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Bounded sparse twin-width

Def: Class C is weakly sparse if C is Kt,t-subgraph-free for some t .

bnd treewidth = bnd cliquewidth ∩ weakly sparse

bnd pathwidth = bnd lin cliquewidth ∩ weakly sparse

bnd treedepth = bnd shrubdepth ∩ weakly sparse

Def: Class C has bnd sparse twin-width if C has bnd twin-width

and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR’22)

minor-free ( bnd sparse tww ( bnd expansion

Also: mixed minors grid minors.
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How do you get the dense column from the sparse one?

Idea: Close under logically defined operations.
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Transductions: example

D := class of James Davies’ examples

Claim: D transduces a class C that contains a subdivision of every wall.

Step 1: Color vertices using yellow, red, and blue.

Step 2: Interpret a new adjacency relation using:

ϕ(x, y) = (x and y are yellow or red and adjacent) or

(x and y are red and have a common blue neighbor)

Step 3: Take any induced subgraph.
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Transductions

Transduction T = (C, ϕ(x, y)), run on G:

− color vertices using the pale�e C;

− interpret a new edge relation using ϕ(x, y) ∈ FO;

− output any induced subgraph.

T(G) := all possible outputs of T on G T(C ) :=
⋃

G∈C T(G)

Def: D is transducible from C if D ⊆ T(C ) for some transduction T.

Intuition: Graphs from D can be encoded in colored graphs from C .

Notation: D vFO C .

Def: L -transduction = transduction where ϕ ∈ L .

FO-transductions, MSO1-transductions, MSO2-transductions, ...
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Transductions and parameters

Fact: C has bnd cliquewidth i� C can be MSO1-transduced

from the class of trees.

Cor: If C has bnd cliquewidth and D vFO C , then so does D .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

− bnd shrubdepth;

− bnd lin cliquewidth;

− bnd twin-width;

− bnd flip-width.

�estion: Can every class of bnd cliquewidth be transduced from

a class of bnd treewidth?

Equivalently: bnd cliquewidth = structurally bnd treewidth?
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Equivalently: bnd cliquewidth = structurally bnd treewidth?
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Monadic stability

NO: The obstacle are half-graphs.
a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

aibj ∈ E ⇔ i 6 j

Theorem (Podewski and Ziegler; Adler and Adler)

If C is nowhere dense, then Half-graphs 6vFO C .

Def: A class C is monadically stable if Half-graphs 6vFO C .

Intuition: C is monadically stable i� one cannot define

arbitrarily long total orders in graphs from C .

Intuition: Whatever we transduce from sparse classes, no half-graphs.
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Monadic dependence

Def: A class C is monadically dependent (NIP) if Graphs 6vFO C .

nowhere dense ⊆ mon stable ⊆ mon dependent

Fact: If C is weakly sparse, then

C is nowhere dense⇔ C is mon stable⇔ C is mon dependent.

Fact: If C is mon dependent, then

C is mon stable ⇔ C has a stable edge relation;

this means excluding some semi-induced half-graph.
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bnd treedepth

bnd pathwidth

bnd treewidth

minor-free

bnd sparse

twin-width

bnd expansion

nowhere dense

bnd cliquewidth

bnd shrubdepth

bnd lin cliquewidth

bnd twin-width

bnd flip-width

structurally

nowhere dense mon stable mon dependent

structurally
bnd treedepth

structurally
bnd pathwidth

structurally

bnd treewidth

structurally

minor-free

structurally
bnd sp twin-width

structurally
bnd expansion

stable bnd
shrubdepth

stable bnd
lin cliquewidth

stable bnd
cliquewidth

stable
bnd twin-width

stable
bnd flip-width

= =

(1)
=

(1): [NOdMRS’20]

(2)
=

(2): [NOdMPRS’21]

(3)
=

(3): [GPT’22]
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Main result

Theorem

If C is a class of bnd twin-width with a stable edge relation,

then C can be transduced from a class D of bounded sparse twin-width.

In fact, we can have C ≡FO D .

Intuition: Every G ∈ C can be sparsified.

We can find sparse H ∈ D in which G can be encoded.

Cor: stable bnd twin-width ⊆ structurally bounded expansion.

Cor: If C has stable bnd twin-width, then C is linearly χ-bounded:

χ(G) 6 c · ω(G) for all G ∈ C .

