent:

- Γ has finite twin-width,
- Γ admits an order $< s.t. \forall x \in \Gamma, tww(M_{<}(x)) < \infty.$
- ▶ Γ admits an order < s.t. $\forall x \in S$, tww $(M_{<}(x)) < \infty$.

 Γ is <u>orderable</u> if there is an order < such that for any $x \in \Gamma$, the map $y \mapsto y \cdot x$ is increasing. Any $x \in \Gamma$ defines a permutation on Γ by $y \mapsto y \cdot x$. If < is a total order on Γ , let $M_{<}(x)$ the matrix of this permutation, ordered by <.

Theorem

For any group Γ and generating set S, the following are equivalent:

- Γ has finite twin-width,
- ▶ Γ admits an order < s.t. $\forall x \in \Gamma$, tww $(M_{<}(x)) < \infty$.
- ▶ Γ admits an order < s.t. $\forall x \in S$, tww $(M_{<}(x)) < \infty$.

 Γ is <u>orderable</u> if there is an order < such that for any $x \in \Gamma$, the map $y \mapsto y \cdot x$ is increasing. Orderable groups have finite twin-width.

Uniform twin-width

Definition

The uniform twin-width of $\boldsymbol{\Gamma}$ is

$$\operatorname{utww}(\Gamma) = \min_{< \text{ total order } x \in \Gamma} \sup_{x \in \Gamma} \operatorname{tww}(M_{<}(x))$$

Orderable groups have uniform twin-width 2.

Uniform twin-width

Definition

The uniform twin-width of $\boldsymbol{\Gamma}$ is

$$\operatorname{utww}(\Gamma) = \min_{< ext{ total order } x \in \Gamma} \sup_{x \in \Gamma} \operatorname{tww}(M_{<}(x))$$

Orderable groups have uniform twin-width 2.

Lemma

For any group G, subgroup $H \subset G$,

 $utww(G) \le \max(tww(H), tww(G/H))$

Uniform twin-width

Definition

The uniform twin-width of $\boldsymbol{\Gamma}$ is

$$\operatorname{utww}(\Gamma) = \min_{< ext{ total order } x \in \Gamma} \sup_{x \in \Gamma} \operatorname{tww}(M_{<}(x))$$

Orderable groups have uniform twin-width 2.

Lemma

```
For any group G, subgroup H \subset G,
```

$$\mathrm{utww}(G) \le \max(\mathrm{tww}(H), \mathrm{tww}(G/H))$$

And many other lemmas of this form...

These give many groups of finite uniform twin-width.

Results:

- Twin-width generalises to groups.
- There is a group with infinite twin-width.
- It gives a small class with unbounded twin-width.
- Many groups have finite twin-width, and it is preserved by several usual constructions.

Results:

- Twin-width generalises to groups.
- There is a group with infinite twin-width.
- It gives a small class with unbounded twin-width.
- Many groups have finite twin-width, and it is preserved by several usual constructions.

Questions:

- Explicit construction for a group with infinite twin-width?
- Applications of twin-width to groups?
- Separate finite twin-width and finite uniform twin-width? Candidate: permutations on Z.
- Any group with uniform twin-width other than 2 or ∞ ?