Stable graphs of bounded twin-width

joint work with Jakub Gajarsky and Szymon Torunczyk

15! Twin-width Workshop
Aussois, May 24", 2023

Michat Pilipczuk Stable bounded twin-width 1/ 20

bnd treedepth

T
bnd pathwidth

)
bnd treewidth
)

minor-free

bnd expansion
T

nowhere dense

Michat Pilipczuk

Stable bounded twin-width

1/ 20

bnd treedepth

T
bnd pathwidth

T

bnd treewidth
)

minor-free

bnd expansion
T

nowhere dense

Michat Pilipczuk

Stable bounded twin-width

bnd cliquewidth

1/ 20

bnd treedepth

N
bnd pathwidth

N
bnd treewidth
)

minor-free

bnd expansion
T

nowhere dense

Michat Pilipczuk

Stable bounded twin-width

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

1/ 20

bnd treedepth

N
bnd pathwidth

N
bnd treewidth
)

minor-free

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

Michat Pilipczuk

bnd cliquewidth

bnd twin-width

Stable bounded twin-width 1/ 20

Bounded sparse twin-width

Michat Pilipczuk Stable bounded twin-width 2/ 20

Bounded sparse twin-width

Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

Michat Pilipczuk Stable bounded twin-width 2/ 20

Bounded sparse twin-width
Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse

Michat Pilipczuk Stable bounded twin-width 2/ 20

Bounded sparse twin-width

Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse

bnd pathwidth = bnd lin cliquewidth N weakly sparse

Michat Pilipczuk Stable bounded twin-width

2/ 20

Bounded sparse twin-width

Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse

bnd treedepth = bnd shrubdepth N weakly sparse

Michat Pilipczuk Stable bounded twin-width

2/ 20

Bounded sparse twin-width
Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse

bnd treedepth = bnd shrubdepth N weakly sparse

Def: Class € has bnd sparse twin-width if ¢ has bnd twin-width

and is weakly sparse.

Michat Pilipczuk Stable bounded twin-width

2/ 20

Bounded sparse twin-width
Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse

bnd treedepth = bnd shrubdepth N weakly sparse

Def: Class € has bnd sparse twin-width if ¢ has bnd twin-width

and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR’22)

minor-free C bnd sparsetww C bnd expansion

Michat Pilipczuk Stable bounded twin-width 2/ 20

Bounded sparse twin-width
Def: Class ¢ is weakly sparse if ¢ is K; ;~subgraph-free for some t.

bnd treewidth = bnd cliquewidth N weakly sparse
bnd pathwidth = bnd lin cliquewidth N weakly sparse

bnd treedepth = bnd shrubdepth N weakly sparse

Def: Class € has bnd sparse twin-width if ¢ has bnd twin-width

and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR’22)

minor-free C bnd sparsetww C bnd expansion

Also: mixed minors ~~» grid minors.

Michat Pilipczuk Stable bounded twin-width 2/ 20

bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

Michat Pilipczuk

bnd twin-width

Stable bounded twin-width 3/ 20

bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

Michat Pilipczuk

bnd flip-width

Stable bounded twin-width 3/ 20

bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

bnd flip-width

How do you get the dense column from the sparse one?

Michat Pilipczuk Stable bounded twin-width 3/20

bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

bnd flip-width

How do you get the dense column from the sparse one?

Idea: Close under logically defined operations.

Michat Pilipczuk Stable bounded twin-width 3/20

Transductions: example

Michat Pilipczuk Stable bounded twin-width 4/ 20

Transductions: example

9 = class of James Davies’ examples

AAAAAAIAAJASAS A A

/ / / / /

Michat Pilipczuk Stable bounded twin-width

Transductions: example

9 = class of James Davies’ examples
Claim: Z transduces a class % that contains a subdivision of every wall.

AAAAAAIAAJASAS A A

/ / / / /

Michat Pilipczuk Stable bounded twin-width

Transductions: example

2 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.

