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Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse
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Bounded sparse twin-width
Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse

bnd treedepth = bnd shrubdepth N weakly sparse

Def: Class € has bnd sparse twin-width if ¢ has bnd twin-width

and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR’22)

minor-free C bnd sparsetww C  bnd expansion

Also: mixed minors ~~» grid minors.
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nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

bnd flip-width

How do you get the dense column from the sparse one?

Idea: Close under logically defined operations.
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Transductions: example

9 = class of James Davies’ examples
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Transductions: example

2 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.
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Transductions: example

9 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.

///////////////////
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DD NDEDEDEDEN.

Step 1: Color vertices using , red, and blue.

Step 2: Interpret a new adjacency relation using;:
©(x,y) = (x and y are or red and adjacent) or

(x and y are red and have a common blue neighbor)
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2 = class of James Davies’ examples
Claim: Z transduces a class % that contains a subdivision of every wall.
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Step 2: Interpret a new adjacency relation using;:
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Transductions: example

2 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.

M) M) M) ) ) M) M)
/ /

M) M) ) ) M) M)
/ / /
i O—0O O—O—0O0——0O0—=0 O—O0——0
Step 1: Color vertices using , red, and blue.

Step 2: Interpret a new adjacency relation using;:
©(x,y) = (x and y are or red and adjacent) or

(x and y are red and have a common blue neighbor)
Step 3: Take any induced subgraph.
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Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Intuition: Graphs from Z can be encoded in colored graphs from %.

Notation: ¥ Cig %

Def: .Z-transduction = transduction where ¢ € Z.

FO-transductions, MSO;-transductions, MSO,-transductions, ...
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Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

— bnd shrubdepth;

— bnd lin cliquewidth;

— bnd twin-width;

— bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from

a class of bnd treewidth?

Equivalently: bnd cliquewidth = structurally bnd treewidth?
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Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

aibj€E<:>i<j

Theorem (Podewski and Ziegler; Adler and Adler)
If € is nowhere dense, then Half-graphs Zgo %.

Def: A class ¢ is monadically stable if Half-graphs [Zro €.

Intuition: & is monadically stable iff one cannot define

arbitrarily long total orders in graphs from &.

Intuition: Whatever we transduce from sparse classes, no half-graphs.
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Monadic dependence
Def: A class € is monadically dependent (NIP) if Graphs [Z¢o €.
nowhere dense C mon stable C mon dependent

Fact: If € is weakly sparse, then

% is nowhere dense < % is mon stable & % is mon dependent.

Fact: If € is mon dependent, then
% is mon stable <& € has a stable edge relation;

this means excluding some semi-induced half-graph.

Michat Pilipczuk Stable bounded twin-width 8/ 20



bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

Michat Pilipczuk

bnd flip-width

Stable bounded twin-width 9/ 20



bnd treedepth

N
bnd pathwidth

N
bnd treewidth
)

minor-free

1

bnd sparse
twin-width

1

bnd expansion

1

nowhere dense «——

bnd shrubdepth
T
bnd lin cliquewidth
T

bnd cliquewidth

bnd twin-width
T
bnd flip-width

1

structurally

—— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20



bnd treedepth «— Sty 0 stablebnd L4 shrubdepth

bnd treedepth shrubdepth
T T T T
. structurally stable bnd . . .
bnd pathwidth «— " oathwidth | lincliquewidth | < bnd lin cliquewidth
T T T T
structurally stable bnd . .
i — — o «— bnd cliquewidth
bnd treewidth e cliquewidth q
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion  «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «—— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20



bnd treedepth «—| Sty o stablebnd L g b ubdepth

bnd treedepth shrubdepth
T T T T
. structurally stable bnd . . .
bnd pathwidth «— " oathwidth | lincliquewidth | < bnd lin cliquewidth
T T T T
structurally stable bnd . .
i — — o «— bnd cliquewidth
bnd treewidth e cliquewidth q
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion  «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «——— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20



structurally . stable bnd _
bnd treedepth  «—| weedepth shrubdepth bnd shrubdepth
T , T T T
. structurally (1_) stable bnd . . .
bnd pathwidth «—| " oathwidth | lincliquewidth || bnd lin cliquewidth
T T T 7
. structurally stable bnd : .
bnd treewidth «— | h T ciquewidth bnd cliquewidth
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion  «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «——— mon stable «— mon dependent
nowhere dense

(1): [NOdMRS’20]

Michat Pilipczuk Stable bounded twin-width 9/ 20



structurally . stable bnd -
bnd treedepth  «—| weedepth shrubdepth bnd shrubdepth
T , T T ‘ T
. structurally (M stable bnd . . .
bnd pathwidth «—| | . oathwidth . — | lincliquewidth || bnd lin cliquewidth
T , T T ‘ T
. structurally (_) stable bnd . .
bnd treewidth «—| ... = cliquewidth | bnd cliquewidth
T T

. £ structurally
minor-itree M E—

minor-free
T T
bnd sparse structurally stable . .
¢ — — «— -
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion  e— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T
structurally
nowhere dense «— «——— mon stable «— mon dependent

nowhere dense
(1): [NOAMRS’20]  (2): [NOAMPRS’21]

