Stable graphs of bounded twin-width

joint work with Jakub Gajarský and Szymon Toruńczyk
$1^{\text {st }}$ Twin-width Workshop
Aussois, May 24 ${ }^{\text {th }}, 2023$
bnd treedepth
\uparrow
bnd pathwidth
\uparrow
bnd treewidth
\uparrow
minor-free

bnd expansion
\uparrow
nowhere dense

```
bnd treedepth
    \uparrow
bnd pathwidth
    \uparrow
bnd treewidth
    \uparrow
    minor-free
```



```
bnd expansion
\(\uparrow\)
nowhere dense
```


Bounded sparse twin-width

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth $=$ bnd cliquewidth \cap weakly sparse

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth $=$ bnd cliquewidth \cap weakly sparse
bnd pathwidth $=$ bnd lin cliquewidth \cap weakly sparse

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth $=$ bnd cliquewidth \cap weakly sparse
bnd pathwidth $=$ bnd lin cliquewidth \cap weakly sparse
bnd treedepth $=$ bnd shrubdepth \cap weakly sparse

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth = bnd cliquewidth \cap weakly sparse bnd pathwidth $=$ bnd lin cliquewidth \cap weakly sparse
bnd treedepth $=$ bnd shrubdepth \cap weakly sparse
Def: Class \mathscr{C} has bnd sparse twin-width if \mathscr{C} has bnd twin-width and is weakly sparse.

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth = bnd cliquewidth \cap weakly sparse bnd pathwidth $=$ bnd lin cliquewidth \cap weakly sparse
bnd treedepth $=$ bnd shrubdepth \cap weakly sparse
Def: Class \mathscr{C} has bnd sparse twin-width if \mathscr{C} has bnd twin-width and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR'22)
minor-free \subsetneq bnd sparse tww \subsetneq bnd expansion

Bounded sparse twin-width

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t, t}$-subgraph-free for some t.
bnd treewidth $=$ bnd cliquewidth \cap weakly sparse bnd pathwidth $=$ bnd lin cliquewidth \cap weakly sparse
bnd treedepth $=$ bnd shrubdepth \cap weakly sparse
Def: Class \mathscr{C} has bnd sparse twin-width if \mathscr{C} has bnd twin-width and is weakly sparse.

Theorem (TWW1, TWW2, DGJOdMR'22)
minor-free \subsetneq bnd sparse tww \subsetneq bnd expansion

Also: mixed minors \rightsquigarrow grid minors.

Idea: Close under logically defined operations.

Transductions: example

Transductions: example

$\mathscr{D}:=$ class of James Davies' examples

Transductions: example
$\mathscr{D}:=$ class of James Davies' examples
Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Transductions: example

$\mathscr{D}:=$ class of James Davies' examples
Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using yellow, red, and blue.

Transductions: example

$\mathscr{D}:=$ class of James Davies' examples
Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using yellow, red, and blue.
Step 2: Interpret a new adjacency relation using:

$$
\begin{aligned}
\varphi(x, y)= & (x \text { and } y \text { are yellow or red and adjacent }) \text { or } \\
& (x \text { and } y \text { are red and have a common blue neighbor })
\end{aligned}
$$

Transductions: example

$\mathscr{D}:=$ class of James Davies' examples
Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using yellow, red, and blue.
Step 2: Interpret a new adjacency relation using:

$$
\varphi(x, y)=(x \text { and } y \text { are yellow or red and adjacent) or }
$$

(x and y are red and have a common blue neighbor)

Transductions: example

$\mathscr{D}:=$ class of James Davies' examples
Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using yellow, red, and blue.
Step 2: Interpret a new adjacency relation using: $\varphi(x, y)=(x$ and y are yellow or red and adjacent) or (x and y are red and have a common blue neighbor)

Step 3: Take any induced subgraph.

Transductions

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;
- output any induced subgraph.

