Mixed minors, compact representations and χ-boundedness

Marek Sokołowski

25 May 2023

PART 1

MIXED MINORS

Twin-width and matrices

A 0/1-matrix can be:

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

horizontal

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0

horizontal
vertical

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

horizontal
vertical
constant

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	1	1	1
1	0	1	1
0	0	0	0
0	0	1	0
0	1	0	0

horizontal
vertical
constant
mixed

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	1	1	1
1	0	1	1
0	0	0	0
0	0	1	0
0	1	0	0

horizontal
vertical
constant
mixed

Twin-width and matrices

A 0/1-matrix can be:

0	0	0	0
1	1	1	1
1	1	1	1
0	0	0	0
1	1	1	1

0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0
0	1	1	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	1	1	1
1	0	1	1
0	0	0	0
0	0	1	0
0	1	0	0

horizontal
vertical
constant
mixed

Note: mixed \Longleftrightarrow has a 2×2 contiguous mixed submatrix (corner).

Twin-width and matrices

Divisions
Division \mathcal{D} - partitioning of columns and rows into intervals (blocks).

0	1	0	0	0	0	0	1	1
1	1	0	0	1	1	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	1	0
1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	1	1

Twin-width and matrices

Divisions

Division \mathcal{D} - partitioning of columns and rows into intervals (blocks).

0	1	0	0	0	0	0	1	1
1	1	0	0	1	1	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	1	0
1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	1	1

Zone - intersection of a row block and a column block

Twin-width and matrices

Divisions

Division \mathcal{D} - partitioning of columns and rows into intervals (blocks).

0	1	0	0	0	0	0	1	1
1	1	0	0	1	1	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	1	0
1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	1	1

Zone - intersection of a row block and a column block
Mixed minors
\mathcal{D} is a mixed minor if each zone of \mathcal{D} is mixed.

Twin-width and matrices

Divisions

Division \mathcal{D} - partitioning of columns and rows into intervals (blocks).

0	1	0	0	0	0	0	1	1
1	1	0	0	1	1	1	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	1	0	1	0	1	0	1	0
1	0	0	0	1	1	0	0	1
0	1	0	1	1	1	1	1	1

Zone - intersection of a row block and a column block
Mixed minors
\mathcal{D} is a mixed minor if each zone of \mathcal{D} is mixed.
Mixed freeness
Matrix M is d-mixed free if it has no $d \times d$ mixed minor.

Grid theorem for twin-width

Mixed freeness
Matrix M is d-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I)
Let $d \in \mathbb{N}$ be an integer and G be a graph. Then:

- $\operatorname{tww}(G) \leq d \Longrightarrow G$ has a $(2 d+2)$-mixed free adjacency matrix.
- G has a d-mixed free adjacency matrix $\Longrightarrow \operatorname{tww}(G) \leq 2^{2^{O(d)}}$.

Marcus-Tardos theorem and twin-width

Mixed freeness

Matrix M is d-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I, "Marcus-Tardos")
If: M - a d-mixed free matrix,
$\mathcal{D}-$ an $n \times n$ division of M
$\Rightarrow \mathcal{D}$ has at most $c_{d} \cdot n$ mixed zones $\left(c_{d}=\operatorname{const}(d)\right)$.

Marcus-Tardos theorem and twin-width

Mixed freeness

Matrix M is d-mixed free if it has no $d \times d$ mixed minor.

Theorem (Twin-width I, "Marcus-Tardos")
If: M - a d-mixed free matrix,
$\mathcal{D}-$ an $n \times n$ division of M
$\Rightarrow \mathcal{D}$ has at most $c_{d} \cdot n$ mixed zones $\left(c_{d}=\operatorname{const}(d)\right)$.
Number of mixed zones: linear instead of quadratic!

