Stable graphs of bounded twin-width

joint work with Jakub Gajarský and Szymon Toruńczyk

1st Twin-width Workshop Aussois, May 24th, 2023

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

bnd pathwidth = bnd lin cliquewidth \cap weakly sparse

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

bnd pathwidth = bnd lin cliquewidth \cap weakly sparse

bnd treedepth = bnd shrubdepth \cap weakly sparse

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

bnd pathwidth = bnd lin cliquewidth \cap weakly sparse

bnd treedepth = bnd shrubdepth \cap weakly sparse

Def: Class C has **bnd sparse twin-width** if C has **bnd twin-width** and is **weakly sparse**.

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

bnd pathwidth = bnd lin cliquewidth \cap weakly sparse

bnd treedepth = bnd shrubdepth \cap weakly sparse

Def: Class C has **bnd sparse twin-width** if C has **bnd twin-width** and is **weakly sparse**.

Theorem (TWW1, TWW2, DGJOdMR'22)

minor-free $\ \ \, \subseteq \ \ \,$ bnd sparse tww $\ \ \, \subseteq \ \ \,$ bnd expansion

Def: Class \mathscr{C} is weakly sparse if \mathscr{C} is $K_{t,t}$ -subgraph-free for some t.

bnd treewidth = bnd cliquewidth \cap weakly sparse

bnd pathwidth = bnd lin cliquewidth \cap weakly sparse

bnd treedepth = bnd shrubdepth \cap weakly sparse

Def: Class C has **bnd sparse twin-width** if C has **bnd twin-width** and is **weakly sparse**.

Theorem (TWW1, TWW2, DGJOdMR'22)

minor-free \subseteq bnd sparse tww \subseteq bnd expansion

Also: mixed minors ~> grid minors.

Idea: Close under logically defined operations.

Michał Pilipczuk Stable bound

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

Claim: \mathcal{D} transduces a class \mathcal{C} that contains a subdivision of every wall.

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using **yellow**, **red**, and **blue**.

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

Claim: \mathscr{D} transduces a class \mathscr{C} that contains a subdivision of every wall.

Step 1: Color vertices using **yellow**, **red**, and **blue**.

Step 2: Interpret a new adjacency relation using: $\varphi(x, y) = (x \text{ and } y \text{ are yellow or red and adjacent}) \text{ or}$ (*x* and *y* are red and have a common blue neighbor)

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

Claim: \mathcal{D} transduces a class \mathcal{C} that contains a subdivision of every wall.

Step 1: Color vertices using **yellow**, **red**, and **blue**.

Step 2: Interpret a new adjacency relation using: $\varphi(x, y) = (x \text{ and } y \text{ are yellow or red and adjacent}) \text{ or } (x \text{ and } y \text{ are red and have a common blue neighbor})$

 $\mathscr{D} \coloneqq \mathsf{class} \text{ of James Davies' examples}$

Claim: \mathcal{D} transduces a class \mathcal{C} that contains a subdivision of every wall.

Step 1: Color vertices using **yellow**, **red**, and **blue**.

Step 2: Interpret a new adjacency relation using: $\varphi(x, y) = (x \text{ and } y \text{ are yellow or red and adjacent}) \text{ or}$ (*x* and *y* are red and have a common blue neighbor)

Step 3: Take any induced subgraph.

Transduction $T = (C, \varphi(x, y))$, run on *G*:

Transduction $T = (C, \varphi(x, y))$, run on *G*:

– color vertices using the palette *C*;

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette *C*;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette *C*;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

 $\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette *C*;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

$$\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Def: \mathscr{D} is **transducible** from \mathscr{C} if $\mathscr{D} \subseteq T(\mathscr{C})$ for some transduction T.

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

$$\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Def: \mathscr{D} is **transducible** from \mathscr{C} if $\mathscr{D} \subseteq T(\mathscr{C})$ for some transduction T.

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C} .

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

$$\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Def: \mathscr{D} is **transducible** from \mathscr{C} if $\mathscr{D} \subseteq T(\mathscr{C})$ for some transduction T.

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C} . **Notation:** $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$.

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

T(G) := all possible outputs of T on G

$$\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Def: \mathscr{D} is **transducible** from \mathscr{C} if $\mathscr{D} \subseteq T(\mathscr{C})$ for some transduction T.

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C} . **Notation:** $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$.