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in \mathrm{FO}$;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on G

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in \mathrm{FO}$;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on G

$$
\mathrm{T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)
$$

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in \mathrm{FO}$;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on $G \quad \mathrm{~T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)$
Def: \mathscr{D} is transducible from \mathscr{C} if $\mathscr{D} \subseteq \mathrm{T}(\mathscr{C})$ for some transduction T .

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on $G \quad \mathrm{~T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)$
Def: \mathscr{D} is transducible from \mathscr{C} if $\mathscr{D} \subseteq \mathrm{T}(\mathscr{C})$ for some transduction T .

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C}.

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on $G \quad \mathrm{~T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)$
Def: \mathscr{D} is transducible from \mathscr{C} if $\mathscr{D} \subseteq \mathrm{T}(\mathscr{C})$ for some transduction T .

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C}.
Notation: $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$.

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on $G \quad \mathrm{~T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)$
Def: \mathscr{D} is transducible from \mathscr{C} if $\mathscr{D} \subseteq \mathrm{T}(\mathscr{C})$ for some transduction T .

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C}.
Notation: $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$.

Def: \mathscr{L}-transduction $=$ transduction where $\varphi \in \mathscr{L}$.

Transductions

Transduction $\mathrm{T}=(C, \varphi(x, y))$, run on G :

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in$ FO;
- output any induced subgraph.
$\mathrm{T}(G):=$ all possible outputs of T on $G \quad \mathrm{~T}(\mathscr{C}):=\bigcup_{G \in \mathscr{C}} \mathrm{~T}(G)$
Def: \mathscr{D} is transducible from \mathscr{C} if $\mathscr{D} \subseteq \mathrm{T}(\mathscr{C})$ for some transduction T .

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C}.
Notation: $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$.

Def: \mathscr{L}-transduction $=$ transduction where $\varphi \in \mathscr{L}$.
FO-transductions, MSO_{1}-transductions, MSO_{2}-transductions, ...

Transductions and parameters

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\text {FO }} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\text {FO }} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from a class of bnd treewidth?

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\mathrm{FO}} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from a class of bnd treewidth?

Transductions and parameters

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO_{1}-transduced from the class of trees.

Cor: If \mathscr{C} has bnd cliquewidth and $\mathscr{D} \sqsubseteq_{\text {FO }} \mathscr{C}$, then so does \mathscr{D}.
We say that bnd cliquewidth is a transduction ideal.
Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of bnd cliquewidth be transduced from a class of bnd treewidth?

Equivalently: bnd cliquewidth = structurally bnd treewidth?

Monadic stability

Monadic stability

NO: The obstacle are half-graphs.

$$
a_{i} b_{j} \in E \Leftrightarrow i \leqslant j
$$

Monadic stability

NO: The obstacle are half-graphs.

$$
a_{i} b_{j} \in E \Leftrightarrow i \leqslant j
$$

Theorem (Podewski and Ziegler; Adler and Adler)
If \mathscr{C} is nowhere dense, then Half-graphs $\not \mathbb{F O} \mathscr{C}$.

Monadic stability

NO: The obstacle are half-graphs.

$$
a_{i} b_{j} \in E \Leftrightarrow i \leqslant j
$$

Theorem (Podewski and Ziegler; Adler and Adler)
If \mathscr{C} is nowhere dense, then Half-graphs $\not \mathbb{F O} \mathscr{C}$.

Def: A class \mathscr{C} is monadically stable if Half-graphs $\mathbb{F F O} \mathscr{C}$.

Monadic stability

NO: The obstacle are half-graphs.

$$
a_{i} b_{j} \in E \Leftrightarrow i \leqslant j
$$

Theorem (Podewski and Ziegler; Adler and Adler)
If \mathscr{C} is nowhere dense, then Half-graphs $\mathbb{Z F O} \mathscr{C}$.

Def: A class \mathscr{C} is monadically stable if Half-graphs $\not \mathbb{F}_{\text {FO }} \mathscr{C}$.
Intuition: \mathscr{C} is monadically stable iff one cannot define arbitrarily long total orders in graphs from \mathscr{C}.

