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Part 1

Mixed minors
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Twin-width and matrices

A 0/1-matrix can be:

0 0 0 0
1 1 1 1
1 1 1 1
0 0 0 0
1 1 1 1

horizontal

0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0
0 1 1 0

vertical

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

constant

0 1 1 1
1 0 1 1
0 0 0 0
0 0 1 0
0 1 0 0

mixed

Note: mixed ⇐⇒ has a 2× 2 contiguous mixed submatrix (corner).
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Twin-width and matrices

Divisions

Division D – partitioning of columns and rows into intervals (blocks).

0 1 0 0 0 0 0 1 1
1 1 0 0 1 1 1 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0

1 0 0 0 1 1 0 0 1
0 1 0 1 1 1 1 1 1

Zone – intersection of a row block and a column block

Mixed minors

D is a mixed minor if each zone of D is mixed.

Mixed freeness

Matrix M is d-mixed free if it has no d × d mixed minor.
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Grid theorem for twin-width

Mixed freeness

Matrix M is d-mixed free if it has no d × d mixed minor.

Theorem (Twin-width I)

Let d ∈ N be an integer and G be a graph. Then:

tww (G ) ≤ d =⇒ G has a (2d + 2)-mixed free adjacency matrix.

G has a d-mixed free adjacency matrix =⇒ tww (G ) ≤ 22O(d)
.
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Marcus–Tardos theorem and twin-width

Mixed freeness

Matrix M is d-mixed free if it has no d × d mixed minor.

Theorem (Twin-width I, “Marcus–Tardos”)

If: M – a d-mixed free matrix,
D – an n × n division of M

⇒ D has at most cd · n mixed zones (cd = const(d)).

Number of mixed zones: linear instead of quadratic!

Marek Soko lowski Mixed minors and friends 25 May 2023 6 / 32



Marcus–Tardos theorem and twin-width

Mixed freeness

Matrix M is d-mixed free if it has no d × d mixed minor.

Theorem (Twin-width I, “Marcus–Tardos”)

If: M – a d-mixed free matrix,
D – an n × n division of M

⇒ D has at most cd · n mixed zones (cd = const(d)).

Number of mixed zones: linear instead of quadratic!

Marek Soko lowski Mixed minors and friends 25 May 2023 6 / 32



Part 2

Compact representations

Pilipczuk, Soko lowski, Zych-Pawlewicz,
Compact Representation for Matrices of Bounded Twin-Width
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Twin-width of matrices

Note: M is d-twin-ordered =⇒ M is (2d + 2)-mixed-free.

Marek Soko lowski Mixed minors and friends 25 May 2023 8 / 32



Twin-width of matrices

t-twin-ordered matrices

0 1 1 0 0 0

1 0 1 1 1 0

0 0 1 0 0 0

0 0 1 0 0 1

1 1 1 1 1 1

0 0 0 1 1 1

Maximum ×’s in any row/column now: 0
Maximum so far: 0

Note: M is d-twin-ordered =⇒ M is (2d + 2)-mixed-free.
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t-twin-ordered matrices
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Twin-width of matrices

t-twin-ordered matrices
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Twin-width of matrices

t-twin-ordered matrices

✕
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Twin-width of matrices

Red number of a contraction sequence

Red number = maximum ×’s in any row/column during the contraction.

Note: M is d-twin-ordered =⇒ M is (2d + 2)-mixed-free.
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Compact data structures

Objectives

A compact data structure for a dynamic problem should:

consume little space: closer to the optimum = better,

answer queries efficiently,

(preferably) be constructed efficiently.

Our case:

Given: M – a d-twin-ordered matrix

Want: to query for entries of M

Compact: bitsize O(S) bits if S = information-theoretic min bitsize.
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Given: M – a d-twin-ordered matrix
Want: to query for entries of M compactly

≈ Twin-width II

The number of binary d-twin-ordered n × n matrices is 2Θd (n).

=⇒ Bitsize Ωd(n) is required.

Bitsize Query time

just store the matrix O(n2) O(1)

store the idx of d-twin-ordered matrix Od(n) huge

adjacency labeling (Twin-width II) Od(n log n) Od(log n)

Orthogonal Point Location (Chan, 2013) Od(n log n) Od(log log n)

our result (PSZ-P, 2022) Od(n) Od(log log n)
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Different zones in a division

M — a d-twin-ordered n × n matrix;

s | n;

D — an n
s ×

n
s division of M where each zone is an s × s submatrix.

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1

Small s

D has at most 2Od (s) different zones (Twin-width II).

=⇒ for s � log n, at most
√
n different matrices of size s.

Large s

We prove: D has at most Od(ns ) different zones.

“Marcus–Tardos”: at most Od(ns ) mixed zones in total;

Now (blackboard): at most Od(ns ) different non-mixed zones.
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Data structure

Reminder

Fixed: d ∈ N.

Input: M – an n × n matrix that is d-twin-ordered.