Def: \mathscr{L} -transduction = transduction where $\varphi \in \mathscr{L}$.
Transductions

Transduction $T = (C, \varphi(x, y))$, run on *G*:

- color vertices using the palette C;
- interpret a new edge relation using $\varphi(x, y) \in FO$;
- output any induced subgraph.

 $T(G) \coloneqq$ all possible outputs of T on G

$$\mathsf{T}(\mathscr{C}) \coloneqq \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Def: \mathscr{D} is **transducible** from \mathscr{C} if $\mathscr{D} \subseteq T(\mathscr{C})$ for some transduction T.

Intuition: Graphs from \mathscr{D} can be encoded in colored graphs from \mathscr{C} . **Notation:** $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$.

Def: \mathscr{L} -transduction = transduction where $\varphi \in \mathscr{L}$.

FO-transductions, MSO₁-transductions, MSO₂-transductions, ...

Fact: \mathscr{C} has **bnd cliquewidth** iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a **transduction ideal**. Other transduction ideals:

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a **transduction ideal**.

Other transduction ideals:

bnd shrubdepth;

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a **transduction ideal**.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of **bnd cliquewidth** be transduced from a class of **bnd treewidth**?

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of **bnd cliquewidth** be transduced from a class of **bnd treewidth**?

Fact: \mathscr{C} has bnd cliquewidth iff \mathscr{C} can be MSO₁-transduced from the class of trees.

Cor: If \mathscr{C} has **bnd cliquewidth** and $\mathscr{D} \sqsubseteq_{FO} \mathscr{C}$, then so does \mathscr{D} .

We say that bnd cliquewidth is a transduction ideal.

Other transduction ideals:

- bnd shrubdepth;
- bnd lin cliquewidth;
- bnd twin-width;
- bnd flip-width.

Question: Can every class of **bnd cliquewidth** be transduced from a class of **bnd treewidth**?

Equivalently: bnd cliquewidth = structurally bnd treewidth?

NO: The obstacle are **half-graphs**.

 $a_i b_j \in E \Leftrightarrow i \leqslant j$

NO: The obstacle are **half-graphs**.

 $a_i b_j \in E \Leftrightarrow i \leqslant j$

Theorem (Podewski and Ziegler; Adler and Adler)

If \mathscr{C} is **nowhere dense**, then Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

NO: The obstacle are **half-graphs**.

 $a_i b_j \in E \Leftrightarrow i \leqslant j$

Theorem (Podewski and Ziegler; Adler and Adler) If \mathscr{C} is **nowhere dense**, then Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Def: A class \mathscr{C} is **monadically stable** if Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

NO: The obstacle are **half-graphs**.

 $a_i b_j \in E \Leftrightarrow i \leqslant j$

Theorem (Podewski and Ziegler; Adler and Adler) If \mathscr{C} is **nowhere dense**, then Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Def: A class \mathscr{C} is **monadically stable** if Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Intuition: \mathscr{C} is monadically stable iff one cannot define arbitrarily long total orders in graphs from \mathscr{C} .

NO: The obstacle are **half-graphs**.

 $a_i b_j \in E \Leftrightarrow i \leqslant j$

Theorem (Podewski and Ziegler; Adler and Adler) If \mathscr{C} is **nowhere dense**, then Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Def: A class \mathscr{C} is **monadically stable** if Half-graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Intuition: \mathscr{C} is **monadically stable** iff one cannot define arbitrarily long **total orders** in graphs from \mathscr{C} .

Intuition: Whatever we transduce from sparse classes, no half-graphs.

Def: A class \mathscr{C} is **monadically dependent (NIP)** if Graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

Def: A class \mathscr{C} is **monadically dependent (NIP)** if Graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

nowhere dense \subseteq mon stable \subseteq mon dependent

Def: A class \mathscr{C} is **monadically dependent (NIP)** if Graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

nowhere dense \subseteq **mon stable** \subseteq **mon dependent**

Fact: If \mathscr{C} is **weakly sparse**, then

 \mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent.

Def: A class \mathscr{C} is **monadically dependent (NIP)** if Graphs $\not\sqsubseteq_{FO} \mathscr{C}$.

nowhere dense \subseteq mon stable \subseteq mon dependent

Fact: If \mathscr{C} is **weakly sparse**, then

 \mathscr{C} is nowhere dense $\Leftrightarrow \mathscr{C}$ is mon stable $\Leftrightarrow \mathscr{C}$ is mon dependent.

Fact: If \mathscr{C} is mon dependent, then \mathscr{C} is mon stable $\Leftrightarrow \mathscr{C}$ has a stable edge relation; this means excluding some semi-induced half-graph.