PART 2

COMPACT REPRESENTATIONS

Pilipczuk, Sokołowski, Zych-Pawlewicz,
Compact Representation for Matrices of Bounded Twin-Width

Twin-width of matrices

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0	0
1	0	1	1	1	0
0	0	1	0	0	0
0	0	1	0	0	1
1	1	1	1	1	1
0	0	0	1	1	1

Maximum \times 's in any row/column now: 0 Maximum so far: 0

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0	0
1	0	1	1	1	0
0	0	1	0	0	0
0	0	1	0	0	1
1	1	1	1	1	1
0	0	0	1	1	1

Maximum \times 's in any row/column now: 0 Maximum so far: 0

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	0
0	0	1	0	1
1	1	1	1	1
0	0	0	1	1

Maximum \times 's in any row/column now: 0 Maximum so far: 0

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	0
0	0	1	0	1
1	1	1	1	1
0	0	0	1	1

Maximum \times 's in any row/column now: 0 Maximum so far: 0

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	\times
1	1	1	1	1
0	0	0	1	1

Maximum \times 's in any row/column now: 1 Maximum so far: 1

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	\times
1	1	1	1	1
0	0	0	1	1

Maximum \times 's in any row/column now: 1 Maximum so far: 1

Twin-width of matrices

t-twin-ordered matrices

0	1	1	0	0
1	0	1	1	0
0	0	1	0	\times
1	1	1	1	1
0	0	0	1	1

Maximum \times 's in any row/column now: 1 Maximum so far: 1

Twin-width of matrices

t-twin-ordered matrices

\times	1	0	0
\times	1	1	0
0	1	0	\times
1	1	1	1
0	0	1	1

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	1	0	0
\times	1	1	0
0	1	0	\times
1	1	1	1
0	0	1	1

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	1	\times	0
0	1	0	\times
1	1	1	1
0	0	1	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	1	\times	0
0	1	0	\times
1	1	1	1
0	0	1	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	\times	0
\times	0	\times
1	1	1
0	1	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	\times	0
\times	0	\times
1	1	1
0	1	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	\times
\times	\times
1	1
0	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	\times
\times	\times
1	1
0	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

\times	\times
1	1
0	1

Maximum \times 's in any row/column now: 2
Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 2 Maximum so far: 2

Twin-width of matrices

t-twin-ordered matrices

Maximum \times 's in any row/column now: 1 Maximum so far: 2

Twin-width of matrices

Red number of a contraction sequence
Red number $=$ maximum \times 's in any row/column during the contraction.

Twin-width of matrices

Red number of a contraction sequence
Red number $=$ maximum \times 's in any row/column during the contraction.
Twin-width of a matrix
M is d-twin-ordered $\Longleftrightarrow M$ has a contraction with red number $\leq d$.

Twin-width of matrices

Red number of a contraction sequence
Red number $=$ maximum \times 's in any row/column during the contraction.
Twin-width of a matrix
M is d-twin-ordered $\Longleftrightarrow M$ has a contraction with red number $\leq d$.
$\operatorname{tww}(M) \leq d \Longleftrightarrow M$ is d-twin-ordered for some permutation of rows/columns.

Twin-width of matrices

Red number of a contraction sequence
Red number $=$ maximum \times 's in any row/column during the contraction.
Twin-width of a matrix
M is d-twin-ordered $\Longleftrightarrow M$ has a contraction with red number $\leq d$.
$\operatorname{tww}(M) \leq d \Longleftrightarrow M$ is d-twin-ordered for some permutation of rows/columns.

Note: M is d-twin-ordered $\Longrightarrow M$ is $(2 d+2)$-mixed-free.

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum $=$ better,

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Our case:

- Given: M - a d-twin-ordered matrix
- Want: to query for entries of M

Compact data structures

Objectives

A compact data structure for a dynamic problem should:

- consume little space: closer to the optimum = better,
- answer queries efficiently,
- (preferably) be constructed efficiently.

Our case:

- Given: M - a d-twin-ordered matrix
- Want: to query for entries of M

Compact: bitsize $\mathcal{O}(S)$ bits if $S=$ information-theoretic min bitsize.

Given: M - a d-twin-ordered matrix Want: to query for entries of M compactly

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

	Bitsize	Query time
just store the matrix	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(1)$

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

	Bitsize	Query time
just store the matrix	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_{d}(n)$	huge

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

	Bitsize	Query time
just store the matrix	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_{d}(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_{d}(n \log n)$	$\mathcal{O}_{d}(\log n)$

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

	Bitsize	Query time
just store the matrix	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_{d}(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_{d}(n \log n)$	$\mathcal{O}_{d}(\log n)$
Orthogonal Point Location (Chan, 2013)	$\mathcal{O}_{d}(n \log n)$	$\mathcal{O}_{d}(\log \log n)$

Given: M - a d-twin-ordered matrix
Want: to query for entries of M compactly
\approx Twin-width II
The number of binary d-twin-ordered $n \times n$ matrices is $2^{\Theta_{d}(n)}$.
\Longrightarrow Bitsize $\Omega_{d}(n)$ is required.

