Mixed minors, compact representations and $\chi\text{-}\mathsf{boundedness}$

Marek Sokołowski

25 May 2023

Part 1 Mixed minors

A 0/1-matrix can be:

horizontal

A 0/1-matrix can be:

horizontal vertical

0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	0 1 1 0 1	0 0 0 0	1 1 1 1	1 1 1 1	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0 0	1 0 0 1	1 0 1 0	1 1 0 0
ho	rizo	ont	al	V	erti	cal		со	nst	an	t	r	nix	ed	

A 0/1-matrix can be:

Note: mixed \iff has a 2 × 2 contiguous mixed submatrix (corner).

Divisions

Division \mathcal{D} – partitioning of columns and rows into intervals (*blocks*).

Divisions

Division \mathcal{D} – partitioning of columns and rows into intervals (*blocks*).

Zone - intersection of a row block and a column block

Divisions

Division \mathcal{D} – partitioning of columns and rows into intervals (*blocks*).

Zone - intersection of a row block and a column block

Mixed minors

 \mathcal{D} is a **mixed minor** if each zone of \mathcal{D} is mixed.

Divisions

Division \mathcal{D} – partitioning of columns and rows into intervals (*blocks*).

Zone - intersection of a row block and a column block

Mixed minors

 \mathcal{D} is a **mixed minor** if each zone of \mathcal{D} is mixed.

Mixed freeness

Matrix *M* is *d*-mixed free if it has no $d \times d$ mixed minor.

Grid theorem for twin-width

Mixed freeness Matrix M is *d*-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I)

Let $d \in \mathbb{N}$ be an integer and G be a graph. Then:

- tww (G) $\leq d \implies G$ has a (2d+2)-mixed free adjacency matrix.
- G has a d-mixed free adjacency matrix \implies tww (G) $\leq 2^{2^{O(d)}}$.

Marcus-Tardos theorem and twin-width

Mixed freeness Matrix M is *d*-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I, "Marcus-Tardos")

- If: M a d-mixed free matrix,
- \mathcal{D} an $n \times n$ division of M

 $\Rightarrow \mathcal{D}$ has at most $c_d \cdot n$ mixed zones $(c_d = \text{const}(d))$.

Marcus-Tardos theorem and twin-width

Mixed freeness Matrix M is *d*-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I, "Marcus-Tardos")

- If: M a d-mixed free matrix,
- \mathcal{D} an $n \times n$ division of M

 $\Rightarrow \mathcal{D}$ has at most $c_d \cdot n$ mixed zones $(c_d = \text{const}(d))$.

Number of mixed zones: linear instead of quadratic!

Part 2

COMPACT REPRESENTATIONS

Pilipczuk, Sokołowski, Zych-Pawlewicz, Compact Representation for Matrices of Bounded Twin-Width

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	0
0	0	1	0	1
1	1	1	1	1
0	0	0	1	1

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	0
0	0	1	0	1
1	1	1	1	1
0	0	0	1	1

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	×
1	1	1	1	1
0	0	0	1	1

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	×
1	1	1	1	1
0	0	0	1	1

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	×
1	1	1	1	1
0	0	0	1	1

t-twin-ordered matrices

×	1	0	0
×	1	1	0
0	1	0	×
1	1	1	1
0	0	1	1

t-twin-ordered matrices

×	1	0	0
×	1	1	0
0	1	0	×
1	1	1	1
0	0	1	1

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

×	×	0
×	0	×
1	1	1
0	1	1

t-twin-ordered matrices

×	×	0
×	0	×
1	1	1
0	1	1

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

t-twin-ordered matrices

Maximum ×'s in any row/column now: 2 Maximum so far: 2

t-twin-ordered matrices

Maximum ×'s in any row/column now: 2 Maximum so far: 2

t-twin-ordered matrices

Maximum ×'s in any row/column now: 2 Maximum so far: 2

Maximum ×'s in any row/column now: 1 Maximum so far: 2

Red number of a contraction sequence

Red number = maximum \times 's in any row/column during the contraction.

Red number of a contraction sequence

Red number = maximum \times 's in any row/column during the contraction.

Twin-width of a matrix

M is *d*-twin-ordered \iff *M* has a contraction with red number $\leq d$.

Red number of a contraction sequence

Red number = maximum \times 's in any row/column during the contraction.

Twin-width of a matrix M is d-twin-ordered $\iff M$ has a contraction with red number $\leq d$.

tww $(M) \leq d \iff M$ is *d*-twin-ordered for some permutation of rows/columns.