Michał Pilipczuk Stable bounded twin-width

Michał Pilipczuk

Stable bounded twin-width

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be **sparsified**.

We can find sparse $H \in \mathcal{D}$ in which G can be encoded.

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be **sparsified**.

We can find sparse $H \in \mathscr{D}$ in which *G* can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be **sparsified**.

We can find sparse $H \in \mathscr{D}$ in which *G* can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.

Cor: If \mathscr{C} has **stable bnd twin-width**, then \mathscr{C} is **linearly** χ **-bounded**: $\chi(G) \leq c \cdot \omega(G)$ for all $G \in \mathscr{C}$.
Main result

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be **sparsified**.

We can find sparse $H \in \mathscr{D}$ in which *G* can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.

Cor: If \mathscr{C} has **stable bnd twin-width**, then \mathscr{C} is **linearly** χ **-bounded**: $\chi(G) \leq c \cdot \omega(G)$ for all $G \in \mathscr{C}$.

Now: Proof of the last corollary.

Main result

Theorem

If \mathscr{C} is a class of **bnd twin-width** with a **stable edge relation**,

then \mathscr{C} can be transduced from a class \mathscr{D} of **bounded sparse twin-width**.

In fact, we can have $\mathscr{C} \equiv_{FO} \mathscr{D}$.

Intuition: Every $G \in \mathscr{C}$ can be **sparsified**.

We can find sparse $H \in \mathscr{D}$ in which *G* can be encoded.

Cor: stable bnd twin-width \subseteq structurally bounded expansion.

Cor: If \mathscr{C} has **stable bnd twin-width**, then \mathscr{C} is **linearly** χ **-bounded**: $\chi(G) \leq c \cdot \omega(G)$ for all $G \in \mathscr{C}$.

Now: Proof of the last corollary.

- Baby case of the proof of the main theorem.

Def: Index of *G* is the largest order of the following structure in *G*:

Def: Index of *G* is the largest order of the following structure in *G*:

 $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$

Def: Index of *G* is the largest order of the following structure in *G*:

 $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$ $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$

Def: Index of *G* is the largest order of the following structure in *G*:

- $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$
- $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$
- $(i = j) \Rightarrow$ no requirement

Def: Index of *G* is the largest order of the following structure in *G*:

 $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$ $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$ $(i = j) \Rightarrow \text{ no requirement}$

within $\{a_i\} \Rightarrow$ no requirement

Def: Index of *G* is the largest order of the following structure in *G*:

- $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$
- $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$
- $(i = j) \Rightarrow$ no requirement
- within $\{a_i\} \Rightarrow$ no requirement
- within $\{b_i\} \Rightarrow$ no requirement

Def: Index of *G* is the largest order of the following structure in *G*:

- $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$
- $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$
- $(i = j) \Rightarrow$ no requirement
- within $\{a_i\} \Rightarrow$ no requirement
- within $\{b_i\} \Rightarrow$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index.

Def: Index of *G* is the largest order of the following structure in *G*:

- $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$
- $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$
- $(i = j) \Rightarrow$ no requirement
- within $\{a_i\} \Rightarrow$ no requirement

within $\{b_i\} \Rightarrow$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index. **Idea:** Use index as a **progress measure**.

Def: Index of *G* is the largest order of the following structure in *G*:

- $(i < j) \Rightarrow a_i \text{ and } b_j \text{ adjacent}$
- $(i > j) \Rightarrow a_i \text{ and } b_j \text{ non-adjacent}$
- $(i = j) \Rightarrow$ no requirement

within $\{a_i\} \Rightarrow$ no requirement

within $\{b_i\} \Rightarrow$ no requirement

Obs: \mathscr{C} has stable edge relation $\Rightarrow \mathscr{C}$ has bounded index. **Idea:** Use index as a **progress measure**.

Obs: If $A \subseteq V(G)$ has a complete and an anti-complete vertex, then index(G[A]) < index(G).

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Cograph = P_4 -free graph

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d+4)^{k-1}$ colors

so that every color induces a cograph.

Cograph = P_4 -free graph

Recursive definition:

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Fact: Cographs are **perfect**: $\chi(H) = \omega(H)$ whenever *H* is a cograph.

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Fact: Cographs are **perfect**: $\chi(H) = \omega(H)$ whenever *H* is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leq (2d+4)^{k-1} \cdot \omega(G)$.