Monadic stability

NO: The obstacle are half-graphs.

$$
a_{i} b_{j} \in E \Leftrightarrow i \leqslant j
$$

Theorem (Podewski and Ziegler; Adler and Adler)
If \mathscr{C} is nowhere dense, then Half-graphs $\not \mathbb{F O}_{\mathrm{FO}} \mathscr{C}$.

Def: A class \mathscr{C} is monadically stable if Half-graphs $\not \mathbb{F O}_{\text {O }} \mathscr{C}$.
Intuition: \mathscr{C} is monadically stable iff one cannot define arbitrarily long total orders in graphs from \mathscr{C}.

Intuition: Whatever we transduce from sparse classes, no half-graphs.

Monadic dependence

Monadic dependence

Def: A class \mathscr{C} is monadically dependent (NIP) if Graphs $\mathbb{Z}_{\mathrm{FO}} \mathscr{C}$.

Monadic dependence

Def: A class \mathscr{C} is monadically dependent (NIP) if Graphs $\mathbb{Z F O}_{\text {FO }} \mathscr{C}$. nowhere dense \subseteq mon stable \subseteq mon dependent

Monadic dependence

Def: A class \mathscr{C} is monadically dependent (NIP) if Graphs $\mathbb{Z}_{\mathrm{FO}} \mathscr{C}$. nowhere dense \subseteq mon stable \subseteq mon dependent

Fact: If \mathscr{C} is weakly sparse, then
\mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent.

Monadic dependence

Def: A class \mathscr{C} is monadically dependent (NIP) if Graphs $\mathbb{Z}_{\text {FO }} \mathscr{C}$.

$$
\text { nowhere dense } \subseteq \text { mon stable } \subseteq \text { mon dependent }
$$

Fact: If \mathscr{C} is weakly sparse, then
\mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent.

Fact: If \mathscr{C} is mon dependent, then
\mathscr{C} is mon stable $\Leftrightarrow \mathscr{C}$ has a stable edge relation;
this means excluding some semi-induced half-graph.

(1): [NOdMRS'20]

(1): [NOdMRS'20] (2): [NOdMPRS'21]

(1): [NOdMRS'20]
(2): [NOdMPRS'21]
(3): [GPT'22]

Main result

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\text {FO }} \mathscr{D}$.

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\text {FO }} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be sparsified.
We can find sparse $H \in \mathscr{D}$ in which G can be encoded.

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\mathrm{FO}} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be sparsified.
We can find sparse $H \in \mathscr{D}$ in which G can be encoded.
Cor: stable bnd twin-width \subseteq structurally bounded expansion.

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\text {FO }} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be sparsified.
We can find sparse $H \in \mathscr{D}$ in which G can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.
Cor: If \mathscr{C} has stable bnd twin-width, then \mathscr{C} is linearly χ-bounded:

$$
\chi(G) \leqslant c \cdot \omega(G) \quad \text { for all } G \in \mathscr{C}
$$

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\text {FO }} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be sparsified.
We can find sparse $H \in \mathscr{D}$ in which G can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.
Cor: If \mathscr{C} has stable bnd twin-width, then \mathscr{C} is linearly χ-bounded:

$$
\chi(G) \leqslant c \cdot \omega(G) \quad \text { for all } G \in \mathscr{C}
$$

Now: Proof of the last corollary.

Main result

Theorem

If \mathscr{C} is a class of bnd twin-width with a stable edge relation, then \mathscr{C} can be transduced from a class \mathscr{D} of bounded sparse twin-width.

In fact, we can have $\mathscr{C} \equiv_{\text {FO }} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be sparsified.
We can find sparse $H \in \mathscr{D}$ in which G can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.
Cor: If \mathscr{C} has stable bnd twin-width, then \mathscr{C} is linearly χ-bounded:

$$
\chi(G) \leqslant c \cdot \omega(G) \quad \text { for all } G \in \mathscr{C}
$$

Now: Proof of the last corollary.

- Baby case of the proof of the main theorem.