Target:
I Od(n) bits of memory,
I O(log log n) per query.
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D1 – a division of M where each zone is an n2/3 × n2/3 submatrix.
D2 – a division of M where each zone is an n4/9 × n4/9 submatrix.
Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Dlast – a division where each zone is an Od(log n)×Od(log n) submatrix.

M
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Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Next, mark unique zones in each division.

Dk has at most Od(n/n(2/3)k ) unique zones. (n/n, n/n2/3, n/n4/9, . . . )
But: Dlast has at most O(

√
n) unique zones.
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Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Now, create an object for each unique zone. . .

Add pointers (each of size O(log n) bits). . .
And store each unique zone of Dlast explicitly.
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Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Now, create an object for each unique zone. . .
Add pointers (each of size O(log n) bits). . .
And store each unique zone of Dlast explicitly.
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Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Query (M[i , j ] =?):

follow the pointers and return a bit from Dlast.
Time complexity: O(last) = O(log log n).
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Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.
Query (M[i , j ] =?): follow the pointers and return a bit from Dlast.
Time complexity: O(last) = O(log log n).
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Memory complexity

Dk – a division of M where each zone is an n(2/3)k × n(2/3)k submatrix.

The proof has three parts:

Dlast has only O(
√
n) small zones and we can store them explicitly;

The layers with large zones occupy Od(n) bits in total;

The data structure needs to be modified slightly for medium zones.
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Part 3

χ-boundedness

Pilipczuk, Soko lowski,
Graphs of Bounded Twin-Width are Quasi-Polynomially χ-Bounded
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χ-boundedness

Let C – a hereditary class of graphs.

Definition

C is χ-bounded by a function f : N→ N if for every graph G ∈ C,

χ(G ) ≤ f (ω(G )).

Examples:

perfect graphs (f (x) = x),

sparse graph classes (bounded degeneracy, bounded expansion),

bounded clique-width (f (x) = poly(x)),

some geometric intersection graph classes. . .

Esperet: maybe if C is χ-bounded, then it is polynomially χ-bounded?

Briański, Davies, Walczak (2022): no.
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Twin-width and χ-boundedness

Theorem (Twin-width III)

Graphs of twin-width ≤ d are χ-bounded by fd(ω) = (d + 2)ω−1.

Conjecture (Twin-width III)

Are graphs of twin-width ≤ d polynomially χ-bounded?

Our result (PS22)

Fix d ∈ N. There exists a constant βd > 0 such that graphs of twin-width
≤ d are χ-bounded by a quasi-polynomial function fd : N→ N:

fd(ω) = 2βd · logO(d) ω.

Theorem (Bourneuf, Thomassé 2023)

Graphs of twin-width ≤ d are polynomially χ-bounded.
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Graphs of twin-width ≤ d are polynomially χ-bounded.

Marek Soko lowski Mixed minors and friends 25 May 2023 20 / 32



Ingredient: d-almost mixed minors

0 0 0 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 1 0 0 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 1 0

1 0 0 0 1 1 0 0 1 1 1 1
0 1 0 1 1 1 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1 1 0 1
0 1 0 1 1 0 1 1 1 1 0 1

Fact

M has a 2d-almost mixed minor =⇒ M has a d-mixed minor.

Corollary

tww(G ) ≤ d =⇒ G has a (2d + 2)-mixed free adjacency matrix

=⇒ G has a (4d + 4)-almost mixed free adjacency matrix.
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Idea

If we had
fd(ω) ≤ const(d) · fd(0.9ω),

then we would get fd(ω) = poly(ω)!

Induction on ω(G ) ≥ 1.

G – a graph,
M – a d-almost mixed free adjacency matrix of G ,
V (G ) = {1, . . . , n} ordered according to M.

Partition V (G ) into intervals A1 ∪ A2 ∪ · · · ∪ Ak (blobs) so that

ω(G [Ai ]) = 0.9ω for i = 1, 2, . . . , k .
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V (G ) = A1 ∪ · · · ∪ Ak , ω(G [Ai ]) = 0.9ω for i = 1, 2, . . . , k .

D := a (symmetric) division of M from the partition A1, . . . ,Ak .

0

0

M M

0

M

0 0 0

0

0

0

M 0 0

0

0

M M

M

M

0

First, paint each blob using fd(0.9ω) colors.

For each color class C : each intersection C ∩ Ai is an independent set!
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Blob-blob connections

V (G ) = A1 ∪ · · · ∪ Ak , ω(G [Ai ]) = 0.9ω for i = 1, 2, . . . , k .

D := a (symmetric) division of M from the partition A1, . . . ,Ak .
Given a set (color class) C s.t. each Ai ∩ C is an independent set.

0

0

M

0

M

0 0 0

0

0

0

0 0

0

0

M

M 0

0

0

0

0
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Blob-blob connections

V (G ) = A1 ∪ · · · ∪ Ak , ω(G [Ai ]) = 0.9ω for i = 1, 2, . . . , k .