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Fact: Cographs are **perfect**: $\chi(H) = \omega(H)$ whenever *H* is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leq (2d+4)^{k-1} \cdot \omega(G)$.

Lemma

If G has twin-width d and index k, then G can be colored with

 $(2d + 4)^{k-1}$ colors

so that every color induces a cograph.

Fact: Cographs are **perfect**: $\chi(H) = \omega(H)$ whenever *H* is a cograph.

Cor: Under the assumptions of Lemma, $\chi(G) \leq (2d+4)^{k-1} \cdot \omega(G)$.

Idea: Induction on the index *k*.

Consider an uncontraction sequence of width *d*.

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

 $A \in \mathcal{P}_t$ is **frozen** at time *t* if *A* is **light** but the parent $A' \in \mathcal{P}_{t-1}$ is **heavy**.

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

 $A \in \mathcal{P}_t$ is **frozen** at time *t* if *A* is **light** but the parent $A' \in \mathcal{P}_{t-1}$ is **heavy**. - $\mathcal{F}_t \coloneqq$ parts frozen at time *t*.

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

 $A \in \mathcal{P}_t$ is **frozen** at time *t* if *A* is **light** but the parent $A' \in \mathcal{P}_{t-1}$ is **heavy**. - $\mathcal{F}_t \coloneqq$ parts frozen at time *t*.

- Note: $|\mathcal{F}_t| \leq 2$.

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

 $A \in \mathcal{P}_t$ is **frozen** at time *t* if *A* is **light** but the parent $A' \in \mathcal{P}_{t-1}$ is **heavy**. - $\mathcal{F}_t \coloneqq$ parts frozen at time *t*.

- Note: $|\mathcal{F}_t| \leq 2$.
- $-\mathcal{F} \coloneqq \bigcup_{1 \leq t \leq n} \mathcal{F}_t.$

Consider an uncontraction sequence of width *d*.

A part $A \in \mathcal{P}_t$ is **light** if index(G[A]) < k, and **heavy** otherwise.

 $A \in \mathcal{P}_t$ is **frozen** at time *t* if *A* is **light** but the parent $A' \in \mathcal{P}_{t-1}$ is **heavy**.

- $-\mathcal{F}_t \coloneqq$ parts frozen at time *t*.
- Note: $|\mathcal{F}_t| \leq 2$.
- $-\mathcal{F} \coloneqq \bigcup_{1 \leq t \leq n} \mathcal{F}_t.$
- Note: \mathcal{F} is a partition of the vertex set.

Order \mathcal{F} by the freezing times.

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 🕸

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 😰

 $-B' \coloneqq$ parent of *B*, say $B' \in \mathcal{P}_t$.

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 😰

- $-B' \coloneqq$ parent of *B*, say $B' \in \mathcal{P}_t$.
- $-\mathcal{N} \coloneqq$ red neighbors of *B*' at time *t*.

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 😰

- $-B' \coloneqq$ parent of *B*, say $B' \in \mathcal{P}_t$.
- $-\mathcal{N} \coloneqq$ red neighbors of *B*' at time *t*.
- Note: Every $u \notin B' \cup \bigcup \mathcal{N}$ is homogeneous towards B'.
Ordering bubbles

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 😰

- $-B' \coloneqq$ parent of *B*, say $B' \in \mathcal{P}_t$.
- $-\mathcal{N} \coloneqq$ red neighbors of B' at time t.
- Note: Every $u \notin B' \cup \bigcup \mathcal{N}$ is homogeneous towards B'.
- Note: B' is heavy \Rightarrow All homogeneity of same type.

Ordering bubbles

Order \mathcal{F} by the freezing times.

Idea: Adjacency between bubbles has a specific structure.

Lemma

For every $B \in \mathcal{F}$ there is a set \mathcal{E}_B of at most d + 1 earlier bubbles such that B is homogeneous towards $\bigcup \{A \colon A \prec B, A \notin \mathcal{E}_B\}$.

Proof: look 😰

- $-B' \coloneqq$ parent of *B*, say $B' \in \mathcal{P}_t$.
- $-\mathcal{N} \coloneqq$ red neighbors of B' at time t.
- Note: Every $u \notin B' \cup \bigcup \mathcal{N}$ is homogeneous towards B'.
- Note: B' is heavy \Rightarrow All homogeneity of same type.
- $-\mathcal{E}_{B} \coloneqq$ frozen ancestors of \mathcal{N} and maybe sibling of B.