Red number of a contraction sequence

Red number = maximum \times 's in any row/column during the contraction.

Twin-width of a matrix M is *d*-twin-ordered $\iff M$ has a contraction with red number $\leq d$.

tww $(M) \leq d \iff M$ is *d*-twin-ordered for some permutation of rows/columns.

Note: *M* is *d*-twin-ordered \implies *M* is (2d + 2)-mixed-free.

Objectives

A compact data structure for a dynamic problem should:

Objectives

A compact data structure for a dynamic problem should:

• consume little space: closer to the optimum = better,

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Our case:

- Given: *M* a *d*-twin-ordered matrix
- Want: to query for entries of M

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Our case:

- Given: *M* a *d*-twin-ordered matrix
- Want: to query for entries of M

Compact: bitsize $\mathcal{O}(S)$ bits if S = information-theoretic min bitsize.

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

	Bitsize	Query time
just store the matrix	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

	Bitsize	Query time
just store the matrix	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_d(n)$	huge

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

	Bitsize	Query time
just store the matrix	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_d(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_d(n \log n)$	$\mathcal{O}_d(\log n)$

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

	Bitsize	Query time
just store the matrix	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_d(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_d(n \log n)$	$\mathcal{O}_d(\log n)$
Orthogonal Point Location (Chan, 2013)	$\mathcal{O}_d(n \log n)$	$\mathcal{O}_d(\log \log n)$

pprox Twin-width II

The number of binary *d*-twin-ordered $n \times n$ matrices is $2^{\Theta_d(n)}$.

	Bitsize	Query time
just store the matrix	$\mathcal{O}(n^2)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_d(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_d(n \log n)$	$\mathcal{O}_d(\log n)$
Orthogonal Point Location (Chan, 2013)	$\mathcal{O}_d(n \log n)$	$\mathcal{O}_d(\log \log n)$
our result (PSZ-P, 2022)	$\mathcal{O}_d(n)$	$\mathcal{O}_d(\log \log n)$

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1	1
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0
1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

Small s

 \mathcal{D} has at most $2^{\mathcal{O}_d(s)}$ different zones (*Twin-width II*).

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

Small s

 \mathcal{D} has at most $2^{\mathcal{O}_d(s)}$ different zones (*Twin-width II*).

 \implies for $s \ll \log n$, at most \sqrt{n} different matrices of size s.

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

Small s

 \mathcal{D} has at most $2^{\mathcal{O}_d(s)}$ different zones (*Twin-width II*).

 \implies for $s \ll \log n$, at most \sqrt{n} different matrices of size s.

Large s

We prove: \mathcal{D} has at most $\mathcal{O}_d(\frac{n}{s})$ different zones.

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

Small s

 \mathcal{D} has at most $2^{\mathcal{O}_d(s)}$ different zones (*Twin-width II*).

 \implies for $s \ll \log n$, at most \sqrt{n} different matrices of size s.

Large s

We prove: \mathcal{D} has at most $\mathcal{O}_d(\frac{n}{s})$ different zones.

• "Marcus–Tardos": at most $\mathcal{O}_d(\frac{n}{s})$ mixed zones in total;

M — a *d*-twin-ordered $n \times n$ matrix;

s | *n*;

 \mathcal{D} — an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

Small s

 \mathcal{D} has at most $2^{\mathcal{O}_d(s)}$ different zones (*Twin-width II*).

 \implies for $s \ll \log n$, at most \sqrt{n} different matrices of size s.

Large s

We prove: \mathcal{D} has at most $\mathcal{O}_d(\frac{n}{s})$ different zones.

- "Marcus–Tardos": at most $\mathcal{O}_d(\frac{n}{s})$ mixed zones in total;
- Now (blackboard): at most $\mathcal{O}_d(\frac{n}{s})$ different **non-mixed** zones.

Data structure

Reminder

- Fixed: $d \in \mathbb{N}$.
- Input: M an $n \times n$ matrix that is *d*-twin-ordered.
- Target:

 $\mathcal{O}_d(n)$ bits of memory, $\mathcal{O}(\log \log n)$ per query.

 \mathcal{D}_1 – a division of M where each zone is an $n^{2/3} \times n^{2/3}$ submatrix.