V7 I o o o o o o o o v e ,/////
Y/ /) O

DD NDEDEDEDEN.

Step 1: Color vertices using , red, and blue.

Transductions: example

9 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.

///////////////////
1 I O T Y

DD NDEDEDEDEN.

Step 1: Color vertices using , red, and blue.

Step 2: Interpret a new adjacency relation using;:
©(x,y) = (x and y are or red and adjacent) or

(x and y are red and have a common blue neighbor)

Michat Pilipczuk Stable bounded twin-width 4/ 20

Transductions: example

2 = class of James Davies’ examples
Claim: Z transduces a class % that contains a subdivision of every wall.

SESESEEEEEEENss
e

Step 1: Color vertices using , red, and blue.

@)
@)

Q
@)

*—0
@)
@)
Q
QO O
o—0

Q
Q
@)

Step 2: Interpret a new adjacency relation using;:
©(x,y) = (x and y are or red and adjacent) or

(x and y are red and have a common blue neighbor)

Michat Pilipczuk Stable bounded twin-width 4/ 20

Transductions: example

2 = class of James Davies’ examples

Claim: Z transduces a class % that contains a subdivision of every wall.

M) M) M))) M) M)
/ /

M) M))) M) M)
/ / /
i O—0O O—O—0O0——0O0—=0 O—O0——0
Step 1: Color vertices using , red, and blue.

Step 2: Interpret a new adjacency relation using;:
©(x,y) = (x and y are or red and adjacent) or

(x and y are red and have a common blue neighbor)
Step 3: Take any induced subgraph.

Michat Pilipczuk Stable bounded twin-width 4/ 20

Transductions

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:

— color vertices using the palette C;

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;

— interpret a new edge relation using p(x, y) € FO;

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G

Michat Pilipczuk Stable bounded twin-width

5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Michat Pilipczuk Stable bounded twin-width

5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Intuition: Graphs from Z can be encoded in colored graphs from %.

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Intuition: Graphs from Z can be encoded in colored graphs from %.

Notation: ¥ Cig %

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Intuition: Graphs from Z can be encoded in colored graphs from %.

Notation: ¥ Cig %

Def: .Z-transduction = transduction where ¢ € Z.

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions

Transduction T = (C, ¢(x, y)), run on G:
— color vertices using the palette C;
— interpret a new edge relation using p(x, y) € FO;
— output any induced subgraph.

T(G) = all possible outputs of Ton G (%) = Ugey T(G)

Def: Z is transducible from € if 2 C T(%’) for some transduction T.

Intuition: Graphs from Z can be encoded in colored graphs from %.

Notation: ¥ Cig %

Def: .Z-transduction = transduction where ¢ € Z.

FO-transductions, MSO;-transductions, MSO,-transductions, ...

Michat Pilipczuk Stable bounded twin-width 5/ 20

Transductions and parameters

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.

Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.

Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.

Michat Pilipczuk Stable bounded twin-width

6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.

Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

Michat Pilipczuk Stable bounded twin-width

6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

— bnd shrubdepth;

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:
— bnd shrubdepth;
— bnd lin cliquewidth;

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.

Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:
— bnd shrubdepth;

— bnd lin cliquewidth;
— bnd twin-width;

Michat Pilipczuk Stable bounded twin-width

6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

— bnd shrubdepth;

— bnd lin cliquewidth;

— bnd twin-width;

— bnd flip-width.

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

— bnd shrubdepth;

— bnd lin cliquewidth;

— bnd twin-width;

— bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from

a class of bnd treewidth?

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

— bnd shrubdepth;

— bnd lin cliquewidth;

— bnd twin-width;

— bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from

a class of bnd treewidth?

Michat Pilipczuk Stable bounded twin-width 6/ 20

Transductions and parameters

Fact: @ has bnd cliquewidth iff € can be MSO;-transduced

from the class of trees.
Cor: If € has bnd cliquewidth and ¥ Ty %, then so does Z.