Partition \mathcal{F} into $2 \cdot (d+2)$ groups:

- **Degeneracy** coloring with d + 2 colors \rightsquigarrow No exceptions within a group.
- **Homogeneity type** + or \rightsquigarrow Every group of same homogeneity type.

Partition \mathcal{F} into $2 \cdot (d+2)$ groups:

- **Degeneracy** coloring with d + 2 colors \rightsquigarrow No exceptions within a group.
- **Homogeneity type** + or \rightsquigarrow Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Partition \mathcal{F} into $2 \cdot (d+2)$ groups:

- **Degeneracy** coloring with d + 2 colors \rightsquigarrow No exceptions within a group.
- **Homogeneity type** + or \rightsquigarrow Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each $B \in \mathcal{F} \rightsquigarrow$ Cograph coloring with f(k - 1) colors.

Partition \mathcal{F} into $2 \cdot (d+2)$ groups:

- **Degeneracy** coloring with d + 2 colors \rightsquigarrow No exceptions within a group.
- **Homogeneity type** + or \rightsquigarrow Every group of same homogeneity type.

Within every group, bubbles pairwise complete or pairwise anticomplete.

Apply induction on each $B \in \mathcal{F} \rightsquigarrow$ Cograph coloring with f(k-1) colors. Use 2d + 4 palettes of size $f(k-1) \rightsquigarrow (2d+4) \cdot f(k-1)$ colors in total. \Box

We got sort of a decomposition:

We got sort of a decomposition:

Problem: We don't control edges between groups.

We got sort of a decomposition:

Problem: We don't control edges between groups.

Idea: Induct on pairs of bubbles.

We got sort of a decomposition:

Problem: We don't control edges between groups.

Idea: Induct on pairs of bubbles.

- Pair of bubbles A, B is simpler if index(G[A, B]) < k.

Lemma

Suppose *G* is a **bipartite** graph of bipartite twin-width *d* and index *k*. Then one can partition V(G) into \mathcal{F} respecting sides so that:

Lemma

Suppose *G* is a **bipartite** graph of bipartite twin-width *d* and index *k*.

Then one can partition V(G) into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an **exception graph** *H*.

Lemma

Suppose *G* is a **bipartite** graph of bipartite twin-width *d* and index *k*.

Then one can partition V(G) into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an **exception graph** *H*.
- *H* has star chromatic number bounded by p = p(d, k).

Lemma

Suppose G is a **bipartite** graph of bipartite twin-width d and index k.

Then one can partition V(G) into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an **exception graph** *H*.
- *H* has star chromatic number bounded by p = p(d, k).
- Each star in each induced star forest of the above has index < k.

Lemma

Suppose *G* is a **bipartite** graph of bipartite twin-width *d* and index *k*. Then one can partition V(G) into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an **exception graph** *H*.
- *H* has **star chromatic number** bounded by p = p(d, k).
- Each star in each induced star forest of the above has index < k.
- All non-exceptional pairs of $A, B \in \mathcal{F}$ are homogeneous.

Lemma

Suppose *G* is a **bipartite** graph of bipartite twin-width *d* and index *k*. Then one can partition V(G) into \mathcal{F} respecting sides so that:

- On \mathcal{F} there is an **exception graph** *H*.
- *H* has star chromatic number bounded by p = p(d, k).
- Each star in each induced star forest of the above has index < k.
- All non-exceptional pairs of $A, B \in \mathcal{F}$ are homogeneous.
- Complete pairs $AB \notin E(H)$ can be cleared using q = q(d, k) flips.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. \Box

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. \Box

Different **freezing conditions** give different **structure** between bubbles.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. \Box

Different **freezing conditions** give different **structure** between bubbles.

 $-\chi\text{-boundedness} \leadsto$ freeze when ω drops \leadsto quotient is sparse.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. \Box

Different **freezing conditions** give different **structure** between bubbles.

- $-\chi\text{-boundedness} \leadsto$ freeze when ω drops \leadsto quotient is sparse.
- qpoly $\chi\text{-boundedness} \rightsquigarrow$ freeze when ω drops by 1%.

Freezing condition:

 $A \in \mathcal{P}_t$ gets frozen if index(G[A, B]) < k for all $B \in \mathcal{P}_t$ on the other side.

This gives rise to the **exception graph** *H*.

- *H* has bounded wcol₂.
- Ergo: *H* has bounded star chromatic number.
- A bit of work with bounding the index of stars.

More work with flipping away the complete pairs. \Box

Different **freezing conditions** give different **structure** between bubbles.