D := a (symmetric) division of M from the partition A1, . . . ,Ak .
Given a set (color class) C s.t. each Ai ∩ C is an independent set.
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0

0

0

Lemma

χ(G [C ]) ≤ const(d) · fd(0.2ω).
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Blob-blob connections

V (G ) = A1 ∪ · · · ∪ Ak , ω(G [Ai ]) = 0.9ω for i = 1, 2, . . . , k .

D := a (symmetric) division of M from the partition A1, . . . ,Ak .
Given a set (color class) C s.t. each Ai ∩ C is an independent set.

0

0

M

0

M

0 0 0

0

0

0

0 0

0

0

M

M 0

0

0

0

0

Lemma

χ(G [C ]) ≤ const(d)︸ ︷︷ ︸
remove M with Marcus–Tardos

· fd(0.2ω)︸ ︷︷ ︸
afterwards, clique number ≤ 0.2ω
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Solution attempt (summary)

We assign each vertex a product coloring of 2 colorings:

I (within blobs) fd(0.9ω) colors,
I (between blobs) const(d) · fd(0.2ω) colors.

Thus:
fd(ω) ≤ const(d) · fd(0.2ω) · fd(0.9ω).

Even worse than exponential. . .
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Solution: attempt 2

Maybe not all hope is lost. What additional assumptions on G and M
would help us?

Rich blobs

Fix a blob Bi (i < k), and let Bi = {`i , `i + 1, . . . , ri}. We call Bi rich if:

every vertex v ∈ Bi is adjacent to any s ∈ {ri + 1, ri + 2, . . . , n},
no two consecutive vertices of Bi are twins with respect to
{ri + 1, ri + 2, . . . , n}.
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Solution: attempt 2 (rich blobs)

B2

111111111111
000000000000
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Solution: attempt 2 (rich blobs)

Rich blob lemma

If Bi is rich, then the adjacency matrix of Bi is (d − 1)-almost mixed free.
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Solution: attempt 2 (rich blobs)

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

(within blobs) fd-1(0.9ω) colors (instead of fd(0.9ω)),

(between blobs) const(d) · fd(0.2ω) colors.

Thus:
fd(ω) ≤ const(d) · fd(0.2ω) · fd−1(0.9ω).

By induction: quasi-polynomial!
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Solution: attempt 2

Another extreme: poor blobs

Fix a blob Bi (i < k). We call Bi poor if all its adjacencies with other
blobs are empty or mixed.

If all blobs are rich or poor:

Purge mixed connections by painting each blob into const(d) colors
(Marcus–Tardos);

Paint vertices of poor blobs with a shared palette of fd(0.9ω) colors;

Rich blobs: fd−1(0.9ω) · fd(0.2ω) colors (as before);

Thus:

fd(ω) ≤ const(d) · {fd(0.9ω) + fd(0.2ω) · fd−1(0.9ω)} .

Quasi-polynomial again!
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Solution: endgame

Not all blobs must be rich or poor.

But each blob can be split into a poor part and an (almost) rich part!

The argument with (almost) rich blobs is involved and produces a worse
bound:

χ(Bi ) ≤ fd(0.1ω) · fd−1(ωd)2 instead of χ(Bi ) ≤ fd−1(0.9ω).

Then:

fd(ω) ≤ const(d) · {fd(0.9ω) + maxχ(Bi ) · fd(0.2ω)}

≤ const(d) ·
{
fd(0.9ω) + fd(0.1ω) · fd(0.2ω) · fd−1(ωd)2

}

Subexponential (2O(ωε) for any ε > 0 if parameters chosen carefully).
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Solution: endgame

fd(ω) ≤ const(d) ·
{
fd(0.9ω) + fd(0.1ω) · fd(0.2ω) · fd−1(ωd)2

}

How to reach a quasi-polynomial bound on χ?

Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution
and χ-boundedness, JCTB, 2013).

Intuition: the blobs are more complicated =⇒ the connections between
the blobs are less complex =⇒ tradeoff between fd(0.1ω) and fd(0.2ω).

We eventually get:

fd(ω) ≤ const(d)·

fd(0.9ω) + fd−1(ωd)2 ·
blog2(0.1 ω)c∑

u=0

fd(2u+1) · fd
(

0.2ω

2u
+ 1

)
This resolves to fd(ω) = 2βd · logd ω.
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Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution
and χ-boundedness, JCTB, 2013).

Intuition: the blobs are more complicated =⇒ the connections between
the blobs are less complex =⇒ tradeoff between fd(0.1ω) and fd(0.2ω).

We eventually get:

fd(ω) ≤ const(d)·

fd(0.9ω) + fd−1(ωd)2 ·
blog2(0.1 ω)c∑

u=0

fd(2u+1) · fd
(

0.2ω

2u
+ 1

)
This resolves to fd(ω) = 2βd · logd ω.
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Thank you!
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