We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

— bnd shrubdepth;

— bnd lin cliquewidth;

— bnd twin-width;

— bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from

a class of bnd treewidth?

Equivalently: bnd cliquewidth = structurally bnd treewidth?

Michat Pilipczuk Stable bounded twin-width

6/ 20

Monadic stability

Michat Pilipczuk Stable bounded twin-width 7/ 20

Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

Michat Pilipczuk Stable bounded twin-width

aibj€E<:>i<j

7/ 20

Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

aibj€E<:>i<j

Theorem (Podewski and Ziegler; Adler and Adler)
If € is nowhere dense, then Half-graphs Zgo %.

Michat Pilipczuk Stable bounded twin-width 7/ 20

Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

aibj€E<:>i<j

Theorem (Podewski and Ziegler; Adler and Adler)
If € is nowhere dense, then Half-graphs Zgo %.

Def: A class ¢ is monadically stable if Half-graphs [Zro €.

Michat Pilipczuk Stable bounded twin-width 7/ 20

Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

aibj€E<:>i<j

Theorem (Podewski and Ziegler; Adler and Adler)
If € is nowhere dense, then Half-graphs Zgo %.

Def: A class ¢ is monadically stable if Half-graphs [Zro €.

Intuition: & is monadically stable iff one cannot define

arbitrarily long total orders in graphs from &.

Michat Pilipczuk Stable bounded twin-width 7/ 20

Monadic stability
NO: The obstacle are half-graphs.

a, a; as a, (713

aibj€E<:>i<j

Theorem (Podewski and Ziegler; Adler and Adler)
If € is nowhere dense, then Half-graphs Zgo %.

Def: A class ¢ is monadically stable if Half-graphs [Zro €.

Intuition: & is monadically stable iff one cannot define

arbitrarily long total orders in graphs from &.

Intuition: Whatever we transduce from sparse classes, no half-graphs.

Michat Pilipczuk Stable bounded twin-width 7/ 20

Monadic dependence

Michat Pilipczuk Stable bounded twin-width 8/ 20

Monadic dependence

Def: A class € is monadically dependent (NIP) if Graphs Zro €.

Michat Pilipczuk Stable bounded twin-width 8/ 20

Monadic dependence
Def: A class € is monadically dependent (NIP) if Graphs Zro €.

nowhere dense C mon stable C mon dependent

Michat Pilipczuk Stable bounded twin-width 8/ 20

Monadic dependence
Def: A class € is monadically dependent (NIP) if Graphs Zro €.
nowhere dense C mon stable C mon dependent

Fact: If ¢ is weakly sparse, then

% is nowhere dense < % is mon stable & % is mon dependent.

Michat Pilipczuk Stable bounded twin-width

8/ 20

Monadic dependence
Def: A class € is monadically dependent (NIP) if Graphs [Z¢o €.
nowhere dense C mon stable C mon dependent

Fact: If € is weakly sparse, then

% is nowhere dense < % is mon stable & % is mon dependent.

Fact: If € is mon dependent, then
% is mon stable <& € has a stable edge relation;

this means excluding some semi-induced half-graph.

Michat Pilipczuk Stable bounded twin-width 8/ 20

bnd treedepth

N
bnd pathwidth
)
bnd treewidth
)

minor-free

?

bnd sparse
twin-width

?

bnd expansion
T

nowhere dense

bnd shrubdepth
7
bnd lin cliquewidth
7

bnd cliquewidth

bnd twin-width
1

Michat Pilipczuk

bnd flip-width

Stable bounded twin-width 9/ 20

bnd treedepth

N
bnd pathwidth

N
bnd treewidth
)

minor-free

1

bnd sparse
twin-width

1

bnd expansion

1

nowhere dense «——

bnd shrubdepth
T
bnd lin cliquewidth
T

bnd cliquewidth

bnd twin-width
T
bnd flip-width

1

structurally

—— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20

bnd treedepth «— Sty 0 stablebnd L4 shrubdepth

bnd treedepth shrubdepth
T T T T
. structurally stable bnd . . .
bnd pathwidth «— " oathwidth | lincliquewidth | < bnd lin cliquewidth
T T T T
structurally stable bnd . .
i — — o «— bnd cliquewidth
bnd treewidth e cliquewidth q
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «—— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20