Marek Sokołowski

Mixed minors and friends

 \mathcal{D}_1 – a division of M where each zone is an $n^{2/3} \times n^{2/3}$ submatrix. \mathcal{D}_2 – a division of M where each zone is an $n^{4/9} \times n^{4/9}$ submatrix.

 \mathcal{D}_1 – a division of M where each zone is an $n^{2/3} \times n^{2/3}$ submatrix. \mathcal{D}_2 – a division of M where each zone is an $n^{4/9} \times n^{4/9}$ submatrix. \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix.

 \mathcal{D}_1 – a division of M where each zone is an $n^{2/3} \times n^{2/3}$ submatrix. \mathcal{D}_2 – a division of M where each zone is an $n^{4/9} \times n^{4/9}$ submatrix. \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. \mathcal{D}_{last} – a division where each zone is an $\mathcal{O}_d(\log n) \times \mathcal{O}_d(\log n)$ submatrix.

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Next, mark unique zones in each division.

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Next, mark unique zones in each division.

Marek Sokołowski

Mixed minors and friends

 \mathcal{D}_k has at most $\mathcal{O}_d(n/n^{(2/3)^k})$ unique zones. $(n/n, n/n^{2/3}, n/n^{4/9}, \dots)$

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Next, mark unique zones in each division. \mathcal{D}_k has at most $\mathcal{O}_d(n/n^{(2/3)^k})$ unique zones. $(n/n, n/n^{2/3}, n/n^{4/9}, ...)$ But: \mathcal{D}_{last} has at most $\mathcal{O}(\sqrt{n})$ unique zones.

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Now, create an object for each unique zone...

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)... And store each unique zone of \mathcal{D}_{last} explicitly.

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Query (M[i,j] =?):

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. **Query** (M[i,j] = ?): follow the pointers and return a bit from \mathcal{D}_{last} .

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix. Query (M[i, j] = ?): follow the pointers and return a bit from \mathcal{D}_{last} . Time complexity: $\mathcal{O}(last) = \mathcal{O}(\log \log n)$.

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix.

The proof has three parts:

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix.

The proof has three parts:

• \mathcal{D}_{last} has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix.

The proof has three parts:

- \mathcal{D}_{last} has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;
- The layers with large zones occupy $\mathcal{O}_d(n)$ bits in total;

 \mathcal{D}_k – a division of M where each zone is an $n^{(2/3)^k} \times n^{(2/3)^k}$ submatrix.

The proof has three parts:

- \mathcal{D}_{last} has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;
- The layers with large zones occupy $\mathcal{O}_d(n)$ bits in total;
- The data structure needs to be modified slightly for medium zones.

Part 3

χ -BOUNDEDNESS

Pilipczuk, Sokołowski, Graphs of Bounded Twin-Width are Quasi-Polynomially χ -Bounded

Marek Sokołowski

Mixed minors and friends

25 May 2023 18 / 32

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

 $\chi(G) \leq f(\omega(G)).$

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

 $\chi(G) \leq f(\omega(G)).$ coloring clique

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

 $\chi(G) \leq f(\omega(G)).$ coloring clique

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

 $\chi(G) \leq f(\omega(G)).$ coloring clique

Examples:

• perfect graphs (f(x) = x),

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

- perfect graphs (f(x) = x),
- sparse graph classes (bounded degeneracy, bounded expansion),

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

- perfect graphs (f(x) = x),
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width (f(x) = poly(x)),

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

- perfect graphs (f(x) = x),
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width (f(x) = poly(x)),
- some geometric intersection graph classes...

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

Examples:

- perfect graphs (f(x) = x),
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width (f(x) = poly(x)),
- some geometric intersection graph classes...

Esperet: maybe if C is χ -bounded, then it is polynomially χ -bounded?

Let C – a hereditary class of graphs.

Definition

 \mathcal{C} is χ -bounded by a function $f : \mathbb{N} \to \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

Examples:

- perfect graphs (f(x) = x),
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width (f(x) = poly(x)),
- some geometric intersection graph classes...

Esperet: maybe if C is χ -bounded, then it is polynomially χ -bounded? Briański, Davies, Walczak (2022): **no.**

Marek Sokołowski

Mixed minors and friends

Theorem (Twin-width III)

Graphs of twin-width $\leq d$ are χ -bounded by $f_d(\omega) = (d+2)^{\omega-1}$.

Theorem (Twin-width III)

Graphs of twin-width $\leq d$ are χ -bounded by $f_d(\omega) = (d+2)^{\omega-1}$.