	Bitsize	Query time
just store the matrix	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}(1)$
store the idx of d-twin-ordered matrix	$\mathcal{O}_{d}(n)$	huge
adjacency labeling (Twin-width II)	$\mathcal{O}_{d}(n \log n)$	$\mathcal{O}_{d}(\log n)$
Orthogonal Point Location (Chan, 2013)	$\mathcal{O}_{d}(n \log n)$	$\mathcal{O}_{d}(\log \log n)$
our result (PSZ-P, 2022)	$\mathcal{O}_{d}(n)$	$\mathcal{O}_{d}(\log \log n)$

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.
Small s
\mathcal{D} has at most $2^{\mathcal{O}_{d}(s)}$ different zones (Twin-width II).

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.
Small s
\mathcal{D} has at most $2^{\mathcal{O}_{d}(s)}$ different zones (Twin-width II).
\Longrightarrow for $s \ll \log n$, at most \sqrt{n} different matrices of size s.

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.
Small s
\mathcal{D} has at most $2^{\mathcal{O}_{d}(s)}$ different zones (Twin-width II).
\Longrightarrow for $s \ll \log n$, at most \sqrt{n} different matrices of size s.
Large s
We prove: \mathcal{D} has at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ different zones.

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.
Small s
\mathcal{D} has at most $2^{\mathcal{O}_{d}(s)}$ different zones (Twin-width II).
\Longrightarrow for $s \ll \log n$, at most \sqrt{n} different matrices of size s.
Large s
We prove: \mathcal{D} has at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ different zones.

- "Marcus-Tardos": at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ mixed zones in total;

Different zones in a division

M - a d-twin-ordered $n \times n$ matrix;
$s \mid n ;$
\mathcal{D} - an $\frac{n}{s} \times \frac{n}{s}$ division of M where each zone is an $s \times s$ submatrix.
Small s
\mathcal{D} has at most $2^{\mathcal{O}_{d}(s)}$ different zones (Twin-width II).
\Longrightarrow for $s \ll \log n$, at most \sqrt{n} different matrices of size s.
Large s
We prove: \mathcal{D} has at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ different zones.

- "Marcus-Tardos": at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ mixed zones in total;
- Now (blackboard): at most $\mathcal{O}_{d}\left(\frac{n}{s}\right)$ different non-mixed zones.

Data structure

Reminder

- Fixed: $d \in \mathbb{N}$.
- Input: $M-$ an $n \times n$ matrix that is d-twin-ordered.
- Target:
$\mathcal{O}_{d}(n)$ bits of memory, $\mathcal{O}(\log \log n)$ per query.

\mathcal{D}_{1} - a division of M where each zone is an $n^{2 / 3} \times n^{2 / 3}$ submatrix.

\mathcal{D}_{1} - a division of M where each zone is an $n^{2 / 3} \times n^{2 / 3}$ submatrix. \mathcal{D}_{2} - a division of M where each zone is an $n^{4 / 9} \times n^{4 / 9}$ submatrix.

-																	
-																	

\mathcal{D}_{1} - a division of M where each zone is an $n^{2 / 3} \times n^{2 / 3}$ submatrix. \mathcal{D}_{2} - a division of M where each zone is an $n^{4 / 9} \times n^{4 / 9}$ submatrix. \mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.

\mathcal{D}_{1} - a division of M where each zone is an $n^{2 / 3} \times n^{2 / 3}$ submatrix. \mathcal{D}_{2} - a division of M where each zone is an $n^{4 / 9} \times n^{4 / 9}$ submatrix. \mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. $\mathcal{D}_{\text {last }}$ - a division where each zone is an $\mathcal{O}_{d}(\log n) \times \mathcal{O}_{d}(\log n)$ submatrix.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division. \mathcal{D}_{k} has at most $\mathcal{O}_{d}\left(n / n^{(2 / 3)^{k}}\right)$ unique zones. $\left(n / n, n / n^{2 / 3}, n / n^{4 / 9}, \ldots\right)$

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Next, mark unique zones in each division. \mathcal{D}_{k} has at most $\mathcal{O}_{d}\left(n / n^{(2 / 3)^{k}}\right)$ unique zones. $\left(n / n, n / n^{2 / 3}, n / n^{4 / 9}, \ldots\right)$ But: $\mathcal{D}_{\text {last }}$ has at most $\mathcal{O}(\sqrt{n})$ unique zones.