bnd treedepth «—| Sty o stablebnd L g b ubdepth

bnd treedepth shrubdepth
T T T T
. structurally stable bnd . . .
bnd pathwidth «— " oathwidth | lincliquewidth | < bnd lin cliquewidth
T T T T
structurally stable bnd . .
i — — o «— bnd cliquewidth
bnd treewidth e cliquewidth q
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «——— mon stable «— mon dependent
nowhere dense

Michat Pilipczuk Stable bounded twin-width 9/ 20

structurally . stable bnd _
bnd treedepth «—| weedepth shrubdepth bnd shrubdepth
T , T T T
. structurally (1_) stable bnd . . .
bnd pathwidth «—| " oathwidth | lincliquewidth || bnd lin cliquewidth
T T T 7
. structurally stable bnd : .
bnd treewidth «— | h T ciquewidth bnd cliquewidth
T T

. £ structurally
minor-itree A E—

minor-free
T T
bnd sparse structurally stable . .
— — «— =
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion «— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T

structurally

nowhere dense «— «——— mon stable «— mon dependent
nowhere dense

(1): [NOdMRS’20]

Michat Pilipczuk Stable bounded twin-width 9/ 20

structurally . stable bnd -
bnd treedepth «—| weedepth shrubdepth bnd shrubdepth
T , T T ‘ T
. structurally (M stable bnd . . .
bnd pathwidth «—| | . oathwidth . — | lincliquewidth || bnd lin cliquewidth
T , T T ‘ T
. structurally (_) stable bnd . .
bnd treewidth «—| ... = cliquewidth | bnd cliquewidth
T T

. £ structurally
minor-itree M E—

minor-free
T T
bnd sparse structurally stable . .
¢ — — «— -
twin-width bnd sp twin-width bnd twin-width bnd twin-width
T T T T
. structurally stable . -
bnd €xpansion e— bnd expansion — bnd flip-width — bnd ﬂlp width
T T T T
structurally
nowhere dense «— «——— mon stable «— mon dependent

nowhere dense
(1): [NOAMRS’20] (2): [NOAMPRS’21]

Michat Pilipczuk Stable bounded twin-width 9/ 20

bnd treedepth - structurally _ stable bnd _ bnd shrubdepth

bnd treedepth shrubdepth
T , T T ‘ T
. structurally (M stable bnd . . .
bnd pathwidth «—| . oathwidth | lin cliquewidth | bnd lin cliquewidth
T , T T ‘ T
) structurally (_) stable bnd : .
bnd treewidth «—| ... = cliquewidth | bnd cliquewidth
T T
. £ structurally
minor-iree minor-free
T T
bnd sparse structurally (_) stable . .
twin-width bnd sp twin-width v et | bnd twin-width
T T T T
. structurally stable . -
bnd expansion «— bnd expansion — bnd flip-width — bnd ﬂlp-WIdth
T T T T
tructurall
nowhere dense «— nj\;g;:je:se «——— mon stable «— mon dependent
(1): [NOAMRS’20] (2): [NOAMPRS’21] (3): [GPT’22]

Michat Pilipczuk Stable bounded twin-width 9/ 20

Main result

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then & can be transduced from a class ¥ of bounded sparse twin-width.

In fact, we can have € =50 Z.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Now: Proof of the last corollary.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Main result

Theorem
If € is a class of bnd twin-width with a stable edge relation,

then € can be transduced from a class & of bounded sparse twin-width.

In fact, we can have € =50 Z.

Intuition: Every G € % can be sparsified.
We can find sparse H € & in which G can be encoded.

Cor: stable bnd twin-width C structurally bounded expansion.