Index

Index

Def: Index of G is the largest order of the following structure in G :

Index

Def: Index of G is the largest order of the following structure in G :

Index

Def: Index of G is the largest order of the following structure in G :

$$
\begin{aligned}
& (i<j) \Rightarrow a_{i} \text { and } b_{j} \text { adjacent } \\
& (i>j) \Rightarrow a_{i} \text { and } b_{j} \text { non-adjacent }
\end{aligned}
$$

Index

Def: Index of G is the largest order of the following structure in G :

$$
\begin{aligned}
& (i<j) \Rightarrow a_{i} \text { and } b_{j} \text { adjacent } \\
& (i>j) \Rightarrow a_{i} \text { and } b_{j} \text { non-adjacent } \\
& (i=j) \Rightarrow \text { no requirement }
\end{aligned}
$$

Index

Def: Index of G is the largest order of the following structure in G :

$(i<j) \Rightarrow a_{i}$ and b_{j} adjacent
$(i>j) \Rightarrow a_{i}$ and b_{j} non-adjacent
$(i=j) \Rightarrow$ no requirement
within $\left\{a_{i}\right\} \quad \Rightarrow \quad$ no requirement

Index

Def: Index of G is the largest order of the following structure in G :

$(i<j) \Rightarrow a_{i}$ and b_{j} adjacent
$(i>j) \Rightarrow a_{i}$ and b_{j} non-adjacent
($i=j$) \Rightarrow no requirement
within $\left\{a_{i}\right\} \quad \Rightarrow \quad$ no requirement
within $\left\{b_{i}\right\} \quad \Rightarrow$ no requirement

Index

Def: Index of G is the largest order of the following structure in G :

$(i<j) \Rightarrow a_{i}$ and b_{j} adjacent
$(i>j) \Rightarrow a_{i}$ and b_{j} non-adjacent
$(i=j) \Rightarrow$ no requirement
within $\left\{a_{i}\right\} \quad \Rightarrow \quad$ no requirement
within $\left\{b_{i}\right\} \quad \Rightarrow \quad$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index.

Index

Def: Index of G is the largest order of the following structure in G :

$(i<j) \Rightarrow a_{i}$ and b_{j} adjacent
$(i>j) \Rightarrow a_{i}$ and b_{j} non-adjacent $(i=j) \Rightarrow$ no requirement
within $\left\{a_{i}\right\} \quad \Rightarrow \quad$ no requirement
within $\left\{b_{i}\right\} \quad \Rightarrow \quad$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index.
Idea: Use index as a progress measure.

Index

Def: Index of G is the largest order of the following structure in G :

$(i<j) \Rightarrow a_{i}$ and b_{j} adjacent
$(i>j) \Rightarrow a_{i}$ and b_{j} non-adjacent ($i=j) \Rightarrow$ no requirement
within $\left\{a_{i}\right\} \quad \Rightarrow \quad$ no requirement
within $\left\{b_{i}\right\} \quad \Rightarrow$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index.
Idea: Use index as a progress measure.

Obs: If $A \subseteq V(G)$ has a complete and an anti-complete vertex, then $\operatorname{index}(G[A])<\operatorname{index}(G)$.

Partition into cographs

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph
Recursive definition:

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph
Recursive definition:

Fact: Cographs are perfect: $\chi(H)=\omega(H)$ whenever H is a cograph.

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph
Recursive definition:

Fact: Cographs are perfect: $\chi(H)=\omega(H)$ whenever H is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leqslant(2 d+4)^{k-1} \cdot \omega(G)$.

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph
Recursive definition:

Fact: Cographs are perfect: $\chi(H)=\omega(H)$ whenever H is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leqslant(2 d+4)^{k-1} \cdot \omega(G)$.

Partition into cographs

Lemma

If G has twin-width d and index k, then G can be colored with

$$
(2 d+4)^{k-1} \text { colors }
$$

so that every color induces a cograph.
Cograph $=P_{4}$-free graph
Recursive definition:

Fact: Cographs are perfect: $\chi(H)=\omega(H)$ whenever H is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leqslant(2 d+4)^{k-1} \cdot \omega(G)$.
Idea: Induction on the index k.