Michat Pilipczuk Stable bounded twin-width 9/ 20



bnd treedepth - structurally _ stable bnd _ bnd shrubdepth

bnd treedepth shrubdepth
T , T T ‘ T
. structurally (M stable bnd . . .
bnd pathwidth «—| . oathwidth | lin cliquewidth | bnd lin cliquewidth
T , T T ‘ T
) structurally (_) stable bnd : .
bnd treewidth «—| ... = cliquewidth | bnd cliquewidth
T T
. £ structurally
minor-iree minor-free
T T
bnd sparse structurally (_) stable . .
twin-width bnd sp twin-width v et | bnd twin-width
T T T T
. structurally stable . -
bnd expansion  «— bnd expansion — bnd flip-width — bnd ﬂlp-WIdth
T T T T
tructurall
nowhere dense «— nj\;g;:je:se «——— mon stable «— mon dependent
(1): [NOAMRS’20]  (2): [NOAMPRS’21] (3): [GPT’22]

Michat Pilipczuk Stable bounded twin-width 9/ 20



Main result

Michat Pilipczuk Stable bounded twin-width 10 / 20



Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then & can be transduced from a class ¥ of bounded sparse twin-width.

In fact, we can have € =50 Z.

Michat Pilipczuk Stable bounded twin-width 10 / 20



Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Michat Pilipczuk Stable bounded twin-width 10 / 20



Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Michat Pilipczuk Stable bounded twin-width 10 / 20



Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Michat Pilipczuk Stable bounded twin-width 10 / 20



Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Now: Proof of the last corollary.
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Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Now: Proof of the last corollary.

— Baby case of the proof of the main theorem.
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Def: Index of G is the largest order of the following structure in G:

aq a as ay ds
@)

@

b, b, b; b, bs
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Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
O
b1 b2 b3 b4 b5
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Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
® within {b;} = no requirement
b, b, by by bs {bi} !

Obs: % has stable edge relation = % has bounded index. A

Idea: Use index as a progress measure.

Obs: If A C V(G) has a complete and an anti-complete vertex, then
index(G[A]) < index(G).
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Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.
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Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

o X o o
. o egs ¥ X (¥ ¥
Recursive definition: © 0% o | o™ 2 (o
cograph
cograph cograph

Fact: Cographs are perfect: x(H) = w(H) whenever H is a cograph.

Cor: Under the assumptions of Lemma, x(G) < (2d + 4)* - w(G).

Idea: Induction on the index k.

Michat Pilipczuk Stable bounded twin-width 12/ 20



Frozen bubbles

Michat Pilipczuk Stable bounded twin-width 13/ 20



Frozen bubbles

Consider an uncontraction sequence of width d.

O 8 Q?b ................ %g ................

P1 732 3 4

v
0000000
00000 O0OCO
0000000
0000 OCOCO
0000000
0000000

o
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Frozen bubbles

Consider an uncontraction sequence of width d.

¢
g
&
“

B
NS
A
S
3

A part A € P;is light if index(G[A]) < k, and heavy otherwise.
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A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P;is frozen at time t if Ais light but the parent A’ € P;_; is heavy.
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Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P;is frozen at time t if Ais light but the parent A’ € P;_; is heavy.
— JF; = parts frozen at time t.

— Note: | F;| < 2.
— F = U1<t<nft°

— Note: F is a partition of the vertex set.
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Ordering bubbles
Order F by the freezing times.
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Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma

For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.
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such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.
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Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look =¥~

— B’ := parent of B, say B' € P;.
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For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look &~
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— N = red neighbors of B at time t.
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For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look ¥~
— B’ := parent of B, say B' € P;.
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For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.
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Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look &~
— B’ := parent of B, say B' € P;.
— N = red neighbors of B at time t.
— Note: Every u ¢ B'U|JN is homogeneous towards B'.
— Note: B’ is heavy = All homogeneity of same type.
— &g = frozen ancestors of A/ and maybe sibling of B. [l
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Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.
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Apply induction on each B € F ~» Cograph coloring with f(k — 1) colors.
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Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each B € F ~» Cograph coloring with f(k — 1) colors.
Use 2d + 4 palettes of size f(k — 1) ~ (2d + 4) - f(k — 1) colors in total. [J
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Decomposition

We got sort of a decomposition:

=

Problem: We don’t control edges between groups.

Idea: Induct on pairs of bubbles.

— Pair of bubbles A, B is simpler if index(G[A, B]) < k.
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General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
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General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.
— H has star chromatic number bounded by p = p(d, k).
— Each star in each induced star forest of the above has index < k.
— All non-exceptional pairs of A, B € F are homogeneous.

— Complete pairs AB ¢ E(H) can be cleared using g = q(d, k) flips.
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— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.
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Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.
More work with flipping away the complete pairs. [
Different freezing conditions give different structure between bubbles.

— x-boundedness ~~ freeze when w drops ~» quotient is sparse.

— gpoly x-boundedness ~~ freeze when w drops by 1%.
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Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. [

Different freezing conditions give different structure between bubbles.
— x-boundedness ~~ freeze when w drops ~» quotient is sparse.
— gpoly x-boundedness ~~ freeze when w drops by 1%.

— neighborhood covers ~~ freeze when there is a universal vertex.
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Sketch of main proof

Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
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Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G’ from which G can be transduced.

— Just replace each equivalence relation with a star forest.

Issue: Why does G’ have bounded twin-width?

— (' can be transduced from (G, <), where < witnesses bnd tww of G.
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?
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Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.
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Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?
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Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: % has unbounded cliquewidth

& € transduces a class that contains a subdivision of every wall.
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Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable
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Theorem (OdMPS’23)
% has unbounded shrubdepth < % transduces the class of all paths.
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