Cor: If € has stable bnd twin-width, then % is linearly y-bounded:
X(G) < ¢ w(G) forall G € %.

Now: Proof of the last corollary.

— Baby case of the proof of the main theorem.

Michat Pilipczuk Stable bounded twin-width 10 / 20

Index

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay ds
@)

@

b, b, b; b, bs

Michat Pilipczuk Stable bounded twin-width

11/ 20

Index

Def: Index of G is the largest order of the following structure in G:

a; a as a, as

Michat Pilipczuk Stable bounded twin-width

O (i<j) = a;and b; adjacent

11/ 20

Index

Def: Index of G is the largest order of the following structure in G:

a; a as a, as

O (i<j) = a;and b; adjacent

(i>j) = a;and b; non-adjacent

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
O
b1 b2 b3 b4 b5

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

C q 4 3 5 (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
b.1 b, b, b, bs

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
® within {b;} = no requirement
b, b, by by bs {bi} !

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
® within {b;} = no requirement
b, b, by by bs {bi} !

Obs: % has stable edge relation = % has bounded index.

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
® within {b;} = no requirement
b, b, by by bs {bi} !

Obs: % has stable edge relation = % has bounded index.

Idea: Use index as a progress measure.

Michat Pilipczuk Stable bounded twin-width 117/ 20

Index

Def: Index of G is the largest order of the following structure in G:

aq a as ay as

O (i<j) = a;and b; adjacent
(i>j) = a;and b; non-adjacent
(i=j) = norequirement
within {a;} = norequirement
® within {b;} = no requirement
b, b, by by bs {bi} !

Obs: % has stable edge relation = % has bounded index. A

Idea: Use index as a progress measure.

Obs: If A C V(G) has a complete and an anti-complete vertex, then
index(G[A]) < index(G).

Michat Pilipczuk Stable bounded twin-width 117/ 20

Partition into cographs

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

Michat Pilipczuk Stable bounded twin-width

12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

x x x X
. o egs ¥ X (¥ ¥
Recursive definition: © o o | w8 22X o8
cograph
cograph cograph

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

x x x X
. o egs ¥ X (¥ ¥
Recursive definition: © 0% o | w8 22X o8
cograph
cograph cograph

Fact: Cographs are perfect: x(H) = w(H) whenever H is a cograph.

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

x x x X
. o egs ¥ X (¥ ¥
Recursive definition: © 0% o | w8 22X o8
cograph
cograph cograph

Fact: Cographs are perfect: x(H) = w(H) whenever H is a cograph.

Cor: Under the assumptions of Lemma, x(G) < (2d + 4)* - w(G).

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

x x x X
. o egs ¥ X (¥ ¥
Recursive definition: © 0% o | w8 22X o8
cograph
cograph cograph

Fact: Cographs are perfect: x(H) = w(H) whenever H is a cograph.

Cor: Under the assumptions of Lemma, x(G) < (2d + 4)* - w(G).

Michat Pilipczuk Stable bounded twin-width 12/ 20

Partition into cographs

Lemma
If G has twin-width d and index k, then G can be colored with
(2d + 4)*~" colors

so that every color induces a cograph.

Cograph = P,-free graph

o X o o
. o egs ¥ X (¥ ¥
Recursive definition: © 0% o | o™ 2 (o
cograph
cograph cograph

Fact: Cographs are perfect: x(H) = w(H) whenever H is a cograph.

Cor: Under the assumptions of Lemma, x(G) < (2d + 4)* - w(G).

Idea: Induction on the index k.

Michat Pilipczuk Stable bounded twin-width 12/ 20

Frozen bubbles

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

O 8 Q?b %g

P1 732 3 4

v
0000000
00000 O0OCO
0000000
0000 OCOCO
0000000
0000000

o

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

¢
g
&
“

B
NS
A
S
3

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P, is frozen at time t if Ais light but the parent A’ € P;_; is heavy.

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P, is frozen at time t if Ais light but the parent A’ € P;_; is heavy.