Note: the proof shows that

$$f_d(\omega) \leq (d+2) \cdot f_d(\omega-1).$$

Theorem (Twin-width III)

Graphs of twin-width $\leq d$ are χ -bounded by $f_d(\omega) = (d+2)^{\omega-1}$.

Conjecture (Twin-width III)

Are graphs of twin-width $\leq d$ polynomially χ -bounded?

Theorem (Twin-width III)

Graphs of twin-width $\leq d$ are χ -bounded by $f_d(\omega) = (d+2)^{\omega-1}$.

Conjecture (Twin-width III)

Are graphs of twin-width $\leq d$ polynomially χ -bounded?

Our result (PS22)

Fix $d \in \mathbb{N}$. There exists a constant $\beta_d > 0$ such that graphs of twin-width $\leq d$ are χ -bounded by a **quasi-polynomial** function $f_d : \mathbb{N} \to \mathbb{N}$:

$$f_d(\omega) = 2^{\beta_d \cdot \log^{\mathcal{O}(d)} \omega}$$

Theorem (Twin-width III)

Graphs of twin-width $\leq d$ are χ -bounded by $f_d(\omega) = (d+2)^{\omega-1}$.

Conjecture (Twin-width III)

Are graphs of twin-width $\leq d$ polynomially χ -bounded?

Our result (PS22)

Fix $d \in \mathbb{N}$. There exists a constant $\beta_d > 0$ such that graphs of twin-width $\leq d$ are χ -bounded by a **quasi-polynomial** function $f_d : \mathbb{N} \to \mathbb{N}$:

$$f_d(\omega) = 2^{\beta_d \cdot \log^{\mathcal{O}(d)} \omega}$$

Theorem (Bourneuf, Thomassé 2023)

Graphs of twin-width $\leq d$ are polynomially χ -bounded.

Ingredient: *d*-almost mixed minors

Ingredient: *d*-almost mixed minors

Fact

M has a 2*d*-almost mixed minor \implies *M* has a *d*-mixed minor.

Ingredient: *d*-almost mixed minors

Fact

M has a 2*d*-almost mixed minor \implies *M* has a *d*-mixed minor.

Corollary

$$\begin{split} \operatorname{tww}(G) &\leq d \implies G \text{ has a } (2d+2)\text{-mixed free adjacency matrix} \\ &\implies G \text{ has a } (4d+4)\text{-almost mixed free adjacency matrix.} \end{split}$$

Idea

If we had

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.9\,\omega),$$

then we would get $f_d(\omega) = \text{poly}(\omega)!$

Idea

If we had

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.9\,\omega),$$

then we would get $f_d(\omega) = \text{poly}(\omega)!$

Induction on $\omega(G) \ge 1$. G – a graph, M – a d-almost mixed free adjacency matrix of G, $V(G) = \{1, \ldots, n\}$ ordered according to M.

Idea

If we had

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.9\,\omega),$$

then we would get $f_d(\omega) = \text{poly}(\omega)!$

Induction on $\omega(G) \ge 1$. G – a graph, M – a d-almost mixed free adjacency matrix of G, $V(G) = \{1, ..., n\}$ ordered according to M.

Partition V(G) into intervals $A_1 \cup A_2 \cup \cdots \cup A_k$ (blobs) so that

$$\omega(G[A_i]) = 0.9\,\omega \qquad \text{for } i = 1, 2, \dots, k.$$

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

First, paint each blob

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

First, paint each **blob** using $f_d(0.9\omega)$ colors.

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

First, paint each **blob** using $f_d(0.9\omega)$ colors.

For each color class C: each intersection $C \cap A_i$ is an **independent set**!

Blob-blob connections

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

 $\mathcal{D} :=$ a (symmetric) division of M from the partition A_1, \ldots, A_k . Given a set (color class) C s.t. each $A_i \cap C$ is an **independent set**.

0	0		\equiv		М
0	0		0	0	0
		0	0	0	
	0	0	0	М	
	0	0	М	0	
М	0		=	=	0

Blob-blob connections

$$V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$$

 $\mathcal{D} :=$ a (symmetric) division of M from the partition A_1, \ldots, A_k . Given a set (color class) C s.t. each $A_i \cap C$ is an **independent set**.