Frozen bubbles

Frozen bubbles

Consider an uncontraction sequence of width d.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.
$A \in \mathcal{P}_{t}$ is frozen at time t if A is light but the parent $A^{\prime} \in \mathcal{P}_{t-1}$ is heavy.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.
$A \in \mathcal{P}_{t}$ is frozen at time t if A is light but the parent $A^{\prime} \in \mathcal{P}_{t-1}$ is heavy.
$-\mathcal{F}_{t}:=$ parts frozen at time t.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.
$A \in \mathcal{P}_{t}$ is frozen at time t if A is light but the parent $A^{\prime} \in \mathcal{P}_{t-1}$ is heavy.
$-\mathcal{F}_{t}:=$ parts frozen at time t.

- Note: $\left|\mathcal{F}_{t}\right| \leqslant 2$.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.
$A \in \mathcal{P}_{t}$ is frozen at time t if A is light but the parent $A^{\prime} \in \mathcal{P}_{t-1}$ is heavy.
$-\mathcal{F}_{t}:=$ parts frozen at time t.

- Note: $\left|\mathcal{F}_{t}\right| \leqslant 2$.
$-\mathcal{F}:=\bigcup_{1 \leqslant t \leqslant n} \mathcal{F}_{t}$.

Frozen bubbles

Consider an uncontraction sequence of width d.

A part $A \in \mathcal{P}_{t}$ is light if index $(G[A])<k$, and heavy otherwise.
$A \in \mathcal{P}_{t}$ is frozen at time t if A is light but the parent $A^{\prime} \in \mathcal{P}_{t-1}$ is heavy.
$-\mathcal{F}_{t}:=$ parts frozen at time t.

- Note: $\left|\mathcal{F}_{t}\right| \leqslant 2$.
$-\mathcal{F}:=\bigcup_{1 \leqslant t \leqslant n} \mathcal{F}_{t}$.
- Note: \mathcal{F} is a partition of the vertex set.

Ordering bubbles

Ordering bubbles
Order \mathcal{F} by the freezing times.

Ordering bubbles
Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look 몽ㅇ

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look ㅁㅏㅜㅇ
$-B^{\prime}:=$ parent of B, say $B^{\prime} \in \mathcal{P}_{t}$.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look ㅁㅏㅜㅇ

- $B^{\prime}:=$ parent of B, say $B^{\prime} \in \mathcal{P}_{t}$.
$-\mathcal{N}:=$ red neighbors of B^{\prime} at time t.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look ㅁㅏㅜㅇ

- $B^{\prime}:=$ parent of B, say $B^{\prime} \in \mathcal{P}_{t}$.
$-\mathcal{N}:=$ red neighbors of B^{\prime} at time t.
- Note: Every $u \notin B^{\prime} \cup \bigcup \mathcal{N}$ is homogeneous towards B^{\prime}.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look 망웅

- $B^{\prime}:=$ parent of B, say $B^{\prime} \in \mathcal{P}_{t}$.
$-\mathcal{N}:=$ red neighbors of B^{\prime} at time t.
- Note: Every $u \notin B^{\prime} \cup \bigcup \mathcal{N}$ is homogeneous towards B^{\prime}.
- Note: B^{\prime} is heavy \Rightarrow All homogeneity of same type.

Ordering bubbles

Order \mathcal{F} by the freezing times.
Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_{B} of at most $d+1$ earlier bubbles such that B is homogeneous towards $\bigcup\left\{A: A \prec B, A \notin \mathcal{E}_{B}\right\}$.

Proof: look 망웅

- $B^{\prime}:=$ parent of B, say $B^{\prime} \in \mathcal{P}_{t}$.
$-\mathcal{N}:=$ red neighbors of B^{\prime} at time t.
- Note: Every $u \notin B^{\prime} \cup \bigcup \mathcal{N}$ is homogeneous towards B^{\prime}.
- Note: B^{\prime} is heavy \Rightarrow All homogeneity of same type.
$-\mathcal{E}_{B}:=$ frozen ancestors of \mathcal{N} and maybe sibling of B.