Now: Proof of the last corollary.

− Baby case of the proof of the main theorem.
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Index

Def: Index of G is the largest order of the following structure in G:

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

(i < j) ⇒ ai and bj adjacent

(i > j) ⇒ ai and bj non-adjacent

(i = j) ⇒ no requirement

within {ai} ⇒ no requirement

within {bi} ⇒ no requirement

Obs: C has stable edge relation ⇒ C has bounded index.

Idea: Use index as a progress measure.

Obs: If A ⊆ V (G) has a complete and an anti-complete vertex, then

index(G[A]) < index(G).

A
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Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

(2d + 4)k−1 colors

so that every color induces a cograph.

Cograph = P4-free graph

Recursive definition:
cograph

cograph

cograph
cograph

cograph

cograph
cograph

Fact: Cographs are perfect: χ(H) = ω(H) whenever H is a cograph.

Cor: Under the assumptions of Lemma, χ(G) 6 (2d + 4)k−1 · ω(G).

Idea: Induction on the index k.
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Frozen bubbles

Consider an uncontraction sequence of width d .

P1 P2 P3 P4 Pn

A part A ∈ Pt is light if index(G[A]) < k, and heavy otherwise.

A ∈ Pt is frozen at time t if A is light but the parent A′ ∈ Pt−1 is heavy.

− Ft := parts frozen at time t .

− Note: |Ft| 6 2.

− F :=
⋃

16t6nFt .

− Note: F is a partition of the vertex set.
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Ordering bubbles

Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every B ∈ F there is a set EB of at most d + 1 earlier bubbles

such that B is homogeneous towards
⋃
{A : A ≺ B,A /∈ EB}.

Proof: look�

− B′ := parent of B, say B′ ∈ Pt .

− N := red neighbors of B′ at time t .

− Note: Every u /∈ B′ ∪
⋃
N is homogeneous towards B′.

− Note: B′ is heavy⇒ All homogeneity of same type.

− EB := frozen ancestors of N and maybe sibling of B. �
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Coloring bubbles

Partition F into 2 · (d + 2) groups:

− Degeneracy coloring with d + 2 colors No exceptions within a group.

− Homogeneity type + or − Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each B ∈ F  Cograph coloring with f (k − 1) colors.

Use 2d + 4 pale�es of size f (k − 1) (2d + 4) · f (k − 1) colors in total. �
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Decomposition

We got sort of a decomposition:

Problem: We don’t control edges between groups.

Idea: Induct on pairs of bubbles.

− Pair of bubbles A,B is simpler if index(G[A,B]) < k.
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General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.

Then one can partition V (G) into F respecting sides so that:

− On F there is an exception graph H.

− H has star chromatic number bounded by p = p(d, k).

− Each star in each induced star forest of the above has index < k.

− All non-exceptional pairs of A,B ∈ F are homogeneous.

− Complete pairs AB /∈ E(H) can be cleared using q = q(d, k) flips.
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Glimpse into the proof

Freezing condition:

A ∈ Pt gets frozen if index(G[A,B]) < k for all B ∈ Pt on the other side.

This gives rise to the exception graph H.

− H has bounded wcol2.

− Ergo: H has bounded star chromatic number.

− A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. �

Di�erent freezing conditions give di�erent structure between bubbles.

− χ-boundedness freeze when ω drops quotient is sparse.

− qpoly χ-boundedness freeze when ω drops by 1%.

− neighborhood covers freeze when there is a universal vertex.
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Sketch of main proof

Goal: Find sparse G′ of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G′ from which G can be transduced.

− Just replace each equivalence relation with a star forest.

Issue: Why does G′ have bounded twin-width?

− G′ can be transduced from (G,6), where 6 witnesses bnd tww of G.
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Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20



Open problems

str bnd expansion ?
= stable bnd flip-width

str nowhere dense ?
= mon stable

Def: For a property Π, let Π̂ be the largest transduction ideal such that

Π = Π̂ ∩weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: C has unbounded cliquewidth

⇔ C transduces a class that contains a subdivision of every wall.

Conjecture: C has unbounded linear cliquewidth

⇔ C transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)

C has unbounded shrubdepth⇔ C transduces the class of all paths.

Michał Pilipczuk Stable bounded twin-width 20 / 20