Lemma

 $\chi(G[C]) \leq \operatorname{const}(d) \cdot f_d(0.2\omega).$

Blob-blob connections

 $V(G) = A_1 \cup \cdots \cup A_k, \qquad \omega(G[A_i]) = 0.9 \omega \text{ for } i = 1, 2, \dots, k.$

 $\mathcal{D} :=$ a (symmetric) division of M from the partition A_1, \ldots, A_k . Given a set (color class) C s.t. each $A_i \cap C$ is an **independent set**.

• We assign each vertex a product coloring of 2 colorings:

- We assign each vertex a product coloring of 2 colorings:
 - (within blobs) $f_d(0.9\omega)$ colors,

- We assign each vertex a product coloring of 2 colorings:
 - (within blobs) $f_d(0.9\omega)$ colors,
 - (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.

- We assign each vertex a product coloring of 2 colorings:
 - (within blobs) $f_d(0.9\omega)$ colors,
 - (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.
- Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.2\,\omega) \cdot f_d(0.9\,\omega).$$

- We assign each vertex a product coloring of 2 colorings:
 - (within blobs) $f_d(0.9\omega)$ colors,
 - (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.
- Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.2\,\omega) \cdot f_d(0.9\,\omega).$$

• Even worse than exponential...

Solution: attempt 2

Maybe not all hope is lost. What additional assumptions on G and M would help us?

Solution: attempt 2

Maybe not all hope is lost. What additional assumptions on G and M would help us?

Rich blobs

Fix a blob B_i (i < k), and let $B_i = \{\ell_i, \ell_i + 1, \dots, r_i\}$. We call B_i rich if:

- every vertex $v \in B_i$ is adjacent to any $s \in \{r_i + 1, r_i + 2, \dots, n\}$,
- no two consecutive vertices of B_i are twins with respect to {r_i + 1, r_i + 2, ..., n}.

B ₂	11111111111 00000000000000000000000000	10001 10001 10001 10001 10001	1010101 1010101 0000111 0000111 1010101	00000000000 00000000000 00000000000 111111

B ₂	11111111111 00000000000000000000000000	10001 10001 10001 10001 10001	1010101 1010101 0000111 0000111 1010101	0000000000 0000000000 0000000000 1111111

E	B ₂	1111111111 000000000000000000000000000	10001 10001 10001 10001 10001	1010101 1010101 0000111 0000111 1010101	00000000000 00000000000 0000000000 111111

	1111111111111	10001	1010101	0000000000
_	000000000000	10001	1010101	00000000000
B ₂	000000000000	10001	0000111	00000000000
_	000000000000000000000000000000000000000	10001	0000111	111111111111
	1111111111111	10001	1010101	0000000000

B ₂		111111111111 0000000000000 00000000000	10001 10001 10001 10001 10001	1010101 1010101 0000111 0000111 1010101	00000000000 00000000000 0000000000 111111

B ₂	11111111111 00000000000000000000000000	10001 10001 10001 10001 10001	1010101 1010101 0000111 0000111 1010101	0000000000 0000000000 0000000000 1111111

Rich blob lemma

If B_i is rich, then the adjacency matrix of B_i is (d-1)-almost mixed free.

Rich blob lemma

If B_i is rich, then the adjacency matrix of B_i is (d-1)-almost mixed free.

Marek Sokołowski

Mixed minors and friends

Rich blob lemma

If B_i is rich, then the adjacency matrix of B_i is (d-1)-almost mixed free.

Marek Sokołowski

Mixed minors and friends

Rich blob lemma

If B_i is rich, then the adjacency matrix of B_i is (d-1)-almost mixed free.

Marek Sokołowski

Mixed minors and friends

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

• (within blobs) $f_{d-1}(0.9\omega)$ colors (instead of $f_d(0.9\omega)$),

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{d-1}(0.9\omega)$ colors (instead of $f_d(0.9\omega)$),
- (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{d-1}(0.9\omega)$ colors (instead of $f_d(0.9\omega)$),
- (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.

Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(0.9\,\omega).$$

If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{d-1}(0.9\omega)$ colors (instead of $f_d(0.9\omega)$),
- (between blobs) $const(d) \cdot f_d(0.2\omega)$ colors.

Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(0.9\,\omega).$$

By induction: quasi-polynomial!