- $-\chi\text{-boundedness} \leadsto$ freeze when ω drops \leadsto quotient is sparse.
- qpoly χ -boundedness \rightsquigarrow freeze when ω drops by 1%.
- neighborhood covers \rightsquigarrow freeze when there is a universal vertex.

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Goal: Find **sparse** *G*' of bnd twin-width from which *G* can be transduced.

Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Goal: Find **sparse** *G*' of bnd twin-width from which *G* can be transduced.

Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and equivalence relations.

Goal: Find **sparse** *G*' of bnd twin-width from which *G* can be transduced.

Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest.

Each application encoded by unary predicates and **equivalence relations**.

Final: Structure *D* consisting of t = t(d, k) unary predicates and equivalence relations from which *G* can be interpreted.

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Apply **Lemma**, recurse on all stars in each star forest.

Each application encoded by unary predicates and **equivalence relations**.

Final: Structure *D* consisting of t = t(d, k) unary predicates and equivalence relations from which *G* can be interpreted.

D can be represented as a **sparse** graph G' from which *G* can be transduced.
Sketch of main proof

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Apply **Lemma**, recurse on all stars in each star forest.

Each application encoded by unary predicates and **equivalence relations**.

Final: Structure *D* consisting of t = t(d, k) unary predicates and equivalence relations from which *G* can be interpreted.

D can be represented as a sparse graph G' from which G can be transduced.
– Just replace each equivalence relation with a star forest.

Sketch of main proof

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Apply Lemma, recurse on all stars in each star forest. Each application encoded by unary predicates and equivalence relations.

Final: Structure *D* consisting of t = t(d, k) unary predicates and equivalence relations from which *G* can be interpreted.

D can be represented as a sparse graph *G*' from which *G* can be transduced.
– Just replace each equivalence relation with a star forest.

Issue: Why does G' have bounded twin-width?

Sketch of main proof

Goal: Find **sparse** G' of bnd twin-width from which G can be transduced.

Wlog we can work with bipartite graphs.

Apply **Lemma**, recurse on all stars in each star forest. Each application encoded by unary predicates and **equivalence relations**.

Final: Structure *D* consisting of t = t(d, k) unary predicates and equivalence relations from which *G* can be interpreted.

D can be represented as a sparse graph G' from which G can be transduced.
– Just replace each equivalence relation with a star forest.

Issue: Why does *G*' have bounded twin-width?

- G' can be transduced from (G, \leq) , where \leq witnesses bnd tww of G.

str bnd expansion [?] = stable bnd flip-width str nowhere dense [?] = mon stable

str bnd expansion [?] = stable bnd flip-width str nowhere dense [?] = mon stable

Def: For a property Π , let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi = \widehat{\Pi} \cap$ weakly sparse.

str bnd expansion [?] = stable bnd flip-width str nowhere dense [?] = mon stable

Def: For a property Π , let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi = \widehat{\Pi} \cap$ weakly sparse.

Does this exactly map the **sparse** column to the **dependent** column?

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π , let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi = \widehat{\Pi} \cap$ weakly sparse.

Does this exactly map the **sparse** column to the **dependent** column?

Conjecture: *C* has **unbounded cliquewidth**

 \Leftrightarrow C transduces a class that contains a subdivision of every wall.

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π , let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi = \widehat{\Pi} \cap$ weakly sparse.

Does this exactly map the **sparse** column to the **dependent** column?

Conjecture: C has unbounded cliquewidth

 \Leftrightarrow C transduces a class that contains a subdivision of every wall.

Conjecture: *C* has **unbounded linear cliquewidth**

 \Leftrightarrow C transduces a class that contains a subdivision of every **binary tree**.

str bnd expansion $\stackrel{?}{=}$ stable bnd flip-width str nowhere dense $\stackrel{?}{=}$ mon stable

Def: For a property Π , let $\widehat{\Pi}$ be the largest transduction ideal such that $\Pi = \widehat{\Pi} \cap$ weakly sparse.

Does this exactly map the **sparse** column to the **dependent** column?

Conjecture: *C* has **unbounded cliquewidth**

 \Leftrightarrow C transduces a class that contains a subdivision of every **wall**.

Conjecture: *C* has **unbounded linear cliquewidth**

 \Leftrightarrow C transduces a class that contains a subdivision of every **binary tree**.

Theorem (OdMPS'23)

 \mathscr{C} has **unbounded shrubdepth** $\Leftrightarrow \mathscr{C}$ transduces the class of all **paths**.