							\square												
															-				
						-											-		
					-					-	-	-		-		-			
											-				\square				
														\square					
											+	-				-			
				-	\square	-					-								
					1							-							
-	\square					-	-			-	\square	-		-					
								-			1	-			$\#$				
											-							-	
-												-		-					
\square						-	-	-	-	-	\square		-	,	-		-	-	-

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Now, create an object for each unique zone...

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Now, create an object for each unique zone... Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Now, create an object for each unique zone...

Add pointers (each of size $\mathcal{O}(\log n)$ bits)...

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Now, create an object for each unique zone...
Add pointers (each of size $\mathcal{O}(\log n)$ bits)...
And store each unique zone of $\mathcal{D}_{\text {last }}$ explicitly.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.
Query ($M[i, j]=$?):

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Query $\left(M[i, j]=\right.$?): follow the pointers and return a bit from $\mathcal{D}_{\text {last }}$.

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix. Query $\left(M[i, j]=\right.$?): follow the pointers and return a bit from $\mathcal{D}_{\text {last }}$. Time complexity: $\mathcal{O}($ last $)=\mathcal{O}(\log \log n)$.

Memory complexity

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.

The proof has three parts:

Memory complexity

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.
The proof has three parts:

- $\mathcal{D}_{\text {last }}$ has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;

Memory complexity

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.
The proof has three parts:

- $\mathcal{D}_{\text {last }}$ has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;
- The layers with large zones occupy $\mathcal{O}_{d}(n)$ bits in total;

Memory complexity

\mathcal{D}_{k} - a division of M where each zone is an $n^{(2 / 3)^{k}} \times n^{(2 / 3)^{k}}$ submatrix.
The proof has three parts:

- $\mathcal{D}_{\text {last }}$ has only $\mathcal{O}(\sqrt{n})$ small zones and we can store them explicitly;
- The layers with large zones occupy $\mathcal{O}_{d}(n)$ bits in total;
- The data structure needs to be modified slightly for medium zones.

PART 3

χ-BOUNDEDNESS

Pilipczuk, Sokołowski,
Graphs of Bounded Twin-Width are Quasi-Polynomially χ-Bounded

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.
Definition
\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\chi(G) \leq f(\omega(G))
$$

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.
Definition
\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }}) .
$$

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.
Definition
\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }}) .
$$

Examples:

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

Examples:

- perfect graphs $(f(x)=x)$,

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }})
$$

Examples:

- perfect graphs $(f(x)=x)$,
- sparse graph classes (bounded degeneracy, bounded expansion),

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }})
$$

Examples:

- perfect graphs $(f(x)=x)$,
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width $(f(x)=\operatorname{poly}(x))$,

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }})
$$

Examples:

- perfect graphs $(f(x)=x)$,
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width $(f(x)=\operatorname{poly}(x))$,
- some geometric intersection graph classes...

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }})
$$

Examples:

- perfect graphs $(f(x)=x)$,
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width $(f(x)=\operatorname{poly}(x))$,
- some geometric intersection graph classes...

Esperet: maybe if \mathcal{C} is χ-bounded, then it is polynomially χ-bounded?

χ-boundedness

Let \mathcal{C} - a hereditary class of graphs.

Definition

\mathcal{C} is χ-bounded by a function $f: \mathbb{N} \rightarrow \mathbb{N}$ if for every graph $G \in \mathcal{C}$,

$$
\underbrace{\chi(G)}_{\text {coloring }} \leq f(\underbrace{\omega(G)}_{\text {clique }})
$$

Examples:

- perfect graphs $(f(x)=x)$,
- sparse graph classes (bounded degeneracy, bounded expansion),
- bounded clique-width $(f(x)=\operatorname{poly}(x))$,
- some geometric intersection graph classes...

Esperet: maybe if \mathcal{C} is χ-bounded, then it is polynomially χ-bounded?
Briański, Davies, Walczak (2022): no.

Twin-width and χ-boundedness

Theorem (Twin-width III)
Graphs of twin-width $\leq d$ are χ-bounded by $f_{d}(\omega)=(d+2)^{\omega-1}$.

Twin-width and χ-boundedness

Theorem (Twin-width III)
Graphs of twin-width $\leq d$ are χ-bounded by $f_{d}(\omega)=(d+2)^{\omega-1}$.

Note: the proof shows that

$$
f_{d}(\omega) \leq(d+2) \cdot f_{d}(\omega-1) .
$$

Twin-width and χ-boundedness

Theorem (Twin-width III)
Graphs of twin-width $\leq d$ are χ-bounded by $f_{d}(\omega)=(d+2)^{\omega-1}$.

Conjecture (Twin-width III)
Are graphs of twin-width $\leq d$ polynomially χ-bounded?

Twin-width and χ-boundedness

Theorem (Twin-width III)
Graphs of twin-width $\leq d$ are χ-bounded by $f_{d}(\omega)=(d+2)^{\omega-1}$.

Conjecture (Twin-width III)
Are graphs of twin-width $\leq d$ polynomially χ-bounded?
Our result (PS22)
Fix $d \in \mathbb{N}$. There exists a constant $\beta_{d}>0$ such that graphs of twin-width $\leq d$ are χ-bounded by a quasi-polynomial function $f_{d}: \mathbb{N} \rightarrow \mathbb{N}$:

$$
f_{d}(\omega)=2^{\beta_{d} \cdot \log ^{\mathcal{O}(d)} \omega}
$$

Twin-width and χ-boundedness

Theorem (Twin-width III)
Graphs of twin-width $\leq d$ are χ-bounded by $f_{d}(\omega)=(d+2)^{\omega-1}$.

Conjecture (Twin-width III)
Are graphs of twin-width $\leq d$ polynomially χ-bounded?
Our result (PS22)
Fix $d \in \mathbb{N}$. There exists a constant $\beta_{d}>0$ such that graphs of twin-width $\leq d$ are χ-bounded by a quasi-polynomial function $f_{d}: \mathbb{N} \rightarrow \mathbb{N}$:

$$
f_{d}(\omega)=2^{\beta_{d} \cdot \log ^{\mathcal{O}(d)} \omega}
$$

Theorem (Bourneuf, Thomassé 2023)
Graphs of twin-width $\leq d$ are polynomially χ-bounded.

Ingredient: d-almost mixed minors

0	0	0	0	0	0	0	1	1	0	0	0
1	1	0	0	1	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	1	0	0	1	0
1	0	0	0	1	1	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	0	1
0	1	0	1	1	0	1	1	1	1	0	1

Ingredient: d-almost mixed minors

0	0	0	0	0	0	0	1	1	0	0	0
1	1	0	0	1	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	1	0	0	1	0
1	0	0	0	1	1	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	0	1
0	1	0	1	1	0	1	1	1	1	0	1

Fact

M has a $2 d$-almost mixed minor $\Longrightarrow M$ has a d-mixed minor.

Ingredient: d-almost mixed minors

0	0	0	0	0	0	0	1	1	0	0	0
1	1	0	0	1	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	1	0	0	1	0
1	0	0	0	1	1	0	0	1	1	1	1
0	1	0	1	1	1	1	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	0	1
0	1	0	1	1	0	1	1	1	1	0	1

Fact

M has a $2 d$-almost mixed minor $\Longrightarrow M$ has a d-mixed minor.
Corollary
$\operatorname{tww}(G) \leq d \Longrightarrow G$ has a $(2 d+2)$-mixed free adjacency matrix $\Longrightarrow G$ has a $(4 d+4)$-almost mixed free adjacency matrix.

Idea
If we had

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.9 \omega)
$$

then we would get $f_{d}(\omega)=\operatorname{poly}(\omega)$!

Idea

If we had

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.9 \omega)
$$

then we would get $f_{d}(\omega)=\operatorname{poly}(\omega)$!

Induction on $\omega(G) \geq 1$.
G - a graph,
M - a d-almost mixed free adjacency matrix of G, $V(G)=\{1, \ldots, n\}$ ordered according to M.

Idea

If we had

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.9 \omega)
$$

then we would get $f_{d}(\omega)=\operatorname{poly}(\omega)$!