Solution: attempt 2

Another extreme: **poor** blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

Solution: attempt 2

Another extreme: **poor** blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

 Purge mixed connections by painting each blob into const(d) colors (Marcus–Tardos);
Another extreme: poor blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus–Tardos);
- Paint vertices of **poor** blobs with a shared palette of $f_d(0.9\,\omega)$ colors;

Another extreme: poor blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus–Tardos);
- Paint vertices of **poor** blobs with a shared palette of $f_d(0.9\,\omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_d(0.2 \omega)$ colors (as before);

Another extreme: poor blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus–Tardos);
- Paint vertices of **poor** blobs with a shared palette of $f_d(0.9\,\omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_d(0.2 \omega)$ colors (as before);
- Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) \ + \ f_d(0.2\,\omega) \cdot f_{d-1}(0.9\,\omega) \right\}.$$

Another extreme: poor blobs

Fix a blob B_i (i < k). We call B_i **poor** if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus–Tardos);
- Paint vertices of **poor** blobs with a shared palette of $f_d(0.9\,\omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_d(0.2 \omega)$ colors (as before);

Thus:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) \ + \ f_d(0.2\,\omega) \cdot f_{d-1}(0.9\,\omega) \right\}.$$

Quasi-polynomial again!

Not all blobs must be rich or poor.

Not all blobs must be rich or poor.

But each blob can be **split** into a poor part and an (almost) rich part!

Not all blobs must be rich or poor.

But each blob can be split into a poor part and an (almost) rich part!

The argument with (almost) **rich** blobs is involved and produces a worse bound:

 $\chi(B_i) \leq f_d(0.1\,\omega) \cdot f_{d-1}(\omega^d)^2 \quad \text{instead of} \quad \chi(B_i) \leq f_{d-1}(0.9\,\omega).$

Not all blobs must be rich or poor.

But each blob can be split into a poor part and an (almost) rich part!

The argument with (almost) **rich** blobs is involved and produces a worse bound:

 $\chi(B_i) \leq f_d(0.1\,\omega) \cdot f_{d-1}(\omega^d)^2 \quad \text{instead of} \quad \chi(B_i) \leq f_{d-1}(0.9\,\omega).$

Then:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \{f_d(0.9\,\omega) + \max\chi(B_i) \cdot f_d(0.2\,\omega)\}$$

Not all blobs must be rich or poor.

But each blob can be split into a poor part and an (almost) rich part!

The argument with (almost) **rich** blobs is involved and produces a worse bound:

 $\chi(B_i) \leq f_d(0.1\,\omega) \cdot f_{d-1}(\omega^d)^2 \quad \text{instead of} \quad \chi(B_i) \leq f_{d-1}(0.9\,\omega).$

Then:

$$\begin{aligned} f_d(\omega) &\leq \operatorname{const}(d) \cdot \{ f_d(0.9\,\omega) + \max\chi(B_i) \cdot f_d(0.2\,\omega) \} \\ &\leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_d(0.1\,\omega) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(\omega^d)^2 \right\} \end{aligned}$$

Subexponential $(2^{O(\omega^{\varepsilon})} \text{ for any } \varepsilon > 0 \text{ if parameters chosen carefully}).$

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_d(0.1\,\omega) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(\omega^d)^2 \right\}$$

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_d(0.1\,\omega) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(\omega^d)^2 \right\}$$

How to reach a quasi-polynomial bound on χ ?

Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (*Substitution* and χ -boundedness, JCTB, 2013).

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_d(0.1\,\omega) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(\omega^d)^2 \right\}$$

How to reach a quasi-polynomial bound on χ ?

Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (*Substitution and \chi-boundedness*, JCTB, 2013).

Intuition: the blobs are **more complicated** \implies the connections between the blobs are **less complex** \implies tradeoff between $f_d(0.1 \omega)$ and $f_d(0.2 \omega)$.

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_d(0.1\,\omega) \cdot f_d(0.2\,\omega) \cdot f_{d-1}(\omega^d)^2 \right\}$$

How to reach a quasi-polynomial bound on χ ?

Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution and χ -boundedness, JCTB, 2013).

Intuition: the blobs are **more complicated** \implies the connections between the blobs are **less complex** \implies tradeoff between $f_d(0.1\,\omega)$ and $f_d(0.2\,\omega)$. We eventually get:

$$f_d(\omega) \leq \operatorname{const}(d) \cdot \left\{ f_d(0.9\,\omega) + f_{d-1}(\omega^d)^2 \cdot \sum_{u=0}^{\lfloor \log_2(0.1\,\omega) \rfloor} f_d(2^{u+1}) \cdot f_d\left(\frac{0.2\,\omega}{2^u} + 1\right) \right\}$$

This resolves to $f_d(\omega) = 2^{\beta_d \cdot \log^d \omega}$.

Thank you!