Coloring bubbles

Coloring bubbles

Partition \mathcal{F} into $2 \cdot(d+2)$ groups:

- Degeneracy coloring with $d+2$ colors \rightsquigarrow No exceptions within a group.
- Homogeneity type + or $-\rightsquigarrow$ Every group of same homogeneity type.

Coloring bubbles

Partition \mathcal{F} into $2 \cdot(d+2)$ groups:

- Degeneracy coloring with $d+2$ colors \rightsquigarrow No exceptions within a group.
- Homogeneity type + or $-\rightsquigarrow$ Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Coloring bubbles

Partition \mathcal{F} into $2 \cdot(d+2)$ groups:

- Degeneracy coloring with $d+2$ colors \rightsquigarrow No exceptions within a group.
- Homogeneity type + or $-\rightsquigarrow$ Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.
Apply induction on each $B \in \mathcal{F} \rightsquigarrow$ Cograph coloring with $f(k-1)$ colors.

Coloring bubbles

Partition \mathcal{F} into $2 \cdot(d+2)$ groups:

- Degeneracy coloring with $d+2$ colors \rightsquigarrow No exceptions within a group.
- Homogeneity type + or $-\rightsquigarrow$ Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.
Apply induction on each $B \in \mathcal{F} \rightsquigarrow$ Cograph coloring with $f(k-1)$ colors. Use $2 d+4$ palettes of size $f(k-1) \rightsquigarrow(2 d+4) \cdot f(k-1)$ colors in total. \square

Decomposition

Decomposition

We got sort of a decomposition:

Decomposition

We got sort of a decomposition:

Problem: We don't control edges between groups.

Decomposition

We got sort of a decomposition:

Problem: We don't control edges between groups.
Idea: Induct on pairs of bubbles.

Decomposition

We got sort of a decomposition:

Problem: We don't control edges between groups.
Idea: Induct on pairs of bubbles.

- Pair of bubbles A, B is simpler if index $(G[A, B])<k$.

General case

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k. Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an exception graph H.

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an exception graph H.
- H has star chromatic number bounded by $p=p(d, k)$.

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an exception graph H.
$-H$ has star chromatic number bounded by $p=p(d, k)$.
- Each star in each induced star forest of the above has index $<k$.

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an exception graph H.
$-H$ has star chromatic number bounded by $p=p(d, k)$.
- Each star in each induced star forest of the above has index $<k$.
- All non-exceptional pairs of $A, B \in \mathcal{F}$ are homogeneous.

General case

Lemma

Suppose G is a bipartite graph of bipartite twin-width d and index k.
Then one can partition $V(G)$ into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an exception graph H.
$-H$ has star chromatic number bounded by $p=p(d, k)$.
- Each star in each induced star forest of the above has index $<k$.
- All non-exceptional pairs of $A, B \in \mathcal{F}$ are homogeneous.
- Complete pairs $A B \notin E(H)$ can be cleared using $q=q(d, k)$ flips.

Glimpse into the proof

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side
This gives rise to the exception graph H.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

- Ergo: H has bounded star chromatic number.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs.

Different freezing conditions give different structure between bubbles.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.
$-H$ has bounded wcol ${ }_{2}$.

- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs.

Different freezing conditions give different structure between bubbles.
$-\chi$-boundedness \rightsquigarrow freeze when ω drops \rightsquigarrow quotient is sparse.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.

- H has bounded wcol ${ }_{2}$.
- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs.

Different freezing conditions give different structure between bubbles.
$-\chi$-boundedness \rightsquigarrow freeze when ω drops \rightsquigarrow quotient is sparse.

- qpoly χ-boundedness \rightsquigarrow freeze when ω drops by 1%.