Induction on $\omega(G) \geq 1$.
G - a graph,
M - a d-almost mixed free adjacency matrix of G,
$V(G)=\{1, \ldots, n\}$ ordered according to M.
Partition $V(G)$ into intervals $A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ (blobs) so that

$$
\omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k .
$$

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ．

M	0	$\bar{\square}$	$三$	三	M
0	0	$1 \mid$	0	0	0
	－	M	0	0	
｜｜｜	0	0	M	M	1
	0	0	M	0	｜｜｜
M	0	－	二	二	M

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ．

M	0	$\bar{\square}$	$三$	三	M
0	0	$1 \mid$	0	0	0
	－	M	0	0	
｜｜｜	0	0	M	M	1
	0	0	M	0	｜｜｜
M	0	－	二	二	M

First，paint each blob

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ．

M	0	$\bar{\square}$	$三$	三	M
0	0	$1 \mid$	0	0	0
	－	M	0	0	
｜｜｜	0	0	M	M	1
	0	0	M	0	｜｜｜
M	0	－	二	二	M

First，paint each blob using $f_{d}(0.9 \omega)$ colors．

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k .
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ．

0	0	$\overline{\underline{\square}}$	三	三	M
0	0	11	0	0	0
	－	0	0	0	
｜｜｜	0	0	0	M	1
11	0	0	M	0	｜｜｜
M	0	－	二	二	0

First，paint each blob using $f_{d}(0.9 \omega)$ colors．
For each color class C ：each intersection $C \cap A_{i}$ is an independent set！

Blob－blob connections

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k .
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ． Given a set（color class）C s．t．each $A_{i} \cap C$ is an independent set．

0	0	＝	三	三	M
0	0		0	0	0
	－	0	0	0	
｜ 11	0	0	0	M	｜｜｜
11	0	0	M	0	｜｜｜
M	0	Z	二	二	0

Blob-blob connections

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k
$$

$\mathcal{D}:=$ a (symmetric) division of M from the partition A_{1}, \ldots, A_{k}. Given a set (color class) C s.t. each $A_{i} \cap C$ is an independent set.

0	0	$\overline{\bar{\prime}}$	\equiv	\equiv	M				
0	0	$\\|\\|$	0	0	0				
$\\|\\|$	\bar{Z}	0	0	0	$\\| l \mid$				
$\\|\\|$	0	0	0	M	$\\|\\|$				
$\\|\\|$	0	0	M	0	$\\|\\|$				
M	0	\bar{Z}	\bar{Z}	\bar{Z}	0				

Lemma

$$
\chi(G[C]) \leq \operatorname{const}(d) \cdot f_{d}(0.2 \omega) .
$$

Blob－blob connections

$$
V(G)=A_{1} \cup \cdots \cup A_{k}, \quad \omega\left(G\left[A_{i}\right]\right)=0.9 \omega \quad \text { for } i=1,2, \ldots, k .
$$

$\mathcal{D}:=$ a（symmetric）division of M from the partition A_{1}, \ldots, A_{k} ． Given a set（color class）C s．t．each $A_{i} \cap C$ is an independent set．

0	0	二	三	$三$	M
0	0	11	0	0	0
	－	0	0	0	
II｜	0	0	0	M	｜｜｜
｜｜｜	0	0	M	0	｜｜｜
M	0	I	二	三	0

Lemma

Solution attempt (summary)

- We assign each vertex a product coloring of 2 colorings:

Solution attempt (summary)

- We assign each vertex a product coloring of 2 colorings:
- (within blobs) $f_{d}(0.9 \omega)$ colors,

Solution attempt (summary)

- We assign each vertex a product coloring of 2 colorings:
- (within blobs) $f_{d}(0.9 \omega)$ colors,
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.

Solution attempt (summary)

- We assign each vertex a product coloring of 2 colorings:
- (within blobs) $f_{d}(0.9 \omega)$ colors,
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.
- Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.2 \omega) \cdot f_{d}(0.9 \omega)
$$

Solution attempt (summary)

- We assign each vertex a product coloring of 2 colorings:
- (within blobs) $f_{d}(0.9 \omega)$ colors,
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.
- Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.2 \omega) \cdot f_{d}(0.9 \omega)
$$

- Even worse than exponential...

Solution: attempt 2

Maybe not all hope is lost. What additional assumptions on G and M would help us?

Solution: attempt 2

Maybe not all hope is lost. What additional assumptions on G and M would help us?