— JF; = parts frozen at time t.

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P;is frozen at time t if Ais light but the parent A’ € P;_; is heavy.
— JF; = parts frozen at time t.

— Note: | F;| < 2.

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P;is frozen at time t if Ais light but the parent A’ € P;_; is heavy.
— JF; = parts frozen at time t.

— Note: | F;| < 2.
— F = U1<t<nft°

Michat Pilipczuk Stable bounded twin-width 13/ 20

Frozen bubbles

Consider an uncontraction sequence of width d.

o
oo
e
2

9
NS
>
F
A

A part A € P;is light if index(G[A]) < k, and heavy otherwise.

A € P;is frozen at time t if Ais light but the parent A’ € P;_; is heavy.
— JF; = parts frozen at time t.

— Note: | F;| < 2.
— F = U1<t<nft°

— Note: F is a partition of the vertex set.

Michat Pilipczuk Stable bounded twin-width 13/ 20

Ordering bubbles

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

—OOOOOOOOOOO—

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

—OOOOOOOOOOO—

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma

For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look =¥~

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look =¥~

— B’ := parent of B, say B' € P;.

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look &~
— B’ = parent of B, say B’ € P;.
— N = red neighbors of B at time t.

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look ¥~
— B’ := parent of B, say B' € P;.
— N = red neighbors of B at time t.
— Note: Every u ¢ B'U|JN is homogeneous towards B'.

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look &~
— B’ := parent of B, say B' € P;.
— N = red neighbors of B at time t.
— Note: Every u ¢ B'U|JN is homogeneous towards B'.
— Note: B’ is heavy = All homogeneity of same type.

Michat Pilipczuk Stable bounded twin-width 14/ 20

Ordering bubbles
Order F by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

@ O W@ @@ W® OO

Lemma
For every B € F there is a set g of at most d + 1 earlier bubbles
such that B is homogeneous towards | J{A: A < B, A ¢ Eg}.

Proof: look &~
— B’ := parent of B, say B' € P;.
— N = red neighbors of B at time t.
— Note: Every u ¢ B'U|JN is homogeneous towards B'.
— Note: B’ is heavy = All homogeneity of same type.
— &g = frozen ancestors of A/ and maybe sibling of B. [l

Michat Pilipczuk Stable bounded twin-width 14/ 20

Coloring bubbles

Michat Pilipczuk Stable bounded twin-width 15/ 20

Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.

Michat Pilipczuk Stable bounded twin-width 15/ 20

Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Michat Pilipczuk Stable bounded twin-width 15/ 20

Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each B € F ~» Cograph coloring with f(k — 1) colors.

Michat Pilipczuk Stable bounded twin-width 15/ 20

Coloring bubbles

Partition F into 2 - (d + 2) groups:
— Degeneracy coloring with d + 2 colors ~~ No exceptions within a group.

— Homogeneity type + or — ~» Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each B € F ~» Cograph coloring with f(k — 1) colors.
Use 2d + 4 palettes of size f(k — 1) ~ (2d + 4) - f(k — 1) colors in total. [J

Michat Pilipczuk Stable bounded twin-width 15/ 20

Decomposition

Michat Pilipczuk Stable bounded twin-width 16 / 20

Decomposition

We got sort of a decomposition:

Michat Pilipczuk Stable bounded twin-width 16 / 20

Decomposition

We got sort of a decomposition:

Problem: We don’t control edges between groups.

Michat Pilipczuk Stable bounded twin-width 16 / 20

Decomposition

We got sort of a decomposition:

=

Problem: We don’t control edges between groups.

Idea: Induct on pairs of bubbles.

Michat Pilipczuk Stable bounded twin-width 16 / 20

Decomposition

We got sort of a decomposition:

=

Problem: We don’t control edges between groups.

Idea: Induct on pairs of bubbles.

— Pair of bubbles A, B is simpler if index(G[A, B]) < k.