Glimpse into the proof

Freezing condition:

$A \in \mathcal{P}_{t}$ gets frozen if index $(G[A, B])<k$ for all $B \in \mathcal{P}_{t}$ on the other side.
This gives rise to the exception graph H.

- H has bounded wcol ${ }_{2}$.
- Ergo: H has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs.

Different freezing conditions give different structure between bubbles.
$-\chi$-boundedness \rightsquigarrow freeze when ω drops \rightsquigarrow quotient is sparse.

- qpoly χ-boundedness \rightsquigarrow freeze when ω drops by 1%.
- neighborhood covers \rightsquigarrow freeze when there is a universal vertex.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.
Final: Structure D consisting of $t=t(d, k)$ unary predicates and equivalence relations from which G can be interpreted.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.
Final: Structure D consisting of $t=t(d, k)$ unary predicates and equivalence relations from which G can be interpreted.
D can be represented as a sparse graph G^{\prime} from which G can be transduced.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.
Final: Structure D consisting of $t=t(d, k)$ unary predicates and equivalence relations from which G can be interpreted.
D can be represented as a sparse graph G^{\prime} from which G can be transduced.

- Just replace each equivalence relation with a star forest.

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.
Final: Structure D consisting of $t=t(d, k)$ unary predicates and equivalence relations from which G can be interpreted.
D can be represented as a sparse graph G^{\prime} from which G can be transduced.

- Just replace each equivalence relation with a star forest.

Issue: Why does G^{\prime} have bounded twin-width?

Sketch of main proof

Goal: Find sparse G^{\prime} of bnd twin-width from which G can be transduced.
Wlog we can work with bipartite graphs.
Apply Lemma, recurse on all stars in each star forest.
Each application encoded by unary predicates and equivalence relations.
Final: Structure D consisting of $t=t(d, k)$ unary predicates and equivalence relations from which G can be interpreted.
D can be represented as a sparse graph G^{\prime} from which G can be transduced.

- Just replace each equivalence relation with a star forest.

Issue: Why does G^{\prime} have bounded twin-width?
$-G^{\prime}$ can be transduced from (G, \leqslant), where \leqslant witnesses bnd tww of G.

Open problems

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width
 str nowhere dense $\stackrel{?}{=}$ mon stable

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π, let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi=\hat{\Pi} \cap$ weakly sparse.

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π, let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi=\hat{\Pi} \cap$ weakly sparse.

Does this exactly map the sparse column to the dependent column?

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π, let $\widehat{\Pi}$ be the largest transduction ideal such that

$$
\Pi=\widehat{\Pi} \cap \text { weakly sparse } .
$$

Does this exactly map the sparse column to the dependent column?
Conjecture: \mathscr{C} has unbounded cliquewidth
$\Leftrightarrow \mathscr{C}$ transduces a class that contains a subdivision of every wall.

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π, let $\hat{\Pi}$ be the largest transduction ideal such that

$$
\Pi=\widehat{\Pi} \cap \text { weakly sparse. }
$$

Does this exactly map the sparse column to the dependent column?
Conjecture: \mathscr{C} has unbounded cliquewidth
$\Leftrightarrow \mathscr{C}$ transduces a class that contains a subdivision of every wall.
Conjecture: \mathscr{C} has unbounded linear cliquewidth
$\Leftrightarrow \mathscr{C}$ transduces a class that contains a subdivision of every binary tree.

Open problems

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width

str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π, let $\hat{\Pi}$ be the largest transduction ideal such that $\Pi=\hat{\Pi} \cap$ weakly sparse.

Does this exactly map the sparse column to the dependent column?
Conjecture: \mathscr{C} has unbounded cliquewidth
$\Leftrightarrow \mathscr{C}$ transduces a class that contains a subdivision of every wall.
Conjecture: \mathscr{C} has unbounded linear cliquewidth
$\Leftrightarrow \mathscr{C}$ transduces a class that contains a subdivision of every binary tree.
Theorem (OdMPS'23)
\mathscr{C} has unbounded shrubdepth $\Leftrightarrow \mathscr{C}$ transduces the class of all paths.