Rich blobs

Fix a blob $B_{i}(i<k)$, and let $B_{i}=\left\{\ell_{i}, \ell_{i}+1, \ldots, r_{i}\right\}$. We call B_{i} rich if:

- every vertex $v \in B_{i}$ is adjacent to any $s \in\left\{r_{i}+1, r_{i}+2, \ldots, n\right\}$,
- no two consecutive vertices of B_{i} are twins with respect to $\left\{r_{i}+1, r_{i}+2, \ldots, n\right\}$.

Solution: attempt 2 (rich blobs)

	B_{2}	111111111111 000000000000 000000000000 000000000000 111111111111	$\begin{aligned} & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \end{aligned}$	$\begin{aligned} & 1010101 \\ & 1010101 \\ & 0000111 \\ & 0000111 \\ & 1010101 \end{aligned}$	00000000000 00000000000 00000000000 11111111111 00000000000

Solution: attempt 2 (rich blobs)

	B_{2}	111111111111 000000000000 000000000000 000000000000 111111111111	$\begin{aligned} & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \end{aligned}$	$\begin{aligned} & 1010101 \\ & 1010101 \\ & 0000111 \\ & 0000111 \\ & 1010101 \end{aligned}$	00000000000 00000000000 00000000000 11111111111 00000000000

Solution: attempt 2 (rich blobs)

		B_{2}	11111111111	10001	1010101
000000000000	10001	1010101	00000000000		

Solution: attempt 2 (rich blobs)

Solution: attempt 2 (rich blobs)

Solution: attempt 2 (rich blobs)

	B_{2}	111111111111 000000000000 000000000000 000000000000 111111111111	$\begin{aligned} & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \\ & 10001 \end{aligned}$	$\begin{aligned} & 1010101 \\ & 1010101 \\ & 0000111 \\ & 0000111 \\ & 1010101 \end{aligned}$	00000000000 00000000000 00000000000 11111111111 00000000000

Solution: attempt 2 (rich blobs)

Rich blob lemma

If B_{i} is rich, then the adjacency matrix of B_{i} is $(d-1)$-almost mixed free.

Solution: attempt 2 (rich blobs)

Rich blob lemma

If B_{i} is rich, then the adjacency matrix of B_{i} is $(d-1)$-almost mixed free.

Solution: attempt 2 (rich blobs)

Rich blob lemma

If B_{i} is rich, then the adjacency matrix of B_{i} is $(d-1)$-almost mixed free.

Solution: attempt 2 (rich blobs)

Rich blob lemma

If B_{i} is rich, then the adjacency matrix of B_{i} is $(d-1)$-almost mixed free.

Solution: attempt 2 (rich blobs)
 If all blobs are rich:

As before, assign each vertex a product coloring of 2 colorings:

Solution: attempt 2 (rich blobs)
If all blobs are rich:
As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{\mathrm{d}-1}(0.9 \omega)$ colors (instead of $f_{d}(0.9 \omega)$),

Solution: attempt 2 (rich blobs)

If all blobs are rich:
As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{\mathrm{d}-1}(0.9 \omega)$ colors (instead of $f_{d}(0.9 \omega)$),
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.

Solution: attempt 2 (rich blobs)

If all blobs are rich:
As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{\mathrm{d}-1}(0.9 \omega)$ colors (instead of $f_{d}(0.9 \omega)$),
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.

Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}(0.9 \omega)
$$

Solution: attempt 2 (rich blobs)

If all blobs are rich:
As before, assign each vertex a product coloring of 2 colorings:

- (within blobs) $f_{\mathrm{d}-1}(0.9 \omega)$ colors (instead of $f_{d}(0.9 \omega)$),
- (between blobs) const $(d) \cdot f_{d}(0.2 \omega)$ colors.

Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}(0.9 \omega)
$$

By induction: quasi-polynomial!

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus-Tardos);

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus-Tardos);
- Paint vertices of poor blobs with a shared palette of $f_{d}(0.9 \omega)$ colors;

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus-Tardos);
- Paint vertices of poor blobs with a shared palette of $f_{d}(0.9 \omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_{d}(0.2 \omega)$ colors (as before);

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const (d) colors (Marcus-Tardos);
- Paint vertices of poor blobs with a shared palette of $f_{d}(0.9 \omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_{d}(0.2 \omega)$ colors (as before);
- Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.2 \omega) \cdot f_{d-1}(0.9 \omega)\right\} .
$$

Solution: attempt 2

Another extreme: poor blobs
Fix a blob $B_{i}(i<k)$. We call B_{i} poor if all its adjacencies with other blobs are empty or mixed.

If all blobs are rich or poor:

- Purge mixed connections by painting each blob into const(d) colors (Marcus-Tardos);
- Paint vertices of poor blobs with a shared palette of $f_{d}(0.9 \omega)$ colors;
- Rich blobs: $f_{d-1}(0.9 \omega) \cdot f_{d}(0.2 \omega)$ colors (as before);
- Thus:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.2 \omega) \cdot f_{d-1}(0.9 \omega)\right\} .
$$

- Quasi-polynomial again!

Solution: endgame

Not all blobs must be rich or poor.

Solution: endgame

Not all blobs must be rich or poor.
But each blob can be split into a poor part and an (almost) rich part!

Solution: endgame

Not all blobs must be rich or poor.
But each blob can be split into a poor part and an (almost) rich part!
The argument with (almost) rich blobs is involved and produces a worse bound:

$$
\chi\left(B_{i}\right) \leq f_{d}(0.1 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2} \quad \text { instead of } \quad \chi\left(B_{i}\right) \leq f_{d-1}(0.9 \omega)
$$

Solution: endgame

Not all blobs must be rich or poor.
But each blob can be split into a poor part and an (almost) rich part!
The argument with (almost) rich blobs is involved and produces a worse bound:

$$
\chi\left(B_{i}\right) \leq f_{d}(0.1 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2} \quad \text { instead of } \quad \chi\left(B_{i}\right) \leq f_{d-1}(0.9 \omega)
$$

Then:

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+\max \chi\left(B_{i}\right) \cdot f_{d}(0.2 \omega)\right\}
$$

Solution: endgame

Not all blobs must be rich or poor.
But each blob can be split into a poor part and an (almost) rich part!
The argument with (almost) rich blobs is involved and produces a worse bound:

$$
\chi\left(B_{i}\right) \leq f_{d}(0.1 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2} \quad \text { instead of } \quad \chi\left(B_{i}\right) \leq f_{d-1}(0.9 \omega) .
$$

Then:

$$
\begin{aligned}
f_{d}(\omega) & \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+\max \chi\left(B_{i}\right) \cdot f_{d}(0.2 \omega)\right\} \\
& \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.1 \omega) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2}\right\}
\end{aligned}
$$

Subexponential $\left(2^{O\left(\omega^{\varepsilon}\right)}\right.$ for any $\varepsilon>0$ if parameters chosen carefully).

Solution: endgame

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.1 \omega) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2}\right\}
$$

Solution: endgame

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.1 \omega) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2}\right\}
$$

How to reach a quasi-polynomial bound on χ ?
Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution and χ-boundedness, JCTB, 2013).

Solution: endgame

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.1 \omega) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2}\right\}
$$

How to reach a quasi-polynomial bound on χ ?
Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution and χ-boundedness, JCTB, 2013).

Intuition: the blobs are more complicated \Longrightarrow the connections between the blobs are less complex \Longrightarrow tradeoff between $f_{d}(0.1 \omega)$ and $f_{d}(0.2 \omega)$.

Solution: endgame

$$
f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d}(0.1 \omega) \cdot f_{d}(0.2 \omega) \cdot f_{d-1}\left(\omega^{d}\right)^{2}\right\}
$$

How to reach a quasi-polynomial bound on χ ?

Inspired by a work of Chudnovsky, Penev, Scott, Trotignon (Substitution and χ-boundedness, JCTB, 2013).

Intuition: the blobs are more complicated \Longrightarrow the connections between the blobs are less complex \Longrightarrow tradeoff between $f_{d}(0.1 \omega)$ and $f_{d}(0.2 \omega)$.
We eventually get:
$f_{d}(\omega) \leq \operatorname{const}(d) \cdot\left\{f_{d}(0.9 \omega)+f_{d-1}\left(\omega^{d}\right)^{2} \cdot \sum_{u=0}^{\left\lfloor\log _{2}(0.1 \omega)\right\rfloor} f_{d}\left(2^{u+1}\right) \cdot f_{d}\left(\frac{0.2 \omega}{2^{u}}+1\right)\right\}$
This resolves to $f_{d}(\omega)=2^{\beta_{d} \cdot \log ^{d} \omega}$.

Thank you!