Michat Pilipczuk Stable bounded twin-width 16 / 20

General case

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.
— H has star chromatic number bounded by p = p(d, k).

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.
— H has star chromatic number bounded by p = p(d, k).

— Each star in each induced star forest of the above has index < k.

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.
— H has star chromatic number bounded by p = p(d, k).
— Each star in each induced star forest of the above has index < k.

— All non-exceptional pairs of A, B € F are homogeneous.

Michat Pilipczuk Stable bounded twin-width 17 / 20

General case

Lemma
Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition V(G) into F respecting sides so that:
— On F there is an exception graph H.
— H has star chromatic number bounded by p = p(d, k).
— Each star in each induced star forest of the above has index < k.
— All non-exceptional pairs of A, B € F are homogeneous.

— Complete pairs AB ¢ E(H) can be cleared using g = q(d, k) flips.

Michat Pilipczuk Stable bounded twin-width 17 / 20

Glimpse into the proof

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.

— H has bounded wcol,.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.

— Ergo: H has bounded star chromatic number.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:
A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.

— H has bounded wcol,.

— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. [

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. [

Different freezing conditions give different structure between bubbles.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. [

Different freezing conditions give different structure between bubbles.

— x-boundedness ~~ freeze when w drops ~» quotient is sparse.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.
More work with flipping away the complete pairs. [
Different freezing conditions give different structure between bubbles.

— x-boundedness ~~ freeze when w drops ~» quotient is sparse.

— gpoly x-boundedness ~~ freeze when w drops by 1%.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Glimpse into the proof

Freezing condition:

A € P; gets frozen if index(G[A, B]) < k for all B € P; on the other side.

This gives rise to the exception graph H.
— H has bounded wcol,.
— Ergo: H has bounded star chromatic number.

— A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. [

Different freezing conditions give different structure between bubbles.
— x-boundedness ~~ freeze when w drops ~» quotient is sparse.
— gpoly x-boundedness ~~ freeze when w drops by 1%.

— neighborhood covers ~~ freeze when there is a universal vertex.

Michat Pilipczuk Stable bounded twin-width 18 / 20

Sketch of main proof

Goal: Find sparse G’ of bnd twin-width from which G can be transduced.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G’ from which G can be transduced.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G’ from which G can be transduced.

— Just replace each equivalence relation with a star forest.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G’ from which G can be transduced.

— Just replace each equivalence relation with a star forest.

Issue: Why does G’ have bounded twin-width?

Michat Pilipczuk Stable bounded twin-width 19/ 20

Sketch of main proof
Goal: Find sparse G’ of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Final: Structure D consisting of t = t(d, k) unary predicates and

equivalence relations from which G can be interpreted.

D can be represented as a sparse graph G’ from which G can be transduced.

— Just replace each equivalence relation with a star forest.

Issue: Why does G’ have bounded twin-width?

— (' can be transduced from (G, <), where < witnesses bnd tww of G.

Michat Pilipczuk Stable bounded twin-width 19/ 20

Open problems

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: % has unbounded cliquewidth

& € transduces a class that contains a subdivision of every wall.

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: % has unbounded cliquewidth

& € transduces a class that contains a subdivision of every wall.

Conjecture: % has unbounded linear cliquewidth

& @ transduces a class that contains a subdivision of every binary tree.

Michat Pilipczuk Stable bounded twin-width 20/ 20

Open problems

str bnd expansion Z stable bnd flip-width

?
str nowhere dense = mon stable

Def: For a property I1, let M be the largest transduction ideal such that
Nn=nn weakly sparse.

Does this exactly map the sparse column to the dependent column?

Conjecture: % has unbounded cliquewidth

& € transduces a class that contains a subdivision of every wall.

Conjecture: % has unbounded linear cliquewidth

& @ transduces a class that contains a subdivision of every binary tree.

Theorem (OdMPS’23)
% has unbounded shrubdepth < % transduces the class of all paths.

Michat Pilipczuk Stable bounded twin-width 20/